
D1.3.1 / Dealing with different data types

1

EU-IST Project IST-2003-506826 SEKT
SEKT: Semantically Enabled Knowledge Technologies

D1.3.1 Dealing with different data types

Janez Brank
Dunja Mladenic, Marko Grobelnik

(Jožef Stefan Institute)

Abstract
Although the Semantic Web and related technologies are usually focused on textual or
structured data, it is also important to consider techniques for handling other sources
of data. Of particular interest are multimedia data such as images and sound and video
clips. In this report we present an overview of techniques that can be used to represent
images as a first step towards further processing, for example for clustering,
categorization, or retrieval. We describe a software module that can be used to
automatically extract several types of representations from images or sets of images.
The representations currently supported include histograms, autocorrelograms, and
banded autocorrelograms. As an example of use of these representations, we present
results of experiments in which these representations were used as a basis for image
categorization.

Keyword list: Semantic Web, multimedia, pictorial databases, image categorization,
image retrieval, histogram, autocorrelogram, color space quantization

WP1
Prototype/Report PU
Contractual date of delivery: 31.12.2004
Actual date of delivery: 12.1.2005

D1.3.1 / Dealing with different data types

2

 SEKT Consortium

This document is part of a research project partially funded by the IST Programme of
the Commission of the European Communities as project number IST-2003-506826.

British Telecommunications plc.
Orion 5/12, Adastral Park
Ipswich IP5 3RE
UK
Tel: +44 1473 609583, Fax: +44 1473 609832
Contact person: John Davies
E-mail: john.nj.davies@bt.com

Empolis GmbH
Europaallee 10
67657 Kaiserslautern
Germany
Tel: +49 631 303 5540
Fax: +49 631 303 5507
Contact person: Ralph Traphöner
E-mail: ralph.traphoener@empolis.com

Jozef Stefan Institute
Jamova 39
1000 Ljubljana
Slovenia
Tel: +386 1 4773 778, Fax: +386 1 4251 038
Contact person: Marko Grobelnik
E-mail: marko.grobelnik@ijs.si

University of Karlsruhe, Institute AIFB
Englerstr. 28
D-76128 Karlsruhe
Germany
Tel: +49 721 608 6592
Fax: +49 721 608 6580
Contact person: York Sure
E-mail: sure@aifb.uni-karlsruhe.de

University of Sheffield
Department of Computer Science
Regent Court, 211 Portobello St.
Sheffield S1 4DP
UK
Tel: +44 114 222 1891
Fax: +44 114 222 1810
Contact person: Hamish Cunningham
E-mail: hamish@dcs.shef.ac.uk

University of Innsbruck
Institute of Computer Science
Techikerstraße 13
6020 Innsbruck
Austria
Tel: +43 512 507 6475
Fax: +43 512 507 9872
Contact person : Jos de Bruijn
E-mail: jos.de-bruijn@deri.ie

Intelligent Software Components S.A.
Pedro de Valdivia, 10
28006
Madrid
Spain
Tel: +34 913 349 797
Fax: +49 34 913 349 799
Contact person: Richard Benjamins
E-mail: rbenjamins@isoco.com

Kea-pro GmbH
Tal
6464 Springen
Switzerland
Tel: +41 41 879 00
Fax: 41 41 879 00 13
Contact person: Tom Bösser
E-mail: tb@keapro.net

Ontoprise GmbH
Amalienbadstr. 36
76227 Karlsruhe
Germany
Tel: +49 721 50980912
Fax: +49 721 50980911
Contact person: Hans-Peter Schnurr
E-mail: schnurr@ontoprise.de

Sirma AI EAD, Ontotext Lab
135 Tsarigradsko Shose
Sofia 1784
Bulgaria
Tel: +359 2 9768 303, Fax: +359 2 9768 311
Contact person: Atanas Kiryakov
E-mail: naso@sirma.bg

Vrije Universiteit Amsterdam (VUA)
Department of Computer Sciences
De Boelelaan 1081a
1081 HV Amsterdam
The Netherlands
Tel: +31 20 444 7731, Fax: +31 84 221 4294
Contact person: Frank van Harmelen
E-mail: frank.van.harmelen@cs.vu.nl

Universitat Autonoma de Barcelona
Edifici B, Campus de la UAB
08193 Bellaterra (Cerdanyola del Vall` es)
Barcelona
Spain
Tel: +34 93 581 22 35, Fax: +34 93 581 29 88
Contact person: Pompeu Casanovas Romeu
E-mail: pompeu.casanovas@uab.es

D1.3.1 / Dealing with different data types

3

Executive Summary

Although the Semantic Web and related technologies are usually focused on textual or
structured data, it is also important to consider techniques for handling other sources
of data. Of particular interest are multimedia data such as images and sound and video
clips. In this report we present an overview of techniques that can be used to represent
images as a first step towards further processing, for example for clustering,
categorization, or retrieval. For instance, one can take the generated feature vector
representation of images and apply some clustering or classification approach to
construct/update a topic ontology of images.

Most of the image representation techniques focus on automatically extracting
representations from the images themselves, rather than on using external sources of
data such as textual descriptions or manual annota tions provided by the user.

We describe a software module that can be used to automatically extract several types
of representations from images or sets of images. The representations currently
supported include histograms, autocorrelograms, and banded autocorrelograms. The
RGB and YCC color spaces may be used, and the granularity of the color space
quantization can also be customized. The module supports both textual XML-based
output and binary output.

As an example of use of these representations, we pr esent results of experiments in
which these representations were used as a basis for image categorization. The
experiments show that these approaches, in combination with machine learning
techniques such as support vector machines, can achieve useful levels of classification
accuracy on realistic collections of images. Autocorrelograms and banded
autocorrelograms are found to perform better than histograms. Representations based
on a finer-grained quantization of the color space are found to outperform those based
on a coarser quantization.

The goal of this report is mainly to inform the other SEKT partners (including
partners working on other technical issues, as well as the case study providers) on the
possibilities of incorporating images into the process of semi-automatic ontology
constructions. Nontechnical readers are recommended to focus on section 2, skipping
the formulas and details if these are not of interest.

D1.3.1 / Dealing with different data types

4

Contents

SEKT Consortium ...2
Executive Summary...3
Contents ..4
1. Introduction..5
2. Related Work..5

2.1 Textual image representation... 5
2.2 Content-based image representation .. 6

2.2.1 Color space in image representation... 6
2.2.2 Using histograms .. 7
2.2.3 Using correlograms ... 8
2.2.4 Using color shape histograms ... 9
2.2.5 Using texture... 9

2.3 Query representation ..10
3. Architecture and Approach ..11

3.1 Input Files ..11
3.2 Representation Types...12
3.3 Output Types..12

4. Evaluating the system on image categorization..13
5. Future Work...16
Appendix - User Guide ..17
Bibliography and References..20

D1.3.1 / Dealing with different data types

5

1. Introduction

This report deals with the problem of representing images in a way which enables
efficient and effective manipulation of large pictorial databases, chiefly for the
purposes of retrieval, categorization, and clustering. We describe various techniques
for representing images and present a software module which can prepare some types
of representations for a given set of images.

The report is arranged as follows. Section 2 presents an overview of related work in
the fields of image retrieval and image categorization, showing the various
approaches to image description, representation, matching, and querying that have
been considered in the literature. Section 3 describes our software module for the
automatic extraction of certain types of representations from collections of images.
Section 4 presents some experiments which show how such representations can be
used as a basis for image classification. We conclude with some suggestions for
further work in this area in Section 5. User guide is provided in Appendix.

2. Related Work

The related work comes from the areas of image categorization and image retrieval,
which have received a lot of attention in the recent years due to the proliferation of
databases containing images and other sorts of multimedia data, and the resulting
interest in approaches to managing and accessing such pictorial databases. Most work
in these areas focuses on classifying images into a discrete set of categories (image
categorization) and on finding, in a collection of images, those which correspond the
most closely to the user’s information need or query (image retrieval). Both problems
share some of the underlying difficulties: the need to represent images on the one
hand and queries and categories on the other, and the need for a matching function to
determine the degree to which two representations (that of an image and that of a
query or category) match.

2.1 Textual image representation

Various kinds of representations and matching functions have been considered in the
literature. Sometimes textual representations are considered. They have the advantage
that image retrieval and categorization can then be based on many well-known
existing approaches from the field of information retrieval and text categorization.
The downside of using textual descriptions of images is that preparing them manually
is typically unacceptably time-consuming (particularly when dealing with large
collections of images), and the resulting descriptions may be ambiguous as different
people may describe an image in different ways (LEE et al., 2004). Automatic
extraction of textual descriptions from images is not yet possible, although some steps
in that direction have been taken (WANG AND LI, 2002; JEON et al., 2003; FAN et al.,
2004). On the other hand, in cases when reasonable textual descriptions can be
obtained automatically from some existing source external to the images , a textual-
based approach is often used in practice even though relatively less attention is paid to
it in the literature. For example, the Google image search engine uses words from web
pages and URLs to describe images which occur on those pages. Another example of
using textual descriptions in image retrieval is the Chabot system (OGLE AND

D1.3.1 / Dealing with different data types

6

STONEBAKER , 1995; CARSON AND OGLE, 1996); this is a hybrid approach combining
textual descriptions and keywords with a few simple content-based features, which
were obtained from the images automatically. Some authors have also considered
augmenting unstructured textua l descriptions into more structured representations,
possibly involving some semantic; they have employed formalisms such as semantic
frames, an is-a hierarchy of keywords to be used in the descriptions, etc. (QUINTANA ,
1997, A SLANDOGAN et al., 1996). Just like the plain textual representations, these
approaches suffer from the need for large amounts of human attention when preparing
the representations, often without corresponding improvements in e.g. retrieval
effectiveness.

2.2 Content-based image representation

Therefore, the largest amount of attention has been devoted to the possibilities of
representing images with descriptions induced automatically from the images
themselves. The fact that these representations rely only on the contents of the image,
rather than on some external source of data, has given rise to terms such as content-
based image retrieval. In the remainder of this section we will consider various kinds
of content -based image representations. For the purposes of our discussion, we will
treat the image I as a matrix of H rows and W columns, with the pixel at the
intersection of row y and column x denoted as I(x, y).

2.2.1 Color space in image representation

Before we embark on the treatment of different approaches image representation, we
should briefly consider the topic of color spaces and color space quantization .
Typically, each color is described by a vector of three real values; the set of all colors
then forms a color space. We can distinguish different color spaces based on the
meaning of the three components of each color vector and their relationship to the
color actually represented by the vector. Well-known color spaces include RGB (red,
green, blue), HSB (hue, saturation, brightness), YCC (luminance and two
chromaticity components), and so on. Not all color spaces are equally suitable for
every purpose; in particular, for image categorization and retrieval it is often desirable
if the color space is perceptually uniform, meaning that if we move by a certain
distance in the color space, the change in color as perceived by the human eye should
be roughly the same no matter in which part of the color space our starting point was
located. Although perfect perceptual uniformity cannot be expected, some color
spaces (e.g. YCC, Luv, and Lab) are closer to it than others. A very clear violation of
this principle occurs in HSB, where a change in hue can cause the color to change into
a completely different color if the brightness is large enough, but if the brightness is
near 0 the color will be nearly black regardless of hue.

For further processing of an image, it is often desirable to quantize the color space,
i.e. partition it into a discrete and usually fairly small set of regions such that all the
colors from a particular region will be treated as undistinguishable. In effect this is the
same as simplifying the image to employ only the colors from a fixed and limited
palette. It is possible to select colors for the palette so as to represent a particular
image or set of images particularly well, but this can make it more difficult to
compare representations of different images if they rely on different color palettes.
Thus a uniform quantization, which does not take the color characteristics of

D1.3.1 / Dealing with different data types

7

individual images into account, is often preferred. A typical and practical form of
quantization is to simply partition each axis of the color space into a set of intervals,
often all equally wide. For example, consider the RGB color space, with each color
represented by a triple (r, g, b), where , r , g and b are real values from the range [0, 1).
If we partition the r-, g- and b-axes into Qr, Qg and Qb intervals, respectively, this
quantization will result in a palette of C = Qr⋅Qg⋅Qb colors represented by the indices
0, . . . , C–1; the color (r , g , b) might be mapped into the palette index rQrQgQb +
gQgQb + bQb .

2.2.2 Using histograms

One well-known representation of images is the histogram. Once the color space has
been quantized, the histogram simply records for each color in the quantized color
space, the proportion of the image that is covered by pixels of that color. Thus, the
histogram is a C-dimensional vector h = (h0, . . . , hC–1), where
 hc = |{(x, y) : I(x, y) = c}| / (W⋅H).
Since each histogram is a simple C-dimensional vector, the degree to which two
images are different can now be assessed by looking at the distance (e.g. Euclidean
distance or Manhattan distance) between their histograms. Another possible measure
is histogram intersection (SWAIN AND BALLARD, 1991) given two histograms h and
h', the intersection is Σ c=0..C–1 min(h i, h'i). The downside of these distance measures is
that they treat different colors c as orthogonal and independent of one another and
ignore the fact that different colors from the palette can still look fairly similar. To
remedy that, IBM’s QBIC system (FALOUTSOS et al., 1994) proposed taking the
similarities between colors into account as well: their distance measure is
(h–h')TA(h–h'), where A = (a c,c') and a c,c' is the similarity between colors c and c'
(Euclidean distance is a special case of this, obtained if A is the identity matrix). A
still more sophisticated and dynamic distance measure has been proposed by GOH
et al. (2002). DAVIDSON et al. (2001) describe an efficient indexing technique for
querying a large collection of histograms. HE et al. (2004) describe how to map the
images into a new space and define a distance measure there, taking into account an
existing set of relevant images (e.g. supplied by the user during relevance feedback).

Apart from being very simple to compute, histograms have the desirable property of
being fairly robust to many distortions, such as objects moving around the image or
parts or small changes in the camera angle. They are more sensitive to the image
becoming lighter or darker (especially if the quantization is rather fine -grained). Their
main downside, however, is that they only record information about which colors are
present on the image and to what extent, but say nothing about the distribution of
colors within the image. For example, a hundred scattered red pixels have the same
effect on the histogram as a 10×10 red square. To remedy this, various kinds of
histogram refinement have been proposed, with the idea of distinguishing the pixels
on basis of other characteristics besides color, and then computing the percentage of
image covered by each group of pixels analogously to the original histogram. For
example, one could count separately pixels near the center of the image and those
near the edges; or one could count separately pixels which are part of a sufficiently
large connected patch of that color, and separately those which aren’t (the resulting
representation is called color coherence vectors by PASS et a l., 1996; PASS AND
ZADIH, 1999).

D1.3.1 / Dealing with different data types

8

2.2.3 Using correlograms

Another potentially problematic aspect of histograms is that they regard each color
separately and in isolation from the others; they give no information about local
relations between different colors. To address this issue, correlograms have been
proposed by HUANG et al. (1997). They defined a correlogram as a vector of
probabilities
 γc,c’,k = P(I(x', y ') = c' | I(x , y) = c ∧ ||(x , y) – (x ', y')||∞ = k). (1)
That is, γc,c’,k is the probability that a pixel, chosen randomly at distance k from a
randomly chosen pixel of color c , will have the color c'. The above definition uses the
max-norm || ⋅| |∞ because of simpler implementation, although other distance measures
could also be used. The problem with correlograms is that they consist of C2⋅K values
if we have K different distances k and C colors in the quantized color space; even
though the correlogram may be reasonably sparse, with many 0 values that need not
be stored explicitly, it may still cause unacceptable time and space requirements when
storing and matching the correlograms. Thus, an autocorrelogram is often preferable
in practice. This is a subset of the correlogram containing only information about the
correlations of each color with itself:
 αc,k = γc,c,k.
The autocorrelogram is a vector of C⋅K values, meaning that it is only K times as
time- and space-consuming as the histogr am. To reduce these requirements still
further, we can use the banded autocorrelogram (HUANG et al., 1998), which is a
“summary” of the autocorrelogram, obtained if we stop distinguishing between
different distances k :
 βk = Σ k αc,k,
where the sum goes over all distances k used in the autocorrelogram. This results in a
vector of the same dimensionality as the histogram.

Figure 1. An image and its corresponding histogram and
autocorrelogram, based on a 4×4×4 quantization of the RGB
colorspace. Each of the boxes in the middle row shows the
color on which the corresponding histogram and autocorrelo-
gram entries are based. The bars in the top row are the auto-
cor relogram values, for the set of four distances k∈{1, 3, 5,
7}. The bars in the bottom row show the histogram (some
bars are invisible because the color occurs on so few pixels) .
Note how the autocorrelogram enables us to distinguish be-
tween colors such as blue, which tend to occur in large
patches (causing all entries of the autocorrelogram to be
approxi mately equally large), and many other colors which
occur in smaller isolated spots and consequently their auto-
cor relogram entry for distance k=1 is much higher than those
for other distances.

D1.3.1 / Dealing with different data types

9

2.2.4 Using color shape histograms

Another way of refining the simple histogram-based representation is to record
separate histograms for different regions of the image. Our representation is now a
matrix H = (hi,c) where h i,c is the ratio of pixels of color c within region i to the total
area of that region. The regions need not be disjoint; for example, STEHLING et al.
(2000) suggested partitions the image into 3×3 equally large regions, as well as into
5×5 equally large regions, and recording the histograms of all 34 resulting regions, as
well as of the image as a whole. If there are many regions, storage requirements may
again be problematic here (similar to the case of (auto)correlograms), but the matrix H
may be reasonably sparse, particularly if many colors c do not appear in the image at
all. Each column of H gives the information about the distribution of a color around
different parts of the image; Stehling et al. therefore refer to it as a color shape
histogram.

Some authors have considered representing images by describing the shapes of
entities that appear on the image, but for general-purpose collections of images it is
difficult to reliably discover the meaningful and relevant entities and the resulting
representation is not necessarily very useful for querying. PARK et al. (2000) proposed
a histogram-like representation which basically records the percentage of edge pixels
on various parts of the image, for several directions of edges. WANG AND MAKEDON
(2003) used a histogram-like representation to describe the relative position of two
objects on the image; this could be used to support querying based on the spatial
relations between a reference object and other objects on the image. However, it is
difficult to reliably and automatically identify the objects in an image.

2.2.5 Using texture

Image representation can also focus on texture, which is usually defined as a more or
less repeating pattern on some part of the image. The problem of texture
segmentation , i.e. how to partition the image into several regions such that the texture
of each region is roughly homogeneous, has been attracting a lot of attention in the
fields of pattern recognition and computer vision. Because of the supposed
repetitiveness and periodicity of many textures, digital filtering techniques are
sometimes used to detect them and segment the image accordingly; for example, a
bank of Gábor filters may be used, each of which responds to a repetitive pattern with
a particular frequency and orientation. Various ad hoc formulas are sometimes used
instead to detect and describe textures (FALOUTSOS et al., 1994).

Texture segmentation is sometimes based on clustering. For example, NATSEV et al.
(1999) partitioned the entire image into small tiles of 4×4 pixels and represented each
tile by a 12-dimensional vector based on the wavelet transform on that tile. The
wavelet transform is appealing because it contains information about the average
color and the frequency phenomena in the image on various scales, and such
periodical phenomena often indicate the presence of a part icular kind of texture. The
vectors representing individual tiles can then be clustered and we can define one
region for each cluster, containing the tiles whose vectors belong to that cluster. The
centroid of the cluster can be used as a vector description of the corresponding region.

D1.3.1 / Dealing with different data types

10

The number of regions found by texture segmentation typically varies considerably
depending on the contents and complexity of the image. While it is in a way good that
the representation can adapt to smaller or greater complexity of images, it also means
that representations of different images can no longer be compared using such simple
measures as the Euclidean or Manhattan distance, which can be used on vector -based
representations such as histograms and autocorrelograms. Instead, various similarity
functions have been proposed that work on segmented images. To determine how
similar two images are, similarities between individual regions of the two images are
usually computed first and then somehow combined into an overall similarity
measure; the size and location of regions can also be taken into account, giving larger
regions and regions closer to the centre of the image greater influence on the overall
similarity measure. An example of this type of approach is the integrated region
matching of WANG et al. (2000). Texture segmentation has also been used by CHEN et
al. (2001), who represented each region by a feature vector and the image by a set of
such feature vectors; they then replaced these sets by fuzzy sets and used a fuzzy
similarity measure to measure similarity between images for the purposes of retrieval.

Many representations are based on keeping some of the coefficients of a wavelet
transform of the image, or parts of the image. The wavelet transform can be computed
efficiently and results in a frequency analysis of the image on a wide range of scales.
Examples of using wavelets for image representation include JACOBS et al. (1995),
WANG et al. (1997), LIU AND MANDAL (2001) , HOI AND LYU (2004) .
An approach that combines histograms and texture has been used by OBEID et al.
(2001). Using a set of training images, they defined six types of texture and
represented each of them by a histogram. When processing a new image, each pixel is
considered to be a “representative” of that texture in which pixels of this color are the
most likely to appear (based on the histograms obtained on the training set). If we
record the number of representative pixels for each of the six textures, we have
represented our new image by a 6-tuple which can be used for retrieval or
classification. This approach is an example of an intermediate path, slightly above the
purely low level features such as simple histograms, but below the high-level textual
or semantics -oriented descriptions which often require too much manual involvement.

2.3 Query representation

Another interesting issue in image retrieval (and related to the question of how to
represent images) is how the user can describe his or her query to the system. For
systems which include or are based on textual representations of images, the query
can simply be a set of keywords (this is e.g. the approach taken by the Google image
search engine). Most authors in the field of image retrieval assume that the query is
represented by a query image, which the user has supplied and is now interested in
retrieving similar images from the database. Sometimes the user can draw a sketch
instead of supplying a full query image (JACOBS et al., 1995; DI SCIASCIO AND
MONGIELLO, 1999). Sometimes it is difficult for the user to express his or her
information needs in the form of a single query image; more interactive approaches
may be used in such cases, often involving relevance feedback and active learning (DI
SCIASCIO AND MONGIELLO, 1999; CHANG et al., 2001; HE et al., 2004). HOI AND LYU
(2004) proposed an approach to relevance feedback which utilizes relevance
judgments gathered during previous retrieval sessions. LONG AND LEOW (2001) used

D1.3.1 / Dealing with different data types

11

relevance feedback to define a more “perceptually consistent” dista nce measure on
images.

3. Architecture and Approach

We have developed an approach to representing image with a set of features that can
be further used in image retrieval, classification, clustering, etc. Our system processes
a set of image files, computes image descriptions of various kinds and outputs them in
XML format or binary format (see Figure 2). In our approach, representation based on
a quantized color space is used, more precisely histograms , autocorrelograms and
banded autocorrelograms. The program is controlled via command-line parameters,
which will be described in the following subsections.

Figure 2. Architecture of the system for representing images as feature vectors based on a quantized color
space using histograms (hist), autocorrelograms (acq), or banded autocorrelograms (bacq).

3.1 Input Files

The input files are specified via the “-i:〈file name〉” command-line parameter. This
parameter may occur more than once if several image files need to be processed. The
file name may also contain a path specification.

If the file name contains the wildcard * and ? characters (the asterisk matches zero or
more characters, the question mark matches any single character), all file names in
that directory will be examined and files whose names match the wildcard will be
processed; if no directory is specified in the –i parameter, the current directory will
be used. If the “-recurse ” parameter is also given on the command line, the
subdirectories will also be searched recursively for filenames matching the wildcard.

The “-i” parameter also allows the special form “-i:@〈file name〉”, in which case
the file name is assumed to refer to a plain-text file containing a list of image file
names which should be processed (one name per line).

Currently the input files must be in BMP format with 24 bits per pixel.

D1.3.1 / Dealing with different data types

12

3.2 Representation Types

Exactly one of the following command-line parameters must be present to specify
what kind of image representation should be prepared: “-hist” (histograms),
“-acg” (autocorrelograms), “-bacg” (banded autocorrelograms).

All these representation types are based on a quantized color space. By default, the
underlying color space used is RGB, but the “-ycc” parameter can be used to convert
the images to YCC before quantization and computation of the representations. The
quantization granularity must be specified via the “-gran:Q1,Q2,Q3” parameter.
This causes the first axis to be divided into Q1 equally long intervals, the second axis
into Q2 intervals and the third axis into Q3 interva ls. This quantization maps the color
(x1, x2, x3), where 0 ≤ x1, x2, x3 < 1, into the palette color index
 x1Q1Q2Q3 + x2Q2Q3 + x3Q3
from the range 0, . . . , (Q1⋅Q2⋅Q3 – 1).

For autocorrelograms and banded autocorrelograms, the set of distances involved in
computing the autocorrelograms (the values of k in equation (1)) must also be
specified, using the “-d:k1,k2,...,kK” parameter (where K is the number of
different distances to be used in the autocorrelogram or banded autocorrelogram).
Because the intention of the autocorrelogram is to capture information about local
spatial co-occurrence of colors, the values of k to be used are usually small. For
example, HUANG et al. (1997) used the values 1, 3, 5, and 7.

3.3 Output Types

Output files must be specified via the “-o” parameter. Two output formats are
currently supported: “-oxml:〈file name〉” for XML-based output and
“-obin:〈file name〉” for binary output. At least one of these parameters is required,
but both may also be present to request that both t ypes of output be produced.

The XML-based output has the following structure:

 <ImageReprSet version="ImageReprSet Version 1">
 <ImageReprDesc version="1" type="histogram"
 underlyingColorSpace="RGB"
 gran1="16" gran2="8" gran3="8" />
 <ImageRepr fileName="foo.bmp"
 relPath="..\a\foo.bmp" absPath="c:\bar\a\foo.bmp">
 0.103448 0.00361867 ... 0.055056</ImageRepr>
 <ImageRepr ...>...</ImageRepr>
 <ImageRepr ...>...</ImageRepr>
 <ImageReprSet/>

The type attribute can also have the values “autocorrelogram” and
“banded-autocorrelogram”. The underlyingColorSpace can also have
the value “YCC”. The gran1, gran2, and gran3 attributes contain the quantization
granularity values that were specified via the “-gran” command-line parameter. For
autocorrelograms and banded autocorrelograms, the ImageReprDesc element has
another attribute ds="k1,k2,...,k K" listing the distances that were provided via

D1.3.1 / Dealing with different data types

13

the “-d ” command-line parameter and used to compute the autocorrelogram or
banded autocorrelogram.

Each ImageRepr element contains the representation of one image. The attributes
provide the file name of the original give the file name (without path) of the original
image file and the relative and absolute path to the image file. The contents of the
element consist of the components of the vector representation of that image. The
components are listed in increasing order of color palette index. For a histogram or a
banded autocorrelogram, there is one component per color. For a plain
autocorrelogram, there are K components per color, one for each distance provided in
the “-d” command-line parameter; these components appear in the same order as the
distances in the “-d” parameter.

4. Evaluating the system on image categorization

In this section we present the results of some experiments in which the image
representations described in the previous sections were used for the purpose of image
categorization.

For the evaluation, w e used a subset of the misc database which has already been used
in the image retrieval literature, e.g. by WANG et al. (1997) and NATSEV et al. (1999).
The full database (available from http://www-db.stanford.edu/IMAGE/) consists of
9907 small photographic images, mostly of 128×85 pixels. There is a wide variety in
terms of content. Since no preexisting categorization scheme or relevance judgments
were available for this dataset, we manually selected a subset of the images and
classified them into 14 categories: flags, butterflies, sunset, autumn, flowers, planets,
satellite images of Earth, cars, mountains, clouds, sea, surfing, sailboats, animals. This
selection of classes is intended to contain some distinct and easily recognizable ones
(such as sunsets) and some groups of classes which are harder to distinguish (e.g.
mountains, clouds, and sea, all of which contain a large amount of blue and white
color hues). Our resulting dataset consists of 1172 images, each of which belongs to
one of the above-mentioned 14 classes.

We compared several kinds of image representations: histograms, autocorrelograms,
and banded autocorrelograms. The latter two were based on the set of distances {1, 3,
5, 7}, as suggested in HUANG et al. (1997). We used the RGB color space, with
several different qua ntizations: 4×4×4, 6×6×6, and 8×8×4 (the blue axis is sometimes
divided into fewer ranges than the other two because the human eye is often less
sensitive to small changes of color along the blue axis than along the other two axes).
The resulting image representations were multidimensional vectors of varying length
(from 64 to 1024 dimensions). We used them as input for several learning and
classification methods: nearest neighbors based on Manhattan distance, nearest
neighbors based on Euclidean distance, and support vector machines (SVMs)
(CORTES AND VAPNIK, 1995; BURGES, 1998) with either linear, cubic, or RBF (radial
basis function) kernels. We performed ten-fold cross-validation and report the average
classification accuracy (i.e. the percentage of images from the test set that were
classified into the correct class). Since SVMs were originally designed for binary
classification problems while our problem is multiclass (but only one class may be

D1.3.1 / Dealing with different data types

14

predicted), we trained one binary classifier for each pair of classes and used the
predictions of the resulting model as votes for one or the other class.

The results of these experiments are shown on the charts on Figure 3, Figure 4 and
Figure 5. Each of the three charts contains the results for one of the three different
colorspace quantizations. The columns labeled “NN, L1” and “NN, L2” refer to the
performance of the 1-nearest-neighbor based on the Manhattan and Euclidean
distances, respectively. The other columns refer to the performance of support vector
machines with the three different kinds of kernel (linear, cubic, and RBF).

Comparing the different classification algorithms, we observe that SVM significantly
outperforms the nearest-neighbor classifier; for the latter, Manhattan distance works
better than Euclidean distance, which confirms the observations of earlier studies (e.g.
HUANG et al., 1997). Of the different kernels, there is no significant difference in
performance between cubic and RBF kernels, while both perform better than linear
kernels.

quantization: 4*4*4

0

10

20

30

40

50

60

70

80

NN, L1 NN, L2 SVM, linear SVM, cubic SVM, rbf

learning/classification method

cl
as

si
fi

ca
ti

on
 a

cc
ur

ac
y

(%
)

histogram autocorrelogram banded autocorrelogram

Figure 3. Results of the experiments comparing different combinations of image representation, and
classification method using colorspace quantization: 4x4x4.

Regarding quantization, we observe that finer-grained quantizations performed better.
There are no significant differences between 6×6×6 and 8×8×4, but both significantly
outperform the coarser 4×4×4 quantization. The differences were particularly large
for linear SVM, because with other kernels the greater flexibility of the kernel may
make up for the smaller dimensionality caused by the coarser quantization.

Finally, if we compare different representation types, we notice that there are usually
(except in the case of linear SVM) no significant differences in performance of
autocorrelograms and banded autocorrelograms (but where there is a difference,

D1.3.1 / Dealing with different data types

15

banded autocorrelograms perform worse than plain autocorrelograms); on the other
hand, both of them significantly outperform the simple histograms. This makes
banded autocorrelograms a particularly appealing representation type, because they
combine the lower memory requirements of histograms with the better performance
of autocorrelograms.

quantization: 6*6*6

0

10

20

30

40

50

60

70

80

NN, L1 NN, L2 SVM, linear SVM, cubic SVM, rbf

learning/classification method

cl
as

si
fi

ca
ti

on
 a

cc
ur

ac
y

(%
)

histogram autocorrelogram banded autocorrelogram

Figure 4. Results of the experiments comparing different combinations of image representation, and
classification method using colorspace quantization: 6x6x6.

D1.3.1 / Dealing with different data types

16

quantization: 8*8*4

0

10

20

30

40

50

60

70

80

NN, L1 NN, L2 SVM, linear SVM, cubic SVM, rbf

learning/classification method

cl
as

si
fi

ca
ti

on
 a

cc
ur

ac
y

(%
)

histogram autocorrelogram banded autocorrelogram

Figure 5. Results of the experiments comparing different combinations of image representation, and
classification method using colorspace quantization: 8 ×8×4.

5. Future Work

The feature generation approach and software described in this report could be
extended in many ways. Support for additional image file formats could be added, as
well as for converting the images to different color spaces before quantization and
generation of representations. Quantization is currently done by dividing each axis of
the color space into several equally wide intervals; other types of quantization could
be considered.

Many other approaches to image representation and extraction of interesting and
useful features have also been described in the literature (see Section 2 for some
examples). However, they are often oriented specifically at a particular task or a
particular type of images and would therefore only be suitable for more narrowly
specialized applications. More complex representations of images often rely on
specific and complex matching functions and other algorithms that need to be
employed to make full use of the representation. For example, instead of basing all
histograms on a fixed quantization of the color space, a different quantization might
be used for each image, adapted to the contents of that image; but this would make it
impossible to compare histograms as vectors on a component by component basis,
and a more complex matching function or dista nce measure would need to be
introduced instead. Integrating richer representations into the general TextGarden
framework (see SEKT Deliverable 1.5.1) could therefore be problematic and is left as
the subject of future work.

Another interesting topic of further work is tighter integration of pictorial data with
other kinds of data, particularly text but also traditional attribute-based or relational
data. In some applications, images could be described by a combination of a textual

D1.3.1 / Dealing with different data types

17

description and a content-derived representation such as a histogram or
autocorrelogram (LU AND DREW, 2001). Various methods could be used to work with
such combined representations; for example, categorization could be done using co-
training, classifier combination methods such as stacking, or by using kernel methods
and combining several kernels based on different representations of an image.

In the line of using the output of the system as input into other programs we have in
mind the problem of constructing ontology of images based on their content. For that
purpose, one would take the generated feature vectors and apply some clustering or
classification approach to construct and update topic ontology of images. We are
investigating possibilities of connecting the described ut ility with some of the other
utilities that are developed in the same TextGarden library. This work will be
prioritized and shaped based on the needs of the SEKT project case studies.

Appendix - User Guide

The utility extracts various groups of features from input images ("-i"). It can output
the resulting image descriptions either in XML form ("-oxml") or in a binary format
("-obin"). In both cases the output also includes a description of the representation
used.

One or more input file parameters can be specified. Each can have the following
form:

• "-i:FileName" to process a specific image file.
If the FileName includes the wildcard characters "?" and "*", all files
matching the wildcard will be processed. FileName may also contain a
path/drive specification, which should not include wildcard characters. The "-
recurse" parameter may be used to look for files matching the wildcard in
subdirectories as well.

• "-i:@FileName " to process all the image files whose names are listed, one per
line, in the text file FileName.

The input files should be in BMP format, with 24 bits per pixel.

All image representations currently supported by the program are based on a
quantization of the color space into a limited set of colors. The "-gran:Qr,Qg,Qb"
parameter should be used to specify the granularity of the quantization. Each axis of
the color space is divided into Q* sections. Thus, if a pixel originally had the RGB
color

(r , g , b), with 0 <= r, g, b <1,
it will be represented by the color index

floor(r Qr) * Qg Qb + floor(g Q g) * Qb + floor(b Qb).
The resulting quantization has n := Qr * Qg * Qb colors. This directly affects the
number of features in the resulting image representations, all of which are based on
providing one or more numerical values for each color of the quantized color space.

As an alternative to the RGB color space in which the input images are originally
stored, the "-ycc" parameter can be used to transform the images to the YCC color
space before further processing. In this case the quantization will also be applied in

D1.3.1 / Dealing with different data types

18

the YCC rather than in the RGB space; the three values listed with the "-gran"
parameter refer to the quantization granularity for the Y (luminance),
C1 (chromaticity 1) and C 2 (chromaticity 2) axes, respectively. Using the YCC
colorspace instead of RGB may be desirable because of YCC's greater perceptual
uniformity (i.e. how well the distance between 3-D vectors representing colors
corresponds to the human perception of the difference between the colors).

Three types of image representations are supported at the moment:

• A histogram ("-hist") is a vector of n values h0, h1, . . . , hn-1, where hi is the
proportion of the image covered by pixels belonging to color index i (in the
quantized color space). All these values are in the range 0 to 1.

• An autocorrelogram ("-acg") is a vector of n * k values a i,j for i = 0 , . . . , n-1
and j = 0 , . . . , k-1, arranged in increasing order of i and for each i in
increasing order of j. The value a i,j is the probability, given a randomly chosen
pixel with color i, that a pixel chosen randomly at a distance dj from the first
pixel also has color i. For the purposes of this definition, distance is measured
using the max-norm. The distances dj must be specified via the "-d:d0,d1,...,dk-

1" parameter.
• A banded autocorrelogram ("-bacg") is a vector of n values b i, defined as

bi = a i,0 + . . . + ai,k-1. As with the autocorrelograms, the "-d:..." parameter must
be provided to specify the distances dj.

Two types of output are supported. At least one of the corresponding parameters must
be present on the command line.

• XML output ("-oxml:FileName ") has the following form:

 <ImageReprSet version="ImageReprSet Version 1">
 <ImageReprDesc version="1" type="histogram"
 underlyingColorSpace="RGB"
 gran1="16" gran2="8" gran3="8" />
 <ImageRepr fileName="foo.bmp" relPath="..\a\foo.bmp"
 absPath="c:\bar\a\foo.bmp">0.103448 0.00361867 ...
 0.055056</ImageRepr>
 <ImageRepr ...>...</ImageRepr>
 <ImageReprSet/>

The gran* attributes report the granularity values Qr, Qg, Qb, respectively. The
type attribute can also have the values autocorrelogram and banded-
autocorrelogram; in these cases, the ImageReprDesc element will also have
a ds="d0 d1 . . . dk-1" attribute describing the distances used in the (banded)
autocorrelogram.

The following is a document type definition for the XML output of this
program:

<!ELEMENT ImageReprSet (ImageReprDesc, ImageRepr*)>
<!ATTLIST ImageReprSet
 version CDATA #REQUIRED>
<!ELEMENT ImageReprDesc EMPTY>
<!ATTLIST ImageReprDesc
 version CDATA #FIXED "1"

D1.3.1 / Dealing with different data types

19

 type (histogram | autocorrelogram |
 banded-autocorrelogram) #REQUIRED
 underlyingColorSpace (RGB | YCC) #REQUIRED
 gran1 CDATA #IMPLIED
 gran2 CDATA #IMPLIED
 gran3 CDATA #IMPLIED
 ds CDATA #IMPLIED>
<!ELEMENT ImageRepr (#PCDATA)>
<!ATTLIST ImageRepr
 fileName CDATA ""
 relPath CDATA ""
 absPath CDATA "">

• Binary output ("-obin:FileName ") is based on the standard Text-Garden
serialization mechanisms. The TImageReprSet::Save method is ca lled to
serialize the image representations into a binary form. See the source code for
details.

Usage: ImgFeatures.exe
-i:Input-FileName
-i:Input-FileMask (containing * and/or ? characters)
-i:@File-Containing-List-Of-Input-FileNames
-oxml:Xml-Output-F ileName
-obin:Binary-Output-FileName
-ycc (optional, to convert image to YCC colorspace)
-hist -acg -bacg
-gran:Q1,Q2,Q3
-ds:Comma-Separated-List-Of-Distances (only for -acg/-bacg)
-recurse (optional, to search subdirectories for files matching the Input-FileMask(s))

Example 1:
ImgFeatures.exe -i:foo.bmp -i:bar.bmp -oxml:baz.xml -hist -gran:8,8,4

This reads the files foo.bmp and bar.bmp and computes for each a histogram based on
a quantization of the RGB color space into 8 * 8 * 4 = 256 colors (the red and green
axes are divided into eight intervals each, and the blue axis into four). The two
histograms are written in XML form into baz.xml.

Example 2:
ImgFeatures.exe -i:c:\data \foo*.bmp -obin:foo.bin -acg -gran:6,6,6 -ds:1,3,5,7

This searches the c:\data directory for all files whose name matches foo*.bmp . An
autocorrelogram is computed for each of these images, based on four distances (1, 3,
5, 7) and a quantization of the RGB color space into 6 * 6 * 6 = 216 colors (each axis
divided into six segments). Thus the autocorrelogram of each image consists of 864
components.. The autocorrelograms are stored in binary form into foo.bin .

Example 3:
ImgFeatures.exe -i:@bar.txt -i:c:\data \foo*.bmp -recurse -oxml:d:\foo.xml -
obin:c:\foo2.bin -bacg -gran:6,6,6 -ds:1,3,5,7

This processes all files whose names are listed in bar.txt (one per line). It also

D1.3.1 / Dealing with different data types

20

searches the c:\data directory and subdirectories recursively for all files whose name
matches foo*.bmp . Banded autocorrelograms are computed for all these images and
stored in d:\foo.xml and in c:\foo2.bin .

Bibliography and References

1. ASLANDOGAN , Y. A., THEIR, C., YU, C., A system for effective content-based

image retrieval. Proc. 4th ACM Conf. on Multimedia, pp. 429–430 (1996).
2. BURGES, C. J. C., A tutorial on support vector machines for pattern recognition.

Data Mining and Knowledge Discovery, 2(2):121–167 (1998).
3. CARSON, C., OGLE, V. E., Storage and retrieval of feature data for a very large

online image collection. IEEE Bulletin of the Technical Committee on Data
Engineering, 19(4):19–27 (1996).

4. CHANG , E., CHENG, K.-T., LAI, W.-C., WU, C.-T., CHANG , C., WU, Y.-L., PBIR:
Perception-based image retrieval — a system that can quickly capture subjective
image query concepts. Proc. ACM Multimedia Conf., pp. 611–4 (2001).

5. CHEN, Y., WANG , J. Z., LI, J., FIRM: Fuzzily integrated region matching for
content-based image retrieval. Proc. ACM Multimedia Conf., pp. 543–5 (2001).

6. CORTES, C., VAPNIK, V. N., Support -vector networks. Machine Learning,
20(3):273–297 (1995).

7. DAVIDSON, A., ANVIK , J., NASCIMENTO , M. A., Parallel traversal of signature trees
for fast CBIR. Proc. ACM Workshops on Multimedia Information Retrieval, pp.
6–9 (2001).

8. DI SCIASCIO, E., MONGIELLO, M., Query by sketch and relevance feedback for
content-based image retrieval over the web. Journal of Visual Languages and
Computing, 10(6):565-584 (1999).

9. FALOUTSOS, C., EQUITZ, W., FLICKNER , M., NIBLACK, N., PETKOVIC, D., BARBER,
R., Efficient and effective querying by image content. Journal of Intelligent
Information Systems, 3:231–262 (1994).

10. FAN , J., GAO, Y., LUO , H., XU, G., Automatic image annotation by using concept-
sensitive salient objects for image content representation. Proc. ACM SIGIR
Conf., pp. 361–368 (2004).

11. GOH , K.-S., LI, B., CHANG, E., DynDex: A dynamic and non-metric space indexer.
Proc. ACM Multimedia Conf., pp. 466–475 (2002).

12. HE, J., LI, M., ZHANG , H.-J., TONG , H., ZHANG , C., Manifold-ranking based image
retrieval. Proc. ACM Multimedia Conf., pp. 9–16 (2004).

13. HE, X., MA, W.-Y., ZHANG, H.-J., Learning an image manifold for retrieval. Proc.
ACM Multimedia Conf., pp. 17–23 (2004).

14. HONG, C.-H., LYU , M. R., A novel log-based relevance feedback technique in
content-based image retrieval. Proc. ACM Multimedia Conf., pp. 24–31 (2004).

15. HUANG, J., RAVI KUMAR , S., MITRA, M., Combining supervised learning with
color correlograms for content-based image retrieval. Proc. 5th ACM Int. Conf. on
Multimedia, pp. 325–334 (1997).

16. HUANG, J., RAVI KUMAR , S., ZABIH, R., An automatic hierarchical image
classification scheme. Proc. 6th ACM Int. Conf. on Multimedia, pp. 219–228
(1998).

17. JACOBS, C. E., FINKELSTEIN, A., SALESIN, D. H., Fast multiresolution image
querying. Proc. 22nd ACM SIGGRAPH Conf., pp. 277–286 (1995).

D1.3.1 / Dealing with different data types

21

18. JEON, J., LAVRENKO , V., MANMATHA, R., Automatic image annotation and
retrieval using cross-media relevance models. Proc. ACM SIGIR Conf., pp. 119–
126 (2003).

19. LEE, C.-Y., SOO, V.-W., FU , Y.-T., How to annotate an image? The need of an
image annotation agent. Proc. 4th Joint ACM/IEEE Conf. on Digital Libraries,
p. 394 (2004).

20. LIU, C., MANDAL, M., Fast image indexing based on JPEG2000 packet header.
Proc. ACM Conf. on Multimedia Information Retrieval, pp. 46–49 (2001).

21. LONG, H., LEOW, W. K., Perceptual consistency improves image retrieval
performance. Proc. ACM SIGIR Conf., pp. 434–5 (2001).

22. LU, C., DREW , M. S., Construction of a hierarchical classifier schema using a
combination of text-based and image -based approaches. Proc. ACM SIGIR Conf.,
pp. 438–9 (2001).

23. NATSEV, A., RASTOGI, R., SHIM, K., WALRUS: A similarity retrieval algorithm
for image databases. Proc. ACM SIGMOD Int. Conf. on Management of Data, pp.
395–406 (1999).

24. OBEID, M., JEDYNAK, B., DAOUDI, M., Image indexing and retrieval based on
intermediate features. Proc. ACM Workshops on Multimedia Information
Retrieval, pp. 531–3 (2001).

25. OGLE, V. E., STONEBRAKER, M., Chabot: Retrieval from a relational database of
images. IEEE Computer, 28(9):40–48 (1995).

26. PASS, G., ZABIH, R., Histogram refinement for content -based image retrieval.
Proc. IEEE Workshop on Applications of Computer Vision, pp. 96–102 (1996).

27. PASS, G., ZABIH, R., Comparing images using joint histograms. Journal of
Multimedia Systems, 7(3):234–240 (1999).

28. PARK, D. K., JEON, Y. S., WON, C. S., PARK, S.-J., Efficient use of local edge
histogram descriptor. Proc. ACM Multimedia Workshop, pp. 51–54 (2000).

29. QUINTANA, Y., Organization and retrieval of a pictorial digital library. Proc. 2nd
ACM Int. Conf. on Digital Libraries, pp. 13–20 (1997).

30. STEHLING, R. O., NASCIMENTO, M. A., FALCÃO , A. X., On “shapes” of colors for
content-based image retrieval. Proc. ACM Multimedia Workshop, pp. 171–174
(2000).

31. SWAIN , M. J., BALLARD, D. H., Color indexing. Int. Journal of Computer Vision,
7(11):11–32 (1991).

32. WANG, J. Z., LI, J., Learning-based linguistic indexing of pictures with 2-D
HMMs. Proc. ACM Multimedia Conf., pp. 436–445 (2002).

33. WANG, J. Z., LI, J., WIEDERHOLD, G., SIMPLIcity: Semantics-sensitive integrated
matching for picture libraries. Proc. 4th Int. Conf. on Advances in Visual
Information Systems, LNCS 1929, pp. 360–371 (2000).

34. WANG, Y., MAKEDON, F., R-histogram: Quantitative representation of spatial
relations for similarity-based image retrieval. Proc. ACM Multimedia Conf., pp.
323–326 (2003).

35. WANG, J. Z., WIEDERHOLD , G., FIRSCHEIN , O., WEI, S. X., Content -based image
indexing and searching using Daubechies’ wavelets. Int. Journal of Digital
Libraries, 1(4):311–328 (1997).

