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Executive Summary 
 

Kernel Canonical Correlation Analysis (KCCA) is a technique for finding common 
semantic features between different views of data. It can be used for finding semantics 
from different languages that share the same meaning. This information can than be 
used for mining databases with multilingual text documents.  
 
In this report we present a technique for constructing “language independent” 
representation of text documents. It can be used for cross-language text mining like 
cross-language information retrieval and cross -language classification. Experimenal 
results are also presented which show that this approach is promising. The devloped 
software is also described providing its architecture and users guide. The develoepd 
software consosts of two utilities, (1) the utility that learns a language independent 
semantic space for two languages from paired corpus and, (2)  the utility that projects 
documents to the semantic space  provided by the firts utility. Both utilities are 
integrated into our TextGarden library. 
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1. Introduction 
 
Canonical Correlation Analysis (CCA) is a method of correlating two 
multidimensional variables. It makes use of two different views of the same semantic 
object (e.g. the same text document written in two different languages) to extract 
representation of the semantic. Input to CCA is a paired dataset S = {(ui,vi); u i ∈  U, vi 
∈ V}, where U and V are two different views on the data – each pair contains two 
views of the same document. The goal of CCA is to find the common semantic space 
W and the mappings from each U and V into W space. All documents from U and V 
can be mapped into W to obtain a view independent representation. 
Example : Let space V be vectors-space model for English and U  vector -space model 
for French text documents. Paired dataset is then a set with pairs made of English 
documents, together with their French translation. The output of CCA on this dataset 
is a semantic space where each dimension shares similar English and French meaning. 
By mapping English or French documents into this space, language independent 
representations are obtained. In this way, standard machine learning algorithms can be 
used on multi-lingual datasets. 
 
2. Theoretical Foundations 
 
Canonical Correlation Analysis ([1], [2]) can be seen as the problem of finding basis 
vectors for two sets of variables such that the correlations between the projections of 
the variables onto these basis vectors are mutually maximized. Canonical Correlation 
Analysis seeks a pair of linear transformations, one for each of the sets of variables, 
such that, when the set of variables are transformed, the corresponding co-ordinates 
are maximally correlated.  
Let S = {(ui,vi); u i ∈ U, vi ∈ V} be a paired dataset. By using the CCA, we can find 
directions fu∈U and fv∈V in the two spaces so that the projections  

{(fu  u i), i = 1, …, N} and {(fv  vi)  where  i = 1, …, N 
of the feature vectors of documents from the two views would be maximally 
correlated. Formally, the CCA is to maximize canonical correlation ρ  in space U × V 
that is defined as 
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In an attempt to increase the flexibility of the feature selection, kernelisation of CCA 
(KCCA) can be applied to map the hypothesis to a higher-dimensional feature space. 
There we search for fu and f v in the space spanned by the corresponding feature 
vectors, i.e. fu=∑l αl ul and fv=∑m β m vm. The upper equation can be rewritten as 
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where α  = (α1,…, αN), β  = (β1,…, βN) and Ku and Kv are Gram matrixes of {u i} and 
{vi}. In order to force non-trivial learning on the correlation, we introduce a 
regularization parameter to penalize the norms of the associated weights. The problem 
becomes 
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Because regularized equation is not affected by re-scaling of α or β, optimization 
problem is subject to the two constraints 
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By using corresponding Lagrangian and Kuhn-Tucker conditions, we can rewrite the 
upper optimization problem as a generalized eigenvalue problem 
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Because of regularization obtained vectors α  and β  are not equally scaled. This can be 
solved by normalizing obtained directions. In the upper derivation, we assumed that 
we have two different views of documents (U  and V). CCA can be generalized to 
more views, but then the trick to reduce the size of eigen problem cannot be used. 
Note that the size of generalized eigen problem is 2N, where N is the size of the paired 
dataset. This can be reduced by using incomplete Cholesky decomposition to N or 
even less when seeking only approximate solution. Algorithms for solving this 
optimization problem are all of order O(N 3) or less and can be efficiently 
implemented. For example for N = 1000  it takes around one minute to solve 
optimization problem on normal desktop computer. 
 
3. Applications of KCCA 
 
3.1. Labels  
A similar problem to CCA is to select features of highest correlation between 
documents and their labels. The method for finding these features is called Partial 
Least Squares (PLS) [1]. PLS could also be thought as a method which looks for 
directions that are good at distinguishing the different labels. Similarity between this 
problem and CCA can be noticed when viewing labels as another "different view of 
documents". 
 
3.2. Cross-Language Text Mining 
With KCCA we can construct a semantic space into which text documents, written in 
different languages, can be mapped to obtain language independent representation. 
This highly reduces the complexity of dealing with different languages since we can 
apply standard machine learning algorithms to the data mapped into the semantic 
space. Another method for dealing with multi-lingual datasets is CL-LSI [4]. 
 
3.2.1. Text document retrieval 
The semantic space for languages can be used at searching databases with documents 
in different languages. First, all documents from the database are mapped into the 
semantic space. Than, queries can be viewed as doc uments and can be   mapped into 
the semantic space. The result of a query is a set of documents from the database that 
are the closest to the mapped query in the semantic space. The advantage of this 
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approach is that the results are independent of the language in which the query was 
issued.   
This approach was shown and tested in [3] on “house debates” part of 36th Canadian 
Parliament proceedings corpus. Text chunks were split into paragraphs and 
paragraphs were treated as separate documents. Part of this dataset was used for 
generating the semantic space with KCCA and the rest of the documents were used 
for testing. Short queries were generated from the five most probable words from each 
test document. The relevant documents were the test documents themselves in 
monolinguistic retrieval (English query - English document, table 1) and their mates 
in cross-linguistic (English query - French document, table 2) test. Each test was done 
for different dimensions d  of the generated semantic space. 
 
d 100 200 300 400 full 
c l-
lsi 

53 60 64 66 70 

kcca 60 63 70 71 73 
c l-
lsi 

82 86 88 89 91 

kcca 90 93 94 95 95 
Table 1:  English to English top -ranked (left) 
and top-ten (right) retrieval accuracy  
 

d 100 200 300 400 full 
c l-
lsi 

30 38 42 45 49 

kcca 68 75 78 79 81 
c l-
lsi 

67 75 79 81 84 

kcca 94 96 97 98 98 
Table 2: English to French top -ranked (left) 
and top -ten (right) retrieval accuracy  

 
3.2.2. Text categorization 
Another application of the semantic space is categorization of multi-lingual 
documents. First, the semantic space is generated from the paired dataset with KCCA. 
Then, the labeled training set for categorization is mapped into the semantic space. 
Note that these labeled documents do not need to be paired anymore. Even more, they 
can even come from only one language. Once training set is mapped into semantic 
space standard classification algorithms can be used, e.g. SVM. Another way of using 
SVM is to learn classifier on labeled documents from one language and than transfer 
it trough semantic space into other language's vector-space model. 
This approach was shown and tested in [5] on NTCIR-3 patent retrieval test 
collection, with paired documents in English and Japanese. The classifier was learned 
on documents in one language and was used to classify documents in another 
language. The training set for Topic 01 had 827 annotated documents with 26 relevant 
documents; Topic 07 had 366 annotated documents with 102 relevant documents. The 
classifier was trained on English training set. Results are in table 3.  
 
d 50 100 150 full 50 100 150 full 
Eng-tr 78.1 97.7 99.2 100.0 87.6 93.9 95.8 97.1 
Eng-ts 36.0 41.0 44.4 46.9 85.1 87.4 87.0 87.9 
Jp-tr 79.4 92.5 98.4 99.2 87.4 92.9 95.4 96.8 
Jp-ts 41.1 42.4 48.9 49.1 77.2 77.7 77.3 78.4 
Table 3: Average precision [%]: the classifier learned on English training set was used on English 
training and test sets and on Japanese training and test sets. On left are results for Topic 01 and on right 
for Topic 07. 
 
3.2.3. Machine Translation and KCCA 
The goal of KCCA is to generate language indepe ndent semantic space. However, in 
order to use KCCA, paired dataset is needed. This can be tricked by using machine 
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translation tools, for example Google Language Tools 
(http://www.google.com/language_tools) to artificially generate paired dataset 
from monolinguistic dataset. Semantic space obtained from this kind of paired dataset 
can than be used for text as described upper. 
We are currently doing experiments with this approach and the results achieved so far 
with this approach are very promising. Experiments were done on big Reuter’s dataset 
in English and French language. News articles from both languages are tagged with 
categories. Experiments were conducted similarly as upper at cross-language text 
classification. See table 4 and 5 for the results.  
 

[%] Precision Recall F1 Avg. Prec. 
Eng-BOW 86 90 88 83 
Fr-BOW 93 74 82 80 
Eng-Eng 79 90 84 77 
Eng-Fr 86 79 77 73 
Fr-Eng 68 90 83 76 
Fr-Fr 87 69 77 73 

Table 4: Classification of news articles into category CCAT. First two rows show 
results obtained with normal TFIDF vector representation of articles in original 
language. Lower rows show results where X-Y means that classifier was trained on 
language X and tested on language Y, for example Fr -Eng means that it was trained 
on French and tested on English documents. 10.000 translated documents were used 
to generate semantic space and 5.000 from this set were used for training. Testing 
was done over set of 100.000 documents. 

 
[%] Precision Recall F1 Avg. Prec. 

Eng-BOW 87 85 86 81 
Fr-BOW 95 79 86 81 
Eng-Eng 87 76 81 75 
Eng-Fr 94 72 81 75 
Fr-Eng 86 75 80 75 
Fr-Fr 93 74 82 76 

Table 4: Classification of news articles into category MCAT. 
 
4. Architecture  
 
Utilities for learning common semantic space for two languages with KCCA are fully 
integrated into Text Garden. Main utility is named PrSet2SemSpace. It takes as input 
two Bag-Of-Words files, one for each language, and Paired-Set file with aligned 
documents from two languages. Documents can also be aligned by paragraphs but 
that is not necessary. Bag-Of-Words input files define vector-space model for each 
languages and documents from aligned corpus are transformed into vectors using this 
models. Output of this utility is a pair of Semantic -Space files (.ssp), one for each 
document. They define map for documents from vector-space model for each 
language into common semantic space.  See Figure 1 for the diagram of this pipeline. 
See Appendix –  User Guide for more details on how to use this utility. 
Semantic spaces learned with KCCA can be used by other utilities from Text Garden, 
that get Semantic -Space file as input. For example ProjBow2SemSpace which takes 
Bag-Of-Words file and Semantic -Space file as input and gives as output Bag-Of-
Words file with projected documents.  Output from ProjBow2SemSpace can be use as 
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input to any of algorithems from Text Garden, for example clustering and 
classification algorithms. 
 

 
Figure 1. Pipeline for creating common semantic space for two languages 
 
5. Future Development 
 
Short term goal is to finish experiments on use of machine translation for generating 
aligned corpus. We are doing experiments on Reuter’s multilingual dataset and 
Canadian Parliament Proceedings. 
We also have a new aligned corpus of European legislation in Slovenian and English 
and are planning to do experiment s on it. Interesting issues that can be addressed are, 
how KCCA works on Slovenian language, how does it scale, etc. Also, use of KCCA 
for information retrieval was not explored in details: how to scale search on larger 
number of documents, how to do indexing, how to rank results, etc. 
There are also many other areas that could gain from use of KCCA that we still have 
to explore. 
 
6. Conclusion  
 
We presented technique for constructing “language independent” representation of 
text documents. It can be used for cross-language text mining like cross-language 
information retrieval and cross-language classification. Some results are also 
presented which show that this approach is promising. 
 
7. Appendix - User Guide 
 
7.1. Paired-Set-To-Semantic-Space 
The utility learns language independent semantic space for two languages from paired 
corpus (“-ips”). It also uses Bag-Of-Word files for each language (“-ibow1”, “-
ibow2”). It outputs two Semantic-Space files, one per language (“-ossp1”, “-ossp2”). 
Parameter “-t” is regularization parameter τ from upper derivations. Parameter “-
tnrm” determines how basis vectors are normalized after learning (“none” means no 
normalizing, “one” means normalizing to norm 1 and “eigval” means normalizing to 
its eigenvalue). Parameter “–tnrm” determines stopping criteria for incomplete 
Cholesky decomposition. Parameter “-docs” determines number of documents from 
paired corpus that will be randomly selected (randomizer is initialized with parameter 
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“-seed”). Parameter “-dim” determines dimension of ca lculated semantic space. 
Parameter “-len” determines maximal length of documents used for learning from 
paired corpus. If documents are split into paragraphs and document is longer than 
maximal length, than only random subset of paragraphs is used. Parameter “-stat” 
determines if text file with statistics for each semantic space should be made. 
 
usaga: PrSet2SemSpace.exe 

-ips: Input-PrSet-File -Name (default:'') 
-ibow1: Input-Bow-File-Name-For-First-Language (default:'') 
-ibow2: Input-Bow-File-Name-For-Second-Language (default:'') 
-ossp1: Output-Semantic -Space-File -Name-For-First-Language (default:'') 
-ossp2: Output-Semantic -Space-File -Name-For-Second-Language (default:'') 
-t: Regularization-Parameter -For-KCCA (default:0.5)  
-tnrm: Correlation-Normalization-Type (none, one, eigval) (default:'one') 
-eps: Threshold-For -Partial-Gram-Schmidt (default:0.4) 
-docs: Number-Of-Documents-For -Training-KCCA (default:1000) 
-dim: Number-Of-Calculated-Dimensions (default:500) 
-len: Maximal-Length-Of-Training-Document (-1 for no limit) 
(default:1000) 
-seed: Seed-For-Randomizer (default:0) 
-stat: Make-Semantic -Space-Statistics (default:'F') 

 
7.2. Project-Bow-Of-Words-To-Semantic-Space 
The utility projects documents from Bag-Of-Words files (“-bow”) to semantic space  
given with Semantic-Space file (“-issp”) and saves them in Bag-Of-Words file (“-
obow”). 
Parameter “-sspdim” determines the number of dimensions that will be used from 
semantic space. Parameter “-nrm” determines whether projected documents should be 
normalized. 
 
usage: ProjBow2SemSpace.exe 

-issp: Input-Semantic-Space -File -Name (default:'') 
-ibow: Input-Bow-File-Name (default:'') 
-obow: Output-Projected-Bow-File-Name (default:'') 
-sspdim: Number-Of-Dimensions -For-Projections (-1 for all) (default:-1) 
-nrm: Normalize-Projected-Vectors (default:'F') 
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