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Executive Summary 
 

Although the Semantic Web and related technologies are usually focused on textual or 
structured data, it is also important to consider techniques for handling other sources 
of data. Of particular interest are multimedia data such as images and sound and video 
clips. In this report we present an overview of techniques that can be used to represent 
images as a first step towards further processing, for example for clustering, 
categorization, or retrieval. For instance, one can take the generated feature vector 
representation of images and apply some clustering or classification approach to 
construct/update a topic ontology of images.  
 
Most of the image representation techniques focus on automatically extracting 
representations from the images themselves, rather than on using external sources of 
data such as textual descriptions or manual annota tions provided by the user. 
 
We describe a software module that can be used to automatically extract several types 
of representations from images or sets of images. The representations currently 
supported include histograms, autocorrelograms, and banded autocorrelograms. The 
RGB and YCC color spaces may be used, and the granularity of the color space 
quantization can also be customized. The module supports both textual XML-based 
output and binary output. 
 
As an example of use of these representations, we pr esent results of experiments in 
which these representations were used as a basis for image categorization. The 
experiments show that these approaches, in combination with machine learning 
techniques such as support vector machines, can achieve useful levels of classification 
accuracy on realistic collections of images. Autocorrelograms and banded 
autocorrelograms are found to perform better than histograms. Representations based 
on a finer-grained quantization of the color space are found to outperform those based 
on a coarser quantization.  
 
The goal of this report is mainly to inform the other SEKT partners (including 
partners working on other technical issues, as well as the case study providers) on the 
possibilities of incorporating images into the process of semi-automatic ontology 
constructions. Nontechnical readers are recommended to focus on section 2, skipping 
the formulas and details if these are not of interest. 
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1. Introduction 
 
This report deals with the problem of representing images in a way which enables 
efficient and effective manipulation of large pictorial databases, chiefly for the 
purposes of retrieval, categorization, and clustering. We describe various techniques 
for representing images and present a software module which can prepare some types 
of representations for a given set of images. 
 
The report is arranged as follows. Section 2 presents an overview of related work in 
the fields of image retrieval and image categorization, showing the various 
approaches to image description, representation, matching, and querying that have 
been considered in the literature. Section 3 describes our software module for the 
automatic extraction of certain types of representations from collections of images. 
Section 4 presents some experiments which show how such representations can be 
used as a basis for image classification. We conclude with some suggestions for 
further work in this area in Section 5.  User guide is provided in Appendix. 
 
 
2. Related Work 
 
The related work comes from the areas of image categorization and image retrieval, 
which have received a lot of attention in the recent years due to the proliferation of 
databases containing images and other sorts of multimedia data, and the resulting 
interest in approaches to managing and accessing such pictorial databases. Most work 
in these areas focuses on classifying images into a discrete set of categories (image 
categorization) and on finding, in a collection of images, those which correspond the 
most closely to the user’s information need or query (image retrieval). Both problems 
share some of the underlying difficulties: the need to represent images on the one 
hand and queries and categories on the other, and the need for a matching function to 
determine the degree to which two representations (that of an image and that of a 
query or category) match. 
 
2.1 Textual image representation 
 
Various kinds of representations and matching functions have  been considered in the 
literature. Sometimes textual representations are considered. They have the advantage 
that image retrieval and categorization can then be based on many well-known 
existing approaches from the field of information retrieval and text categorization. 
The downside of using textual descriptions of images is that preparing them manually 
is typically unacceptably time-consuming (particularly when dealing with large 
collections of images), and the resulting descriptions may be ambiguous as different 
people may describe an image in different ways (LEE et al., 2004). Automatic 
extraction of textual descriptions from images is not yet possible, although some steps 
in that direction have been taken (WANG AND LI, 2002; JEON et al., 2003; FAN et al., 
2004). On the other hand, in cases when reasonable textual descriptions can be 
obtained automatically  from some existing source external to the images , a textual-
based approach is often used in practice even though relatively less attention is paid to 
it in the literature. For example, the Google image search engine uses words from web 
pages and URLs to describe images which occur on those pages. Another example of 
using textual descriptions in image retrieval is the Chabot system (OGLE AND 
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STONEBAKER , 1995; CARSON AND OGLE, 1996); this is a hybrid approach combining 
textual descriptions and keywords with a few simple content-based features, which 
were obtained from the images automatically. Some authors have also considered 
augmenting unstructured textua l descriptions into more structured representations, 
possibly involving some semantic; they have employed formalisms such as semantic 
frames, an is-a hierarchy of keywords to be used in the descriptions, etc. (QUINTANA , 
1997, A SLANDOGAN  et al., 1996). Just like the plain textual representations, these 
approaches suffer from the need for large amounts of human attention when preparing 
the representations, often without corresponding improvements in e.g. retrieval 
effectiveness. 
 
2.2 Content-based image representation 
 
Therefore, the largest amount of attention has been devoted to the possibilities of 
representing images with descriptions induced automatically from the images 
themselves. The fact that these representations rely only on the contents of the image, 
rather than on some external source of data, has given rise to terms such as content-
based  image retrieval. In the remainder of this section we will consider various kinds 
of content -based image representations. For the purposes of our discussion, we will 
treat the image I as a matrix of H rows and W columns, with the pixel at the 
intersection of row y and column x denoted as I(x, y). 
 
2.2.1 Color space in image representation 
 
Before we embark on the treatment of different approaches image representation, we 
should briefly consider the topic of color spaces and color space quantization . 
Typically, each color is described by a vector of three real values; the set of all colors 
then forms a color space. We can distinguish different color spaces based on the 
meaning of the three components of each color vector and their relationship to the 
color actually represented by the vector. Well-known color spaces include RGB (red, 
green, blue), HSB (hue, saturation, brightness), YCC (luminance and two 
chromaticity components), and so on. Not all color spaces are equally suitable for 
every purpose; in particular, for image categorization and retrieval it is often desirable 
if the color space is perceptually uniform, meaning that if we move by a certain 
distance in the color space, the change in color as perceived by the human eye should 
be roughly the same no matter in which part of the color space our starting point was 
located. Although perfect perceptual uniformity cannot be expected, some color 
spaces (e.g. YCC, Luv, and Lab) are closer to it than others. A very clear violation of 
this principle occurs in HSB, where a change in hue can cause the color to change into 
a completely different color if the brightness is large enough, but if the brightness is 
near 0 the color will be nearly black regardless of hue. 
 
For further processing of an image, it is often desirable to quantize the color space, 
i.e. partition it into a discrete and usually fairly small set of regions such that all the 
colors from a particular region will be treated as undistinguishable. In effect this is the 
same as simplifying the image to employ only the colors from a fixed and limited 
palette. It is possible to select colors for the palette so as to represent a particular 
image or set of images particularly well, but this can make it more difficult to 
compare representations of different images if they rely on different color palettes. 
Thus a uniform quantization, which does not take the color characteristics of 
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individual images into account, is often preferred. A typical and practical form of 
quantization is to simply partition each axis of the color space into a set of intervals, 
often all equally wide. For example, consider the RGB color space, with each color 
represented by a triple (r, g, b), where , r , g  and b are real values from the range [0, 1). 
If  we partition the r-, g- and b-axes into Qr, Qg and Qb intervals, respectively, this 
quantization will result in a palette of C = Qr⋅Qg⋅Qb colors represented by the indices 
0, . . . , C–1; the color (r , g , b ) might be mapped into the palette index rQrQgQb + 
gQgQb + bQb . 
 
2.2.2 Using histograms  
 
One well-known representation of images is the histogram. Once the color space has 
been quantized, the histogram simply records for each color in the quantized color 
space, the proportion of the image that is covered by pixels of that color. Thus, the 
histogram is a C-dimensional vector h = (h0, . . . , hC–1), where  
 hc = |{(x, y) : I(x, y) = c}| / (W⋅H). 
Since each histogram is a simple C-dimensional vector, the degree to which two 
images are different can now be assessed by looking at the distance (e.g. Euclidean 
distance or Manhattan distance) between their histograms. Another possible measure 
is histogram intersection (SWAIN AND BALLARD, 1991) given two histograms h and 
h', the intersection is Σ c=0..C–1 min(h i, h'i). The downside of these distance measures is 
that they treat different colors c as orthogonal and independent of one another and 
ignore the fact that different colors from the palette can still look fairly similar. To 
remedy that, IBM’s QBIC system (FALOUTSOS et al., 1994) proposed taking the 
similarities between colors into account as well: their distance measure is  
(h–h')TA(h–h'), where A = (a c,c') and a c,c' is the similarity between colors c and c' 
(Euclidean distance is a special case of this, obtained if A is the identity matrix). A 
still more sophisticated and dynamic distance measure has been proposed by GOH 
et al. (2002). DAVIDSON et al. (2001) describe an efficient indexing technique for 
querying a large collection of histograms. HE et al. (2004) describe how to map the 
images into a new space and define a distance measure there, taking into account an 
existing set of relevant images (e.g. supplied by the user during relevance feedback). 
 
Apart from being very simple to compute, histograms have the desirable property of 
being fairly robust to many distortions, such as objects moving around the image or 
parts or small changes in the camera angle. They are more sensitive to the image 
becoming lighter or darker (especially if the quantization is rather fine -grained). Their 
main downside, however, is that they only record information about which colors are 
present on the image and to what extent, but say nothing about the distribution of 
colors within the image. For example, a hundred scattered red pixels have the same 
effect on the histogram as a 10×10 red square. To remedy this, various kinds of 
histogram refinement have been proposed, with the idea of distinguishing the pixels 
on basis of other characteristics besides color, and then computing the percentage of 
image covered by each group of pixels analogously to the original histogram. For 
example, one could count separately pixels near the center of the image and those 
near the edges; or one could count separately pixels which are part of a sufficiently 
large connected patch of that color, and separately those which aren’t (the resulting 
representation is called color coherence vectors by PASS et a l., 1996; PASS AND 
ZADIH, 1999). 
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2.2.3 Using correlograms  
 
Another potentially problematic aspect of histograms is that they regard each color 
separately and in isolation from the others; they give no information about local 
relations between different colors. To address this issue, correlograms have been 
proposed by HUANG et al. (1997). They defined a correlogram as a vector of 
probabilities 
 γc,c’,k = P(I(x', y ') = c' | I(x , y) = c ∧ ||(x , y) – (x ', y')||∞ = k ).   (1) 
That is, γc,c’,k is the probability that a pixel, chosen randomly at distance k  from a 
randomly chosen pixel of color c , will have the color c'. The above definition uses the 
max-norm || ⋅| |∞ because of simpler implementation, although other distance measures 
could also be used. The problem with correlograms is that they consist of C2⋅K values 
if we have K different distances k  and C colors in the quantized color space; even 
though the correlogram may be reasonably sparse, with many 0 values that need not 
be stored explicitly, it may still cause unacceptable time and space requirements when 
storing and matching the correlograms. Thus, an autocorrelogram is often preferable 
in practice. This is a subset of the correlogram containing only information about the 
correlations of each color with itself: 
 αc,k = γc,c,k. 
The autocorrelogram is a vector of C⋅K values, meaning that it is only K times as 
time- and space-consuming as the histogr am. To reduce these requirements still 
further, we can use the banded autocorrelogram (HUANG et al., 1998), which is a 
“summary” of the autocorrelogram, obtained if we stop distinguishing between 
different distances k : 
 βk = Σ k αc,k,  
where the sum goes over all distances k  used in the autocorrelogram. This results in a 
vector of the same dimensionality as the histogram. 
 

 

Figure 1. An image and its corresponding histogram and 
autocorrelogram, based on a 4×4×4 quantization of the RGB 
colorspace. Each of the boxes in the middle row shows the 
color on which the corresponding histogram and autocorrelo-
gram entries are based. The bars in the top row are the auto-
cor relogram values, for the set of four distances k∈{1, 3, 5, 
7}. The bars in the bottom row show the histogram (some 
bars are invisible because the color occurs on so few pixels) . 
Note how the autocorrelogram enables us to distinguish be-
tween colors such as blue, which tend to occur in large 
patches (causing all entries of the autocorrelogram to be 
approxi mately equally large), and many other colors which 
occur in smaller isolated spots and consequently their auto-
cor relogram entry for distance k=1 is much higher than those 
for other distances.  
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2.2.4 Using color shape histograms  
 
Another way of refining the simple histogram-based representation is to record 
separate histograms for different regions of the image. Our representation is now a 
matrix H = (hi,c) where h i,c is the ratio of pixels of color c within region i to the total 
area of that region. The regions need not be disjoint; for example, STEHLING et al. 
(2000) suggested partitions the image into 3×3 equally large regions, as well as into 
5×5 equally large regions, and recording the histograms of all 34 resulting regions, as 
well as of the image as a whole. If there are many regions, storage requirements may 
again be problematic here (similar to the case of (auto)correlograms), but the matrix H 
may be reasonably sparse, particularly if many colors c do not appear in the image at 
all. Each column of H gives the information about the distribution of a color around 
different parts of the image; Stehling et al. therefore refer to it as a color shape 
histogram. 
 
Some authors have considered representing images by describing the shapes of 
entities that appear on the image, but for general-purpose collections of images it is 
difficult to reliably discover the meaningful and relevant entities and the resulting 
representation is not necessarily very useful for querying. PARK et al. (2000) proposed 
a histogram-like representation which basically records the percentage of edge pixels 
on various parts of the image, for several directions of edges.  WANG AND MAKEDON 
(2003) used a histogram-like representation to describe the relative position of two 
objects on the image; this could be used to support querying based on the spatial 
relations between a reference object and other objects on the image. However, it is 
difficult to reliably and automatically identify the objects in an image. 
 
2.2.5 Using texture 
 
Image representation can also focus on texture, which is usually defined as a more or 
less repeating pattern on some part of the image. The problem of texture 
segmentation , i.e. how to partition the image into several regions such that the texture 
of each region is roughly homogeneous, has been attracting a lot of attention in the 
fields of pattern recognition and computer vision. Because of the supposed 
repetitiveness and periodicity of many textures, digital filtering techniques are 
sometimes used to detect them and segment the image accordingly; for example, a 
bank of Gábor filters may be used, each of which responds to a repetitive pattern with 
a particular frequency and orientation. Various ad hoc formulas are sometimes used 
instead to detect and describe textures (FALOUTSOS et al., 1994). 
 
Texture segmentation is sometimes based on clustering. For example, NATSEV  et al. 
(1999) partitioned the entire image into small tiles of 4×4 pixels and represented each 
tile by a 12-dimensional vector based on the wavelet transform on that tile. The 
wavelet transform is appealing because it contains information about the average 
color and the frequency phenomena in the image on various scales, and such 
periodical phenomena often indicate the presence of a part icular kind of texture. The 
vectors representing individual tiles can then be clustered and we can define one 
region for each cluster, containing the tiles whose vectors belong to that cluster. The 
centroid of the cluster can be used as a vector description of the corresponding region.  
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The number of regions found by texture segmentation typically varies considerably 
depending on the contents and complexity of the image. While it is in a way good that 
the representation can adapt to smaller or greater complexity of images, it also means 
that representations of different images can no longer be compared using such simple 
measures as the Euclidean or Manhattan distance, which can be used on vector -based 
representations such as histograms and autocorrelograms. Instead, various similarity 
functions have been proposed that work on segmented images. To determine how 
similar two images are, similarities between individual regions of the two images are 
usually computed first and then somehow combined into an overall similarity 
measure; the size and location of regions can also be taken into account, giving larger 
regions and regions closer to the centre of the image greater influence on the overall 
similarity measure. An example of this type of approach is the integrated region 
matching of WANG et al. (2000). Texture segmentation has also been used by CHEN et 
al. (2001), who represented each region by a feature vector and the image by a set of 
such feature vectors; they then replaced these sets by fuzzy sets and used a fuzzy 
similarity measure to measure similarity between images for the purposes of retrieval. 
 
Many representations are based on keeping some of the coefficients of a wavelet 
transform of the image, or parts of the image. The wavelet transform can be computed 
efficiently and results in a frequency analysis of the image on a wide range of scales. 
Examples of using wavelets for image representation include JACOBS et al. (1995), 
WANG et al. (1997), LIU AND MANDAL (2001) , HOI AND LYU  (2004) . 
An approach that combines histograms and texture has been used by OBEID  et al. 
(2001). Using a set of training images, they defined six types of texture and 
represented each of them by a histogram. When processing a new image, each pixel is 
considered to be a “representative” of that texture in which pixels of this color are the 
most likely to appear (based on the histograms obtained on the training set). If we 
record the number of representative pixels for each of the six textures, we have 
represented our new image by a 6-tuple which can be used for retrieval or 
classification. This approach is an example of an intermediate path, slightly above the 
purely low level features such as simple histograms, but below the high-level textual 
or semantics -oriented descriptions which often require too much manual involvement. 
 
2.3 Query representation 
 
Another interesting issue in image retrieval (and related to the question of how to 
represent images) is how the user can describe his or her query to the system. For 
systems which include or are based on textual representations of images, the query 
can simply be a set of keywords (this is e.g. the approach taken by the Google image 
search engine). Most authors in the field of image retrieval assume that the query is 
represented by a query image, which the user has supplied and is now interested in 
retrieving similar images from the database. Sometimes the user can draw a sketch 
instead of supplying a full query image (JACOBS et al., 1995; DI SCIASCIO AND 
MONGIELLO, 1999). Sometimes it is difficult for the user to express his or her 
information needs in the form of a single query image; more interactive approaches 
may be used in such cases, often involving relevance feedback and active learning (DI 
SCIASCIO AND MONGIELLO, 1999; CHANG et al., 2001; HE et al., 2004). HOI AND LYU 
(2004) proposed an approach to relevance feedback which utilizes relevance 
judgments gathered during previous retrieval sessions.  LONG AND LEOW (2001) used 
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relevance feedback to define a more “perceptually consistent” dista nce measure on 
images. 
 
 
3. Architecture and Approach 
 
We have developed an approach to representing image with a set of features that can 
be further used in image retrieval, classification, clustering, etc. Our system  processes 
a set of image files, computes image descriptions of various kinds and outputs them in 
XML format or binary format (see Figure 2). In our approach, representation based on 
a quantized color space is used, more precisely histograms , autocorrelograms and 
banded autocorrelograms. The program is controlled via command-line parameters, 
which will be described in the following subsections. 
 

 
 
Figure 2. Architecture of the system for representing images as feature vectors based on a quantized color 
space using histograms (hist), autocorrelograms (acq), or banded autocorrelograms (bacq). 
 
 
3.1 Input Files 
 
The input files are specified via the “-i:〈file name〉” command-line parameter. This 
parameter may occur more than once if several image files need to be processed. The 
file name may also contain a path specification.  
 
If the file name contains the wildcard * and ? characters (the asterisk matches zero or 
more characters, the question mark matches any single character), all file names in 
that directory will be examined and files whose names match the wildcard will be 
processed; if no directory is specified in the –i parameter, the current directory will 
be used. If the “-recurse ” parameter is also given on the command line, the 
subdirectories will also be searched recursively for filenames matching the wildcard.  
 
The “-i” parameter also allows the special form “-i:@〈file name〉”, in which case 
the file name is assumed to refer to a plain-text file containing a list of image file 
names which should be processed (one name per line). 
 
Currently the input files must be in BMP format with 24 bits per pixel. 
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3.2 Representation Types 
 
Exactly one of the following command-line parameters must be present to specify 
what kind of image representation should be prepared: “-hist” (histograms), 
“-acg” (autocorrelograms), “-bacg” (banded autocorrelograms). 
 
All these representation types are based on a quantized color space. By default, the 
underlying color space used is RGB, but the “-ycc” parameter can be used to convert 
the images to YCC before quantization and computation of the representations. The 
quantization granularity must be specified via the “-gran:Q1,Q2,Q3” parameter. 
This causes the first axis to be divided into Q1 equally long intervals, the second axis 
into Q2 intervals and the third axis into Q3 interva ls. This quantization maps the color 
(x1, x2, x3), where 0 ≤ x1, x2, x3 < 1, into the palette color index  
 x1Q1Q2Q3 + x2Q2Q3 + x3Q3  
from the range 0, . . . , (Q1⋅Q2⋅Q3 – 1). 
 
For autocorrelograms and banded autocorrelograms, the set of distances involved in 
computing the autocorrelograms (the values of k  in equation (1)) must also be 
specified, using the “-d:k1,k2,...,kK” parameter (where K is the number of 
different distances to be used in the autocorrelogram or banded autocorrelogram). 
Because the intention of the autocorrelogram is to capture information about local 
spatial co-occurrence of colors, the values of k to be used are usually small. For 
example, HUANG et al. (1997) used the values 1, 3, 5, and 7.  
 
3.3 Output Types 
 
Output files must be specified via the “-o” parameter. Two output formats are 
currently supported: “-oxml:〈file  name〉” for XML-based output and 
“-obin:〈file name〉” for binary output. At least one of these parameters is required, 
but both may also be present to request that both t ypes of output be produced.  
 
The XML-based output has the following structure: 
 
  <ImageReprSet version="ImageReprSet Version 1"> 
    <ImageReprDesc version="1" type="histogram" 
                   underlyingColorSpace="RGB"  
                   gran1="16" gran2="8" gran3="8" /> 
    <ImageRepr fileName="foo.bmp"  
               relPath="..\a\foo.bmp" absPath="c:\bar\a\foo.bmp"> 
       0.103448 0.00361867 ... 0.055056</ImageRepr> 
    <ImageRepr ...>...</ImageRepr> 
    <ImageRepr ...>...</ImageRepr> 
  <ImageReprSet/> 
 
The type attribute can also have the values “autocorrelogram” and 
“banded-autocorrelogram”. The underlyingColorSpace can also have 
the value “YCC”. The gran1, gran2, and gran3 attributes contain the quantization 
granularity values that were specified via the “-gran” command-line parameter. For 
autocorrelograms and banded autocorrelograms, the ImageReprDesc  element has 
another attribute ds="k1,k2,...,k K" listing the distances that were provided via 
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the “-d ” command-line parameter and used to compute the autocorrelogram or 
banded autocorrelogram. 
 
Each ImageRepr element contains the representation of one image. The attributes 
provide the file name of the original give the file name (without path) of the original 
image file and the relative and absolute  path to the image file. The contents of the 
element consist of the components of the vector representation of that image. The 
components are listed in increasing order of color palette index. For a histogram or a 
banded autocorrelogram, there is one component per color. For a plain 
autocorrelogram, there are K components per color, one for each distance provided in 
the “-d” command-line parameter; these components appear in the same order as the 
distances in the “-d” parameter.  
 
 
4. Evaluating the system on image categorization 
 
In this section we present the results of some experiments in which the image 
representations described in the previous sections were used for the purpose of image 
categorization. 
 
For the evaluation, w e used a subset of the misc database which has already been used 
in the image retrieval literature, e.g. by WANG et al. (1997) and NATSEV et al. (1999). 
The full database (available from http://www-db.stanford.edu/IMAGE/ ) consists of 
9907 small photographic images, mostly of 128×85 pixels. There is a wide variety in 
terms of content. Since no preexisting categorization scheme or relevance judgments 
were available for this dataset, we manually selected a subset of the images and 
classified them into 14 categories: flags, butterflies, sunset, autumn, flowers, planets, 
satellite images of Earth, cars, mountains, clouds, sea, surfing, sailboats, animals. This 
selection of classes is intended to contain some distinct and easily recognizable ones 
(such as sunsets) and some groups of classes which are harder to distinguish (e.g. 
mountains, clouds, and sea, all of which contain a large amount of blue and white 
color hues). Our resulting dataset consists of 1172 images, each of which belongs to 
one of the above-mentioned 14 classes.  
 
We compared several kinds of image representations: histograms, autocorrelograms, 
and banded autocorrelograms. The latter two were based on the set of distances {1, 3, 
5, 7}, as suggested in HUANG et al. (1997). We used the RGB color space, with 
several different qua ntizations: 4×4×4, 6×6×6, and 8×8×4 (the blue axis is sometimes 
divided into fewer ranges than the other two because the human eye is often less 
sensitive to small changes of color along the blue axis than along the other two axes). 
The resulting image representations were multidimensional vectors of varying length 
(from 64 to 1024 dimensions). We used them as input for several learning and 
classification methods: nearest neighbors based on Manhattan distance, nearest 
neighbors based on Euclidean distance, and support vector machines (SVMs) 
(CORTES AND VAPNIK, 1995; BURGES, 1998) with either linear, cubic, or RBF (radial 
basis function) kernels. We performed ten-fold cross-validation and report the average 
classification accuracy (i.e. the percentage of images from the test set that were 
classified into the correct class). Since SVMs were originally designed for binary 
classification problems while our problem is multiclass (but only one class may be 
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predicted), we trained one binary classifier for each pair of classes and used the 
predictions of the resulting model as votes for one or the other class.  
 
The results of these experiments are shown on the charts on Figure 3, Figure 4 and 
Figure 5. Each of the three charts contains the results for one of the three different 
colorspace quantizations. The columns labeled “NN, L1” and “NN, L2” refer to the 
performance of the 1-nearest-neighbor based on the Manhattan and Euclidean 
distances, respectively. The other columns refer to the performance of support vector 
machines with the three different kinds of kernel (linear, cubic, and RBF). 
 
Comparing the different classification algorithms, we observe that SVM significantly 
outperforms the nearest-neighbor classifier; for the latter, Manhattan distance works 
better than Euclidean distance, which confirms the observations of earlier studies (e.g. 
HUANG et al., 1997). Of the different kernels, there is no significant difference in 
performance between cubic and RBF kernels, while both perform better than linear 
kernels. 
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Figure 3.  Results of the experiments comparing different combinations of image representation, and 
classification method using colorspace quantization: 4x4x4. 
 
Regarding quantization, we observe that finer-grained quantizations performed better. 
There are no significant differences between 6×6×6 and 8×8×4, but both significantly 
outperform the coarser 4×4×4 quantization. The differences were particularly large 
for linear SVM, because with other kernels the greater flexibility of the kernel may 
make up for the smaller dimensionality caused by the coarser quantization. 
 
Finally, if we compare different representation types, we notice that there are usually 
(except in the case of linear SVM) no significant differences in performance of 
autocorrelograms and banded autocorrelograms (but where there is a difference, 
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banded autocorrelograms perform worse than plain autocorrelograms); on the other 
hand, both of them significantly outperform the simple histograms. This makes 
banded autocorrelograms a particularly appealing representation type, because they 
combine the lower memory requirements of histograms with the better performance 
of autocorrelograms.  
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Figure 4.  Results of the experiments comparing different combinations of image representation, and 
classification method using colorspace quantization: 6x6x6.  
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Figure 5.  Results of the experiments comparing different combinations of image representation, and 
classification method using colorspace quantization: 8 ×8×4.  
 
 

5. Future Work 
 
The feature generation approach and software described in this report could be 
extended in many ways. Support for additional image file formats could be added, as 
well as for converting the images to different color spaces before quantization and 
generation of representations. Quantization is currently done by dividing each axis of 
the color space into several equally wide intervals; other types of quantization could 
be considered.  
 
Many other approaches to image representation and extraction of interesting and 
useful features  have also been described in the literature  (see Section 2 for some 
examples). However, they are often oriented specifically at a particular task or a 
particular type of images and would therefore only be suitable for more narrowly 
specialized applications. More complex representations of images often rely on 
specific and complex matching functions and other algorithms that need to be 
employed to make full use of the representation. For example, instead of basing all 
histograms on a fixed quantization of the color space, a different quantization might 
be used for each image, adapted to the contents of that image; but this would make it 
impossible to compare histograms as vectors on a component by component basis, 
and a more complex matching function or dista nce measure would need to be 
introduced instead. Integrating richer representations into the general TextGarden 
framework (see SEKT Deliverable 1.5.1) could therefore be problematic and is left as 
the subject of future work. 
 
Another interesting topic of further work is tighter integration of pictorial data with 
other kinds of data, particularly text but also traditional attribute-based or relational 
data. In some applications, images could be described by a combination of a textual 
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description and a content-derived representation such as a histogram or 
autocorrelogram (LU AND DREW, 2001). Various methods could be used to work with 
such combined representations; for example, categorization could be done using co-
training, classifier combination methods such as stacking, or by using kernel methods 
and combining several kernels based on different representations of an image. 
 
In the line of using the output of the system as input into other programs we have in 
mind the problem of constructing ontology of images based on their content. For that 
purpose, one would take the generated feature vectors and apply some clustering or 
classification approach to construct and update topic ontology of images. We are 
investigating possibilities of connecting the described ut ility with some of the other 
utilities that are developed in the same TextGarden library. This work will be 
prioritized and shaped based on the needs of the SEKT project case studies.  
 
Appendix - User Guide 

The utility extracts various groups of features from input images ("-i"). It can output 
the resulting image descriptions either in XML form ("-oxml") or in a binary format 
("-obin"). In both cases the output also includes a description of the representation 
used.  

One or more input file  parameters can be specified. Each can have the following 
form:  

• "-i:FileName" to process a specific image file.  
If the FileName includes the wildcard characters "?" and "*", all files 
matching the wildcard will be processed. FileName may also contain a 
path/drive specification, which should not include wildcard characters. The "-
recurse" parameter may be used to look for files matching the wildcard in 
subdirectories as well.  

• "-i:@FileName " to process all the image files whose names are listed, one per 
line, in the text file FileName.  

The input files should be in BMP format, with 24 bits per pixel.  

All image representations currently supported by the program are based on a 
quantization of the color space into a limited set of colors. The "-gran:Qr,Qg,Qb" 
parameter should be used to specify the granularity of the quantization. Each axis of 
the color space is divided into Q* sections. Thus, if a pixel originally had the RGB 
color  

(r , g , b ), with 0 <= r, g, b <1,  
it will be represented by the color index  

floor(r Qr) * Qg Qb + floor(g Q g) * Qb + floor(b Qb).  
The resulting quantization has n := Qr * Qg * Qb colors. This directly affects the 
number of features in the resulting image representations, all of which are based on 
providing one or more numerical values for each color of the quantized color space.  

As an alternative to the RGB color space in which the input images are originally 
stored, the "-ycc" parameter can be used to transform the images to the YCC color 
space before further processing. In this case the quantization will also be applied in 
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the YCC rather than in the RGB space; the three values listed with the "-gran" 
parameter refer to the quantization granularity for the Y  (luminance), 
C1 (chromaticity 1) and C 2 (chromaticity 2) axes, respectively. Using the YCC 
colorspace instead of RGB may be desirable because of YCC's greater perceptual 
uniformity (i.e. how well the distance between 3-D vectors representing colors 
corresponds to the human perception of the difference between the colors).  

Three types of image representations are supported at the moment:  

• A histogram ("-hist") is a vector of n values h0, h1, . . . , hn-1, where hi is the 
proportion of the image covered by pixels belonging to color index i (in the 
quantized color space). All these values are in the range 0 to 1.  

• An autocorrelogram ("-acg") is a vector of n * k values a i,j for i = 0 , . . . , n-1 
and j = 0 , . . . , k-1, arranged in increasing order of i and for each i in 
increasing order of j. The value a i,j is the probability, given a randomly chosen 
pixel with color i, that a pixel chosen randomly at a distance dj from the first 
pixel also has color i. For the purposes of this definition, distance is measured 
using the max-norm. The distances dj must be specified via the "-d:d0,d1,...,dk-

1" parameter.  
• A banded autocorrelogram ("-bacg") is a vector of n values b i, defined as 

bi = a i,0 + . . . + ai,k-1. As with the autocorrelograms, the "-d:..." parameter must 
be provided to specify the distances dj.  

Two types of output are supported. At least one of the corresponding parameters must 
be present on the command line.  

• XML output ("-oxml:FileName ") has the following form:  

 <ImageReprSet version="ImageReprSet Version 1"> 
     <ImageReprDesc version="1" type="histogram" 
         underlyingColorSpace="RGB" 
         gran1="16" gran2="8" gran3="8" /> 
     <ImageRepr fileName="foo.bmp" relPath="..\a\foo.bmp" 
         absPath="c:\bar\a\foo.bmp">0.103448 0.00361867 ... 
         0.055056</ImageRepr> 
     <ImageRepr ...>...</ImageRepr> 
 <ImageReprSet/> 

The gran* attributes report the granularity values Qr, Qg, Qb, respectively. The 
type attribute can also have the values autocorrelogram  and banded-
autocorrelogram; in these cases, the ImageReprDesc element will also have 
a ds="d0 d1 . . . dk-1" attribute describing the distances used in the (banded) 
autocorrelogram.  

The following is a document type definition for the XML output of this 
program: 

<!ELEMENT ImageReprSet (ImageReprDesc, ImageRepr*)> 
<!ATTLIST ImageReprSet 
 version CDATA #REQUIRED> 
<!ELEMENT ImageReprDesc EMPTY> 
<!ATTLIST ImageReprDesc 
 version CDATA #FIXED "1" 
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 type (histogram | autocorrelogram |  
       banded-autocorrelogram) #REQUIRED 
 underlyingColorSpace (RGB | YCC) #REQUIRED 
 gran1 CDATA #IMPLIED 
 gran2 CDATA #IMPLIED 
 gran3 CDATA #IMPLIED 
 ds CDATA #IMPLIED> 
<!ELEMENT ImageRepr (#PCDATA)> 
<!ATTLIST ImageRepr 
 fileName CDATA "" 
 relPath CDATA "" 
 absPath CDATA ""> 

• Binary output ("-obin:FileName ") is based on the standard Text-Garden 
serialization mechanisms. The TImageReprSet::Save method is ca lled to 
serialize the image representations into a binary form. See the source code for 
details.  

Usage: ImgFeatures.exe  
-i:Input-FileName  
-i:Input-FileMask (containing * and/or ? characters)  
-i:@File-Containing-List-Of-Input-FileNames 
-oxml:Xml-Output-F ileName 
-obin:Binary-Output-FileName 
-ycc (optional, to convert image to YCC colorspace) 
-hist -acg -bacg 
-gran:Q1,Q2,Q3 
-ds:Comma-Separated-List-Of-Distances (only for -acg/-bacg) 
-recurse (optional, to search subdirectories for files matching the Input-FileMask(s))  

Example 1: 
ImgFeatures.exe -i:foo.bmp -i:bar.bmp -oxml:baz.xml -hist -gran:8,8,4 
 
This reads the files foo.bmp  and bar.bmp  and computes for each a histogram based on 
a quantization of the RGB color space into 8 * 8 * 4 = 256 colors (the red and green 
axes are divided into eight intervals each, and the blue axis into four). The two 
histograms are written in XML form into baz.xml.  

Example 2: 
ImgFeatures.exe -i:c:\data \foo*.bmp -obin:foo.bin -acg -gran:6,6,6 -ds:1,3,5,7 
 
This searches the c:\data  directory for all files whose name matches foo*.bmp . An 
autocorrelogram is computed for each of these images, based on four distances (1, 3, 
5, 7) and a quantization of the RGB color space into 6 * 6 * 6 = 216 colors (each axis 
divided into six segments). Thus the autocorrelogram of each image consists of 864 
components.. The autocorrelograms are stored in binary form into foo.bin .  

Example 3: 
ImgFeatures.exe -i:@bar.txt -i:c:\data \foo*.bmp -recurse -oxml:d:\foo.xml -
obin:c:\foo2.bin -bacg -gran:6,6,6 -ds:1,3,5,7 
 
This processes all files whose names are listed in bar.txt (one per line). It also 
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searches the c:\data  directory and subdirectories recursively for all files whose name 
matches foo*.bmp . Banded autocorrelograms are computed for all these images and 
stored in d:\foo.xml and in c:\foo2.bin .  
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