
D1.8.1 Base-upper-level-ontology Guidance SEKT

1

EU-IST Project IST-2003-506826 SEKT
SEKT: Semantically Enabled Knowledge Technologies

D1.8.1 Base upper-level ontology (BULO) Guidance1

Ivan Terziev

Atanas Kiryakov

Dimitar Manov
(Ontotext Lab, Sirma Group – all the authors)

Abstract
An important practical approach to ontology generation is the use of background or
pre-existing knowledge in the form of a basic upper-level ontology. Such an ontology
can also be used for metadata generation and as a groundwork for the overall
knowledge modelling and integration strategy of a KM environment.

The essential contribution of this deliverable is a basic upper-level ontology called
PROTON (PROTo ONtology), which is hereby introduced and documented. It
contains about 300 classes and 100 properties, providing coverage of the general
concepts necessary for a wide range of tasks, including semantic annotation, indexing,
and retrieval of documents. The design principles can be summarized as follows (i)
domain-independence; (ii) light-weight logical definitions; (iii) alignment with
popular standards; (iv) good coverage of named entities and concrete domains (i.e.
people, organizations, locations, numbers, dates, addresses). The ontology is
originally encoded in a fragment of OWL Lite and split into four modules: System,
Top, Upper, and KM (Knowledge Management).

Keyword list: upper-level ontology, knowledge engineering, knowledge modelling

WP1: Ontology Generation
Software PU

 12.07.2005

1 For a number of reasons, the initial name of the ontology, BULO, was changed to PROTON, thus the actual

name PROTON has been used instead of BULO throughout this document.

D1.8.1 Base-upper-level-ontology Guidance SEKT

2

SEKT Consortium
This document is part of a research project partially funded by the IST Programme of
the Commission of the European Communities as project number IST-2003-506826.

British Telecommunications plc.
Orion 5/12, Adastral Park
Ipswich IP5 3RE
UK
Tel: +44 1473 609583, Fax: +44 1473 609832
Contact person: John Davies
E-mail: john.nj.davies@bt.com

Empolis GmbH
Europaallee 10
67657 Kaiserslautern
Germany
Tel: +49 631 303 5540
Fax: +49 631 303 5507
Contact person: Ralph Traphöner
E-mail: ralph.traphoener@empolis.com

Jozef Stefan Institute
Jamova 39
1000 Ljubljana
Slovenia
Tel: +386 1 4773 778, Fax: +386 1 4251 038
Contact person: Marko Grobelnik
E-mail: marko.grobelnik@ijs.si

University of Karlsruhe, Institute AIFB
Englerstr. 28
D-76128 Karlsruhe
Germany
Tel: +49 721 608 6592
Fax: +49 721 608 6580
Contact person: York Sure
E-mail: sure@aifb.uni-karlsruhe.de

University of Sheffield
Department of Computer Science
Regent Court, 211 Portobello St.
Sheffield S1 4DP
UK
Tel: +44 114 222 1891
Fax: +44 114 222 1810
Contact person: Hamish Cunningham
E-mail: hamish@dcs.shef.ac.uk

University of Innsbruck
Institute of Computer Science
Techikerstraße 13
6020 Innsbruck
Austria
Tel: +43 512 507 6475
Fax: +43 512 507 9872
Contact person: Jos de Bruijn
E-mail: jos.de-bruijn@deri.ie

Intelligent Software Components S.A.
Pedro de Valvidia, 10
28006
Madrid
Spain
Tel: +34 913 349 797
Fax: +49 34 913 349 799
Contact person: Richard Benjamins
E-mail: rbenjamins@isoco.com

Kea-pro GmbH
Tal
6464 Springen
Switzerland
Tel: +41 41 879 00
Fax: 41 41 879 00 13
Contact person: Tom Bösser
E-mail: tb@keapro.net

Ontoprise GmbH
Amalienbadstr. 36
76227 Karlsruhe
Germany
Tel: +49 721 50980912
Fax: +49 721 50980911
Contact person: Hans-Peter Schnurr
E-mail: schnurr@ontoprise.de

Sirma AI EAD, Ontotext Lab.
135 Tsarigradsko Shose
Sofia 1784
Bulgaria
Tel: +359 2 9768 303, Fax: +359 2 9768 311
Contact person: Atanas Kiryakov
E-mail: naso@sirma.bg

Vrije Universiteit Amsterdam (VUA)
Department of Computer Sciences
De Boelelaan 1081a
1081 HV Amsterdam
The Netherlands
Tel: +31 20 444 7731, Fax: +31 84 221 4294
Contact person: Frank van Harmelen
E-mail: frank.van.harmelen@cs.vu.nl

Universitat Autonoma de Barcelona
Edifici B, Campus de la UAB
08193 Bellaterra (Cerdanyola del Vall` es)
Barcelona
Spain
Tel: +34 93 581 22 35, Fax: +34 93 581 29 88
Contact person: Pompeu Casanovas Romeu
E-mail: pompeu.casanovasquab.es

1 Executive Summary
An important practical approach to ontology generation is the use of background or
pre-existing knowledge in the form of a basic upper-level ontology. Such an ontology
can also be used for metadata generation (WP2) and as a groundwork for the overall
knowledge modelling and integration strategy of a KM environment.

PROTON ontology contains about 300 classes and 100 properties, providing coverage
of the general concepts necessary for a wide range of tasks, including semantic
annotation, indexing, and retrieval of documents. The design principles can be
summarized as follows (i) domain-independence; (ii) light-weight logical definitions;
(iii) alignment with popular standards; (iv) good coverage of named entities and
concrete domains (i.e. people, organizations, locations, numbers, dates, addresses).

The essential contribution of this deliverable is the PROTON ontology itself, which is
hereby introduced and documented. The development of the ontology is organized in
quarterly cycles (release, application, collecting feedback). Being derived from the
KIMO ontology (developed for the early versions of the KIM platform), PROTON
has been developed significantly further, as follows:

• represented in OWL Lite (versus RDFS for KIMO);

• broken down into modules (System, Top, Upper, Knowledge Management);

• KIM-independent (the KIMO-related concepts were relocated to specific,
separate modules);

• some tuning took place in response to the requirements of SEKT project (WP5
“Knowledge Access” and the digital library case studies, WP11).

This guidance is complementary to the PROTON ontology, which provides its own
internal descriptions (definitions) for most classes and properties, and on the whole
the latter are likely to prove sufficient enough when one needs information about a
specific class or property. However, this document is informative as it:

• presents an overall, cohesive view of PROTON;

• the rationales and decisions that the design ot PROTON is grounded on;

• provides useful comments on the alignment or PROTON to other ontologies
and metadata schemata; and

• puts an introductory exposition of the essential layers and branches in
PROTON on view.

Lastly, it is worth noting that the PROTON is constantly being developed. A
community process is yet to be initiated (see section 10.1) so that an extensive
discussion over PROTON can be carried out to guaranttee its openness and gradual
improvement as a basis for different applications and various domains. The
community process adapts the DILIGENT methodology (from WP7).

D1.8.1 Base-upper-level-ontology Guidance SEKT

4

2 Contents

1 Executive Summary...3

2 Contents ..4

3 Introduction..7
3.1 How PROTON Relates to KIM and KIMO...8

3.2 Scope, Coverage, Compliance ...9

3.3 Ontologies and Knowledge Representation...9

3.4 PROTON: Glimpses of a Philosopher's Stance ...10

3.5 Ontology Languages ..12

3.6 Physical Address and Namespaces ..13

4 Design Rationales ...14
4.1 Ontologies as RDBMS Schema ...14

4.2 Formalization (Knowledge Representation) Approach15

4.3 Topic-ontologies, Taxonomies, and Subject Hierarchies17

5 The Architecture of PROTON..20
5.1 PROTON System Module Coverage ...21

5.2 PROTON Top Module Coverage ..24

5.3 PROTON Upper Module Coverage...24

5.4 PROTON Knowledge Management Module...24

5.5 Naming Conventions ...24

5.6 Current Status...24

6 PROTON Top Module Definitions and Upper Module Branches25
6.1 Object branch ...25

6.1.1 Agent class ...26

6.1.2 Person class..27

6.1.3 Group and Organization classes...28

6.1.4 Location class...28

6.1.5 Statement class...31

6.1.6 InformationResource and Document classes32

6.1.7 Product class ..40

6.1.8 Service class...40

6.1.9 CommercialOrganization class ..40

6.2 Happening branch ..41

D1.8.1 Base-upper-level-ontology Guidance SEKT

5

6.2.1 Event class ...42

6.2.2 Situation class ..42

6.2.3 TimeInterval class, modelling of time ...42

6.2.4 JobPosition class and modelling ..43

6.2.5 Role class ...45

6.2.6 Meeting class ...46

6.2.7 Project class ...46

6.2.8 OfficialPosition class ...46

6.2.9 Employee class...46

6.2.10 Leader class..46

6.2.11 Date class ...47

6.3 Abstract branch ..48

6.3.1 Number class..48

6.3.2 ContactInformation class ...49

6.3.3 Language class ...49

6.3.4 Topic class and modelling ...49

6.3.5 BusinessAbstraction...52

6.3.6 IndustrySector class and modelling ...53

6.3.7 TemporalAbstraction ...53

6.3.8 GeneralTerm ..54

6.3.9 NaturalPhenomenon...54

6.3.10 SocialAbstraction...54

7 PROTON Knowledge Management Module Classes55
7.1 protonkm:InformationSpace ..55

7.2 protonkm:SoftwareAgent...55

7.3 protonkm:User ...56

7.4 protonkm:Profile ..56

7.5 protonkm:InformationSpaceProfile ...56

7.6 protonkm:UserProfile ..56

7.7 protonkm:Mention ...57

7.8 protonkm:WeightedTerm...58

7.9 protonkm:Device..58

8 Relations to Other Standards ...59
8.1 Dublin Core..59

8.2 Wordnet..59

D1.8.1 Base-upper-level-ontology Guidance SEKT

6

8.3 Alexandria Digital Library and GNS...59

8.4 OpenCyc ..60

9 Usage and Extension Guidance...61

10 Future Development and Community Process..64
10.1 Community Process ...64

10.2 Refinement of protont:Location...64

10.3 Remodelling of protonu:Employee..65

10.4 Slimming down multiple-inheritance classes ..65

10.5 Remodelling of protons:EntitySource and protons:generatedBy65

10.6 Remodelling of other System module entities ...65

10.7 Remodelling of protonu:PublicCompany ..65

10.8 Conversion of protonu:hasUniversity ..66

11 Conclusion ..67

12 References...69

Appendix A: PROTON-specific Axioms..70

D1.8.1 Base-upper-level-ontology Guidance SEKT

7

3 Introduction
An important practical approach to ontology
generation is the use of background or pre-
existing knowledge. In the scope of the SEKT
project, the major body of such background
knowledge is a basic upper-level ontology
called PROTON (PROTo ONtology). This
ontology is also used for metadata generation
(WP2); it is an important part of the overall
knowledge modelling and integration strategy
of SEKT, as outlined in [15].

PROTON is a development of the KIMO
ontology, which was created and used in the
scope of the KIM platform for semantic
annotation, indexing, and retrieval. KIM itself
is further developed in the scope of WP2
“Metadata generation”. A comprehensive
overview of KIM can be found in [12]. The
home page of the KIM platform is
http://www.ontotext.com/kim.

PROTON ontology contains about 300
classes and 100 properties, providing
coverage of the general concepts necessary
for a wide range of tasks, including semantic
annotation, indexing, and retrieval of
documents. The design principles can be
summarized as follows (i) domain-
independence; (ii) light-weight logical
definitions; (iii) alignment with popular
standards; (iv) good coverage of named
entities and concrete domains (i.e. people,
organizations, locations, numbers, dates,
addresses). The ontology is originally
encoded in a fragment of OWL Lite.

Fig. 1. A representative view of the
PROTON class hierarchy

PROTON provides no specific support for general concepts, which are not likely to
have named instances of theirs, such as ‘chair’ or ‘love’. However, the top level of the
ontology is designed so as to allow easy extension in this direction.

In order to meet the requirements of the usage scenarios and to assure easy and
gradual understanding, PROTON is separated into four modules:

• System module – it contains a few meta-level primitives (5 classes and 5
properties). It introduces the notion of 'entity', which can have aliases. The
primitives at this level are usually the few things that have to be hard-coded in
ontology-based applications. This module can be considered an application

D1.8.1 Base-upper-level-ontology Guidance SEKT

8

ontology. Within this document and in general, the System module of
PROTON is referred to via the "protons:“ prefix.

• Top module – the highest, most general, conceptual level, consisting of about
20 classes. These ensure a good balance of utility, domain independence, and
ease of understanding and usage. The top layer is usually the best level to
establish alignment to other ontologies and schemata. Within this document
and in general, the Top module of PROTON is referred to via the "protont:“
prefix.

• Upper module – over 200 general classes of entities, which often appear in
multiple domains (e.g. various sorts of organizations, a
comprehensive range of locations, etc.). Within this document and in general,
the Upper module of PROTON is referred to via the "protonu:“ prefix.

• KM (Knowledge Management) module – 38 classes of slightly specalized
entities that are specific for typical Knowledge Management tasks and
applications. The KM module is actually the former SKULO ontology [15],
further developed and integrated into PROTON. Within this document and in
general, the PROTON KM module is referred to via the "protonkm:“ prefix.

The rest of this section provides a discussion on the scope of PROTON, as well as a
short introduction to ontologies in an attempt to make sure that the purpose and the
benefits of using ontologies may become evident. This discussion is extended in the
subsequent section 4 which provides the design rationales of PROTON.

3.1 How PROTON Relates to KIM and KIMO
The major developments of PROTON with respect to KIMO can be outlined as
follows:

• PROTON is represented in OWL Lite (versus KIMO in RDFS);

• PROTON was broken down into modules (System, Top, Upper, KM);

• It is KIM-independent (the KIMO-related concepts were relocated to specific,
separate modules);

• Some tuning took place in response to the requirements of SEKT (WP5
“Knowledge Access” and the digital library case studies, WP11).

The KIMO ontology will not be developed further. The latest versions of KIM (after
1.12) make use of PROTON, along with a couple of complementary, KIM-specific
modules, as follows:

• KIMSO (KIM System Ontology) – it contains a few meta- or system-level
primitives used by KIM; it is available at
http://www.ontotext.com/kim/2004/12/kimso.

• KIMLO (KIM Lexical Ontology) – it contains some lexical resource-related
concepts, mostly used to represent lexica required by the KIM information
extraction sub-system. It is available at
http://www.ontotext.com/kim/2004/12/kimlo.

Both KIMSO and KIMLO import the System Module of PROTON.

D1.8.1 Base-upper-level-ontology Guidance SEKT

9

3.2 Scope, Coverage, Compliance
The extent of specialization of the ontology is partly determined on the basis of case
studies within the scope of the SEKT project and on a research of the entity types in a
corpus of general news (including political, sports, and financial ones). The
distribution of the entity types, which are most commonly referred to, varies greatly
across domains. As researched in [11], despite the difference of type distributions,
there are several general entity types that appear in all corpora – Person, Location,
Organization, Money (Amount), Date, etc. The proper representation and
positioning of those basic types was one of the objectives, backing the design of
PROTON, and this was accomplished, for the most part, at the level of PROTON Top
module layer.

The rationale behind PROTON is to provide a minimal, nevertheless sufficient
ontology, suitable for semantic annotation, as well as a conceptual ground for more
general KM applications. Its predecessor – KIMO – was designed from scratch for the
purposes of KIM; a number of upper-level resources inspired its creation and
development: OpenCyc (section 8.4), Wordnet 2.0 (section 8.2), DOLCE [16],
EuroWordnet Top, and others. In order to keep the ontology simple and easy to
understand, it is preserved small and naïve with respect to a great number of
philosophical, mathematical, and logical problems.

One of the objectives of the development of PROTON has been to make it compliant
with Dublin Core (section 8.1), the ACE annotation types2, and the ADL Feature Type
Thesaurus (section 8.3). This means that although those are not directly imported (for
consistency reasons), a formal mapping of the appropriate classes and primitives is
straightforward, on the basis of (i) compliant design and (ii) formal notes in the
PROTON glosses, which indicate the appropriate mappings. For instance, in
PROTON, a protont:hasContributor property is defined, with a domain
protont:InformationResource (section 6.1.6) and a range protont:Agent (section
6.1.1), as an equivalent of the dc:contributor element in Dublin Core3. The
development philosophy of PROTON is to make it compliant, in the future, with other
popular standards and ontologies, such as FOAF4.

3.3 Ontologies and Knowledge Representation
Formal knowledge representation (KR) is about building models of the world, of a
particular domain or problem, which allow automatic reasoning and interpretation.
Such formal models are called ontologies and they can be used to provide formal
semantics (i.e. machine-interpretable meaning) to any sort of information: databases,
catalogues, documents, web pages, etc. Having a better "understanding" of the
information, machines can process it in a much more efficient manner.

2 The ACE (Automatic Content Extraction) is one of the most influencing Information Extraction programs, see

http://www.itl.nist.gov/iad/894.01/tests/ace/. A set of entity types is defined within “The ACE 2003
Evaluation Plan” (ftp://jaguar.ncsl.nist.gov/ace/doc/ace_evalplan-2003.v1.pdf). Those are: Person,
Organization, GPE (a Geo-Political Entity), Location, Facility.

3 According to Dublin Core (8.1): “An entity responsible for making contributions to the content of the resource.
Examples of a Contributor include a person, an organization, or a service. Typically, the name of a Contributor
should be used to indicate the entity.”

4 The Friend of a Friend (FOAF) project is about creating a Web of machine-readable homepages describing
people, the links between them and the things they create and do. See http://www.foaf-project.org/

D1.8.1 Base-upper-level-ontology Guidance SEKT

10

Imagine, for instance, a typical database, populated with the information that John is a
son of Mary. It will be able to "answer" just a couple of questions: Who are the sons
of Mary? and Whose son is John? An ontology-based system could handle a much
bigger set of questions, because it will be able infer that: John is a child of Mary (the
more general relation); Mary is a woman; Mary is the mother of John (the inverse
relation); Mary is a relative of John (a generalization of the inverse relationship); etc.
Although seeming rather simple in the eyes of a human, the above facts would remain
"invisible" to a typical database and to any other information system, because their
models of the world are limited to data-structures of strings and numbers.

Unfortunately, building ontologies and specifying the formal semantics of the data
could be an extremely slow, expensive, and error-prone task. A number of linguistic
and statistical methods are put to use in order to automate the process and enable the
wide-spreading of ontology-based systems (those are covered in WP1 and WP2).

On the other hand, ontologies are crucial for many natural language processing
(NLP), knowledge discovery, and text mining tasks and the like. They are, at the same
time, the source of common sense, required to support non-trivial analyses, and the
periscope, necessary to interpret, understand, and make use of the results. Further,
ontologies also play a role in the natural language generation tasks – it is impossible
to generate a reasonable, redundancy-free text without a formal model of the domain,
the context, and the reader. This is how KR and NLP, two of the most prominent AI
disciplines, can live in synergy, supporting each other.

3.4 PROTON: Glimpses of a Philosopher's Stance5
Insights of contemporary philosophy, as far as the notion of an ontology is concerned,
makes a clear distinction between logicalized ontologies and non-logicalized. The
seeds that gave birth to the notion of a logicalized ontology are planted far back into
the work of such classical philosophical thinkers like Kant (in “Critique of Pure
Reason”) and Hegel (especially in his fundamental “Science of Logic”). What is
characteristic for a logicalized ontology is what is essential for logic: the preservation
of identity via the maintenance of necessity, i.e. a logicalized ontology is such
precisely because of the explication of an equivalent preservation of identity when
meanings (features, signs) are related from one category/type/class/grouping onto
another one. From this aspect, PROTON may be classified as a logicalized ontology.

Further, another dividing line in this direction is the one between ontologies that
logicalize the existence of things (existing, though not necessarily possessing
“essence”, i.e. real meaning or manifestation or materialization in the world), and
ones that logicalize the essence of things (out of everything existing, the entities that
have essence). Actually, what is worth mentioning about the notion of a logicalized
ontology is that the latter implicates not only the very orderliness of things in reality,
but also the ways through which the established orderliness – one or many of them -
in terra existential can be accomplished. Therefore, an existence-logicalized ontology
is one that is used to deal with the established orderliness and that does not suggest
means for any autonomous causing, changing, or re-defining that orderliness (e.g. via
the provision of a way to define it through the essence of ontologized entities).

5 Partially inspired by a series of causeries between the authors of this document and Mr. V. Dafov, a professor at

the Faculty of Philosophy at the Sofia University "St. Climent Ohridski”; http://www.uni-
sofia.bg/faculties/philosophy/index.html.

D1.8.1 Base-upper-level-ontology Guidance SEKT

11

Thus, PROTON can certainly be lined up as an existence-logicalized ontology, since
it clearly models a fairly strictly defined (status quo/well-established) orderliness (or,
organization) of what exists (i.e. via instances of types), moulded into classes and sub-
classes (alternatively - types and sub-types). The concept of subordination of the order
of entities (i.e. the hierarchy) is a prerequisite for the claiming of a possibility to deal
with entities situated at the highest levels of the tree of subordination.

Ontologies of logicalized existence (or existence ontologies) like PROTON do not
allow much dynamism as concerns any sort of self-driven extension of the very genes
of the ontology organism: i.e., although PROTON is extremely flexible in terms of
remodelling and extension, it however has some hard-coded parts (like the System
module) and - what is more important - a stemming principle of birth and growth,
which has already cut in the pattern (flexible, but nevertheless fixed) directing the
development symphony. Oddly enough, but the latter “constraint” actually serves
rather well the objective: an easily-extensible, upper-level, simplistic ontology, which
can be used by machines.

As an existence ontology, PROTON is not, and cannot be, fully compatible with any
other ontology of this type. Its common-sense basis is, of course, quite an arbitrary
claim to deal with. However, the diversity of world knowledge and essential
primitives and artefacts, added to the variety of cultural, social, educational, and any
other background of humans actually blur the horizon of hope from a purely
philosophical point of view if one wants an ontology that is at the same time basic
enough to serve as a fundament for other layers, comprehensive in its coverage of
"knowledge", “compliant” with the common-sense of “everybody”, etc. Therefore,
our general claims are that:

• PROTON is not “perfect”, but as long as it can serve its purposes, it is good
enough;

• PROTON is facing a long and interesting course of further development,
especially one that is to be conditioned by the needs and ideas of the growing
community that would (and will) use it.

A great deal of the potential misinterpretation when it comes to changes and
extensions of PROTON can be attributed to those - so frequent - cases of
misunderstanding of class names and their “meaning”, which is quite often mistaken
for a lack of consensus between the pseudo-conflicting “common-senses” of the
debating parties. The root of this kind of problems is dug deep under the ancient
ground of the dichotomy of subjectiveness versus objectiveness of (the interpretation
of) world reality by man.

As it can be argued, anything in our conditional, civilized world, as we all know it, is
influenced (and in many cases – created) by us, humans. After all, the end users of
PROTON are also humans and therefore it is all about everyone’s personal cognition
and perception of reality. The cognition (and the recognition) of what is universally
“correct” and “true” for everybody (or, to go further, of what “objective reality” is) is
an issue that has been facing human minds for tens of centuries. What is more,
presently machines could not be programmed to “think” for, or “judge” over, matters
that today’s human civilization has not yet reached consensus about.

The very pieces of information and association that a certain element of an ontology
may present – directly or not – to the perceiver, are like a subsequent handful of coins
in the money-box of acquired knowledge – one is just happy to slip them inside the

D1.8.1 Base-upper-level-ontology Guidance SEKT

12

box. However, too few people would really check the coins for authenticity – i.e. the
out-and-out suspicion, and consecutive judgment, regarding the verity and
trustworthiness of the information received, are all the subject of cognition: it is (in
the most part) an unconscious act, and it greatly depends on the individual
personality, background, and erudition of the perceiver. And yes, this is what a
machine cannot possibly be expected to cope with. According to Chomsky6, who
introduced the term 13, to cognize means to denote a relation a person has to his or
her knowledge. Actually, cognizing is said to differ very little from knowing in the
ordinary sense, but there are some important features of cognizing that set it off from
the standard conception of what it is to know something. Perhaps the most salient
feature of cognizing is that it is a relation primarily – though apparently not
exclusively – associated with implicit or unconscious knowing or knowledge. What
distinguishes cognizing per se from ordinary knowing is that in many cases, what is
cognized is inaccessible to consciousness.

3.5 Ontology Languages
According to the analysis of ontology and knowledge representation languages and
formats in [6] and also by other authors, it becomes evident that the consensus, which
exists beyond RDF(S), is quite delicate [1]. The latter is a well-established knowledge
representation and interchange language across the Semantic Web community. The
rich diversity of RDF(S) repositories, APIs, and tools mould a mature environment for
the development of systems, which are grounded in an RDF(S) representation of their
ontological and knowledge resources. Because of the common acceptance of RDF(S)
in the Semantic Web community, it would be easy to reuse the ontology and KB, as
well as to enrich them with domain-specific extensions. The new OWL standard, [5],
offers a clear, relatively consensual, and backward-compatible path beyond RDF(S),
but it is still lacking in adequate tool support as regards the arena behind the scene of
OWL Lite. What is more (or, rather, “what is less”), even the scalability of the tools,
providing OWL Lite reasoning, is unclear.

Our experience shows, [12], that RDF(S) provides a sufficient level of expressiveness
for the basic purposes of light-weight ontology definition and entity description. The
most obvious nice-to-have primitives (equality, transitive and symmetric relations,
etc.) are well covered in OWL Lite – the simplest first level of OWL. So, we suggest
that OWL Lite is used, having RDF(S) as a back-up option.

The current version of the ontology is encoded in OWL Lite. It can also benefit from
rule-based extensions. A relevant example of this is the protons:transitiveOver
(OWL annotation) property, introduced in the PROTON System module. It suggests
that one property is transitive with respect to another one, i.e.:

<P1,transitiveOver,P2>, <X,P1,Y>, <y,P2,z> => <x,P1,y>

To provide a specific example:

<hasSubject,transitiveOver,subTopicOf>,

<Book1,hasSubject,AfricanLions>,

<AfricanLions,subTopicOf,Africa> => <Book1,hasSubject,Africa>

6 Chomsky, Noam (1980, p.69). Rules and Representations. New York, Columbia University Press.

D1.8.1 Base-upper-level-ontology Guidance SEKT

13

Axioms of this sort are fairly specific and, as concerns repositories, we know of one
(among others, perhaps) that supports it - Sesame7. It is mentioned hereby for reasons
of consistency of this guidance, and also because: it has been extensively tested within
the KIM Platform project; it is scalable enough (to the best of our knowledge); we
believe it provides an easy shortcut towards the handling of what should be developed
in the future when a more comprehensive (and standard) rule language is to be used.
See Appendix A at the end of this document for a list of the PROTON-specific (i.e.
non-standard, custom) axioms.

The modelling (knowledge formalization) approach behind PROTON is presented in
better detail in section 4.2, where we provide sufficient introduction to RDF(S) and
OWL, limited to the extent in which they are used in PROTON.

3.6 Physical Address and Namespaces
Each of the modules of PROTON is maintained as a separate OWL ontology. The
namespaces are defined as follows:

• PROTON System: http://proton.semanticweb.org/2005/04/protons#

• PROTON Top: http://proton.semanticweb.org/2005/04/protont#

• PROTON Upper: http://proton.semanticweb.org/2005/04/protonu#

• PROTON Knowledge Management:
http://proton.semanticweb.org/2005/04/protonkm#

For reasons of consistency, the namespaces of PROTON will stay as defined above as
longer as possible, notwithstanding the year and month of production cited in the
URL-s. In cases of major updates and subsequent changes of the namespaces, the new
ones will be duly announced to the community and reflected on the PROTON home
website (see below).

The home website of PROTON is accessible at the physycal address
http://proton.semanticweb.org/ where up-to-date versions of this document and
the ontology modules of PROTON are available.

7 Sesame is an RDF(S) repository, the development of which is led by Aduna b.v. http://sesame.aidministrator.nl

D1.8.1 Base-upper-level-ontology Guidance SEKT

14

4 Design Rationales
PROTON (PROTo ONtology) is developed by Ontotext Lab in the scope of the
SEKT project as a light-weight upper-level ontology, which serves as a modelling
basis for a number of tasks in different domains. To mention just a few applications:
PROTON is meant to serve as a seed for ontology generation (new ontologies
extracted as extensions of PROTON); it is further used for automatic entity
recognition and more generally Information Extraction (IE) from text, for the sake of
semantic annotation (metadata generation). In a nutshell, PROTON is designed as a
general-purpose domain-independent ontology. The above mission statement pre-
determines a couple of drawbacks:

• PROTON is (relatively) un-restrictive. In other words, the conceptualization
behind it is a general one; the definitions are rather partial; the possible
interpretations are not constrained to the degree in which it would be possible
and desirable if it was a domain- or task-specific one. The latter limits the
“predictive” power of the ontology.

• PROTON is naïve in many aspects, as for instance the conceptualization of
space and time. This is partly because proper models for these aspects would
require usage of logical apparatus which is beyond the limits acceptable for
some of the tasks of interest (e.g. queries and management of huge
datasets/knowledge bases). And partly because it is very hard to craft strict
and precise conceptualizations, which are adequate for a wide range of
domains and applications.

Having accepted these drawbacks, we put a couple of additional requirements towards
PROTON, namely, to allow for (i) low cost of adoption and maintenance and (ii)
scalable reasoning. The high-level goal is to make feasible the usage of ontologies and
the related reasoning infrastructure as a replacement for the DBMS.

4.1 Ontologies as RDBMS Schema
Here we discuss formal ontologies modelled through knowledge representation (KR)
formalisms based on mathematical logic (ML); there is a note on the so-called topic-
ontologies in a subsection below. If we compare the ontologies with the schemata of
the relational DBMS, there is no doubt that the former represent (or allow for
representations of) richer models of the world. There is also no doubt that the
interpretation of data with respect to the fragments of ML, which are typically used in
KR, is computationally much more expensive as compared to interpretation towards a
model based on relational algebra. From this perspective, the usage of the lightest
possible KR approach, i.e. the least expressive logical fragment, is critical for the
applicability of ontologies in a bigger fraction of the contexts in which DBMS are
used.

On our view, what is very important for the DBMS paradigm is that it allows for
management of huge amounts of data in a predictable and verifiable fashion. For a CS
graduate, it is relatively easy to outlook and understand a relational database schema.
The efforts for understanding and management of such a schema grows in a sort of
linear dependency on its size. The same broad expert can easily predict, understand,
and verify the results of a query, even on top of a datasets with millions or even
billons of records. This is the level of control and manageability required for systems

D1.8.1 Base-upper-level-ontology Guidance SEKT

15

managing important data, related to the performance of enterprises and public
services. And this is the requirement which is not well covered by the heavy-weight,
fully-fledged, logically expressive knowledge engineering approaches. Even taking a
trained knowledge engineer and a relatively simple logical fragment (e.g. OWL DL),
it is too hard for the engineer to maintain and manage the ontology and the data, with
the growth of the size of the ontology and the scale of the data. We leave the above
statements without a proof, hoping that most of the readers share our observations and
intuition8.

4.2 Formalization (Knowledge Representation) Approach
PROTON is originally formalized in OWL, more precisely, in a fragment of OWL
Lite – the least expressive dialect of the W3C standard for encoding ontologies. The
epistemological model of OWL is derived from the one of RDF. The world is
modeled in terms of resources – everything (a web page, a train, number 3, a
particular football match, the EURO currency) is modeled as resource having a
unique identified (URI). The resources can “belong” or be instances of classes. The
resources are described through triples of the form <subject,predicate,object>,
which connect the resource (the subject), through a specific property (the predicate,
the type of the relation) to the object, which could be either another resource, or a
literal. The literals represent concrete data values (such as strings and numbers),
essentially XML literals.

Thus, a person can be described with a couple of statements as follows:

• <#p1,type,#Person> - determines the class of the resource;

• <#p1,#hasFather,#p2> - connecting the person to the resource representing
her father;

• <#p1,#hasBirthDate,“14/11/1927”> - connecting the person with the
literal which represents her birth date.

PROTON defines a number of classes and properties. All classes which represent
categories of objects or phenomena in the domain of discourse (generally, the world)
are defined as sub-classes of Entity. We introduce the Entity class in order to
distinguish the classes used to encode the proposed conceptualization from the others
which have auxiliary and/or technical role in the RDF(S) vocabulary (e.g.
rdfs:Class and rdf:Property, which are meta-modelling primitives). PROTON
itself, also introduces few auxiliary classes and properties, defined, as a part of its
System module, which are again detached from the “true” classes under Entity.

Below we will briefly present the RDFS and OWL constructs which are used to
define the classes and properties in PROTON. We list all the modelling primitives,
used in PROTON, but this is just a fraction of the full vocabulary of OWL and even
of OWL Lite. Here follows the list of primitives:

• Both classes and properties has identifiers (URIs), titles (rdf:label) and
descriptions (rdf:comment);

8 We are tempted to share a hypothesis regarding the source of the unmanageability of any reasonably complex

ML theory. It is our understanding that the ML provides a rough approximation for the process of human
thinking, which renders it hard to follow. The relational algebra is also a rough approximation, but it seems
simple enough, to be “simulated” by a trained person

D1.8.1 Base-upper-level-ontology Guidance SEKT

16

• Classes can be defined as sub-classes, i.e. specializations, of other classes (via
rdf:subClassOf). This means that all instances of the class are also property
of its super class. For instance, City is a sub-class of Location. All classes
are defined as instances of owl:Class, because in OWL the notion of class is
more restrictive and clear as compared to RDF(S)).

• The properties are distinguished into object- and data-properties (respectively,
owl:ObjectProperties and owl:DataProperties). The object-properties
are referred to in some modelling paradigms as (binary) relations – they relate
entities to other entities. The data-properties are often referred to as attributes
– they relate entities to literals.

• Domain and ranges of properties are defined. The domain (rdfs:domain)
specifies the classes of entities to which this property is applicable, i.e. which
can be described through statements with this property as a predicate. The
range (rdfs:range) specifies the classes of entities (for object-properties) or
the datatypes (in case of data-properties). For instance, the property
hasSister has the class Person as its domain and Woman as its range.

• Properties can be defined as sub-properties, i.e. specializations, of other
properties (via rdf:subPropertyOf). Imagine that there is a couple of
properties, p1 and p2, for which <p1,subPropertyOf,p2>. The formal
meaning is that for all pairs for which p1 takes place, i.e. <x,p1,y>, p2 also
takes place, i.e. <x,p2,y> is also true. The hierarchy of family relationships
provides a number of intuitive examples in this direction, e.g. hasSister is a
sub-property of hasSibling, which on its turn is a sub-property of
hasRelative.

• Properties can be defined as a symmetric (via owl:SymmtericProperty) and
transitive (via owl:TransitiveProperty) ones. If p1 is a symmetric property
than whenever <x,p1,y> takes place, <y,p1,x> also takes place. If p2 is a
transitive property and <x,p2,y> and <y,p2,z> then it can be concluded that
<x,p2,z> is also true. hasRelative is an obvious example for a property
which is both symmetric and transitive.

• Object-properties can be defined to be inverse to each other (via
owl:inverseOf). This means that if <p1,inverseOf,p2> than, whenever
<x,p1,y> takes place, than <y,p2,x> can be concluded and vice versa.

As a design guidance, PROTON follows the principle of strict layering, which means
that no classes or properties are instance of other classes9. We had limited ourselves to
the above modelling means and principles for the following reasons:

• This level of expressivity allows for straightforward reasoning and
interpretation on the basis of standard extensional semantic. Thus, it allows for
usage of efficient reasoning algorithms and a variety of optimizations.

• It matches the modelling paradigm of the object-oriented approach (the OO-
databases, languages such as Java, etc.). The major extensions to the OO
model are the property inheritance, and the possibility to define transitive,

9 The later (class as an instance of another class) is allowed by RDFS and OWL Full, but it changes the class of

complexity of the logical fragment, which makes impossible the application of a range of efficient inference
techniques.

D1.8.1 Base-upper-level-ontology Guidance SEKT

17

symmetric and inverse properties. This ensures that the modelling style will be
familiar to a wide audience within the CS community, including people
without background in logic or KR.

• It allows easy maintenance, integration and migration to other formalizations.

4.3 Topic-ontologies, Taxonomies, and Subject Hierarchies
There is a wide range of applications for which the classification of different things
(entities, files, web-pages, etc.) with respect to hierarchy of topics, subjects,
categories, or designators has proven to be a good organizational practice which
allows for efficient management, indexing, storage, or retrieval. Probably the most
classical example in this direction are the library classification systems. Another
typical representative are the taxonomies, which are widely used in the Knowledge
Management field. Finally, Yahoo and DMoz, are popular and very large scale
incarnations of this approach in the context of the world wide web.

As long as the above mentioned conceptual hierarchies represent a form of a shared
conceptualization, it is not a surprise that they are also considered a sort of ontologies.
It is our understanding, however, that these ontologies bear a different sort of
semantics. The formal framework, which allows for efficient interpretation of DB-
schema-like ontologies (such as PROTON) is not that suitable and compatible with
the semantics of the topic hierarchies. For the sake of clarity, we introduce the term
“schema ontology” to refer to the first and the term “topic ontologies” to refer to the
second sort.

To allow for better understanding of the distinctions between topic- and schema-
ontologies, we will provide here a brief sketch of the formal modelling of the
semantics of the latter ones. The schema-ontologies are typically formalized with
respect to the so-called extensional semantics, which in its simplest form allows for a
two-layered set-theoretic model of the meaning of the schema elements. It can be
briefly characterized as follows:

• The set of classes and relations on one hand is disjoint from the set of
individuals (or instances), on the other. These form the vocabularies
respectively of the TBox and the ABox in the description logics.

• The semantic of the classes is defined through the sets of their instances.
Namely, the interpretation of a class is the set of its instances. The sub-class
operation in this case is modeled as set inclusion (as in the classical algebraic
set theory);

• The relations are defined through the sets of ordered n-tuples (the sequences of
parameters or arguments) for which they hold. Sub-relations, are again defined
through sub-sets. In the case of RDF/OWL properties, which are binary
relations, their semantic is defined as a sets of ordered pairs of subjects and
objects;

• This model can easily be extended to provide mathematical grounding for
various logical and KR operators and primitives, such as cardinality
constraints.

D1.8.1 Base-upper-level-ontology Guidance SEKT

18

• Everything which cannot be modelled through set inclusion, membership, or
cardinality within this model is undistinguishable or “invisible” for this sort of
semantics – it is not part of way in which the symbols are interpreted.

This sort of semantics can be efficiently supported (in terms of induction and
deduction algorithms) to a well-known extent. It can also be extended in different
directions – something that the logicians are doing for centuries. A typical and very
interesting representative of this class are the description logics, and in particular
OWL DL.

It is our understanding that the semantic of the topics has a different nature. Topics
can hardly be modelled with set-theoretic operations – their semanitc has more in
common with the so-called intensional semantics. In essence, the distinction is that
the semantic is not determined by the set of instances (the extension), but rather by the
definition itself and more precisely the information content of the definition. The
intensional semantic is in a way closer to associative thinking of the human being than
the ML (in its simple encarnations) is. The criteria whether something is a sub-topic
of something else have no much to do with the instances of the concrete class (if the
topic is modeled this way). To some extent it is because the notion of instance is hard
to define in this case.

Even disregarding the hypothesis for the different nature of the semantics of the topic-
ontologies, we suggest that those should be kept detached from the schema-
ontologies. The hierarchy of classes of the latter should not be mixed up with the topic
hierarchies, because this can easily generate paradoxes and inconsistent ontologies.
Imagine a schema-ontology, where we have definitions for Africa and AfricanLion
– it is likely that Africa will be an instance of the Continent class and AfricanLion
will be a sub-class of Lion. Imagine also a book classification – in this context
AfricanLionSubject can be a subsumed by AfricaSubject. If we had tried to “re-
use” for classification the definitions of Africa and AfricanLion from the schema-
ontology, this would required that we define AfricanLion as a sub-class of Africa.
The problems are obvious: one of this is not a class, and there is no easy way to
redefine it so that the schema-ontology extensional sub-classing coincides with the
relation required in the topic hierarchy. This example was proposed proposed by one
of the authors to Natasha Noy for the sake of support of Approach 3 within the
ontology modelling study [14]. One can find there some further analysis on the
computational complexity implications of different approaches for modelling of topic
hierarchies.

Based on the above arguments, we drew up a couple of principles and implemented
those in PROTON:

• The class hierarchy of the schema ontology should not be mixed up with topic
hierarchies;

• We should avoid precise and comprehensive modelling of the semantics of
topics within a computational environment based on extensional semantics.

The Topic class within PROTON is meant to serve as a bridge between to two sorts
of ontologies. The specific topics should be defined as instances of the Topic class (or
a sub-class of it). The topic hierarchy is build using the subTopic property as a
subsumption relation between the topics. The latter is defined to be transitive, but

D1.8.1 Base-upper-level-ontology Guidance SEKT

19

what is most important, it has nothing in common with the rdfs:subClassOf meta-
property.

D1.8.1 Base-upper-level-ontology Guidance SEKT

20

5 The Architecture of PROTON
PROTON is organized in three levels (including four modules), as shown on Fig. 2.
The System ontology module occupies the first, basic layer; then the Top, and Upper,
and KM ontology modules are upgraded on top of it to form the diacritical modular
architecture of PROTON.

The System module is an application ontology level, which defines several notions
and concepts of a technical nature that are substantial for the operation of any
ontology-based software, such as semantic annotation and knowledge access tools. It
includes the class protons:Entity – the top (“master”) class for any sort of real-
world objects and things, which could be of interest in some areas of discourse. In the
system ontology it is defined that entities (i.e. the instances of protons:Entity)
could have multiple names (instances of protons:Alias), that information about
them could be extracted from particular protons:EntitySource-s, etc.

Fig. 2. PROTON (PROTo ONtology) Modules

The Top ontology module - the most essential ingredient - starts with some basic
philosophically-reasoned distinctions between entity types, such as protont:Object
– existing entities, as agents, locations, vehicles; protont:Happening – events and
situations; protont:Abstract – abstractions that are neither objects nor happenings.

System Module:
Entity

EntitySource

LexicalResource

Alias

systemPrimitive

transitiveOver

Top Module:
Abstract
Agent

ContactInformation
Document
Event

GeneralTerm
Group

Happening
InformationResource

JobPosition
Language
Location
Number
Object

Organization
Person
Product
Role

Service
Situation
Statement
Topic

TimeInterval

Upper Module:
all sub-classes

of the

Top Ontology

classes

Knowledge
Management

Module:
former
SKULO

Ontology:
dependent
on System

and Top only

D1.8.1 Base-upper-level-ontology Guidance SEKT

21

Those are further specialized by real-world, substantially real entity types of general
importance: meetings, military conflicts, employment (job) positions, commercial,
government, and other organizations, people, and various locations. It also covers
numbers, time, money, and other specific values. Also, the featured entity types have
their characteristic attributes and relations defined for them (e.g.
protont:subRegionOf property for protont:Location-s, protont:hasPosition
for protont:Person-s, protont:locatedIn for protont:Organization-s,
protont:hasMember for protont:Group-s, etc.).

Further up-level, PROTON extends into its third layer, where either of two
independent ontologies, which defines much more specific classes, can be used:
PROTON Upper module or PROTON KM (Knowledge Management) module. Such
examples are: protonu:Mountain, as a specific type of protont:Location (section
6.1.4); protonu:ResourceCollection as a sub-class of
protont:InformationResource (section 6.1.6); protonkm:User (section 7.3) as a
sub-class of protont:Agent (section 6.1.1). Having this ontology as a basis, one
could easily add domain-specific extensions to it and on the whole it is
straightforward to mould according to the specific requirements of the particular
application, ontology, or KM tool that is to use it.

Lastly (although somewhat off-topic, however for the sake of laying down the last
strokes on the canvas) perhaps it is a good idea to mention hereby the layers that are
not part of PROTON anymore (but which used to be at the beginning). Actually, as
already implied in section 3.1, a part of the KIMO ontology (the predecessor of
PROTON) was specific to the KIM Platform, therefore all this information was taken
out of the PROTON ontology and it was organized into two separate, KIM-specific
modules: the KIM System Ontology10 and the KIM Lexical Ontology11. The latter
structures the information necessary for some symbolic information extraction
systems (e.g. GATE), which in their turn are used in some semantic annotation
systems (e.g. KIM). It is important for such systems, whereas it is not relevant to most
of the applications that do not perform any extraction or annotation.

5.1 PROTON System Module Coverage
The System module of PROTON provides a sort of high-level system- or meta-
primitives, which are likely to be accepted and even hard-coded in particular tools that
may use PROTON. It is the only component in PROTON
that is not to be changed for the purposes of ontology
extension. The System module of PROTON includes the
following classes (see Fig. 3.):
protons:LexicalResource; protons:Alias;
protons:EntitySource; protons:Entity.

Fig. 3. PROTON System Module
class hierarchy

The protons:Entity branch represents the root of the “true” ontology (the variety
of entity classes) – it is the super-class of the PROTON Top module (section 6), while
the other branches could be considered auxiliary ones. A property, related to the

10 http://www.ontotext.com/kim/2004/12/kimso
11 http://www.ontotext.com/kim/2004/12/kimlo

D1.8.1 Base-upper-level-ontology Guidance SEKT

22

newly integrated layer of PROTON – the knowledge management module (section 7),
is the protonkm:refersInstance, which provides a relation between
protons:Entity and protonkm:Mention (section 7.7). protonkm:refersInstance
is a property that is proprietary to protonkm:Mention.

The instances of the protons:EntitySource super-class are used to separate the
trusted (pre-populated) information in the KB, from the one that is extracted
automatically. Such a distinction is indicated by the protons:generatedBy property
of the specific entity. This is done via the following two sub-classes:

• protons:Recognized - it serves to identify a source (like a program or a
module) that is able to recognize and generate new entities from a text as part
of IE or data mining tasks, which might be relevant to SEKT-related and other
use cases (e.g. the British Telecommunications digital library case study
within SEKT). Typically, those entities are not checked for correctness,
consistency, relevance, etc., and therefore they are not trustable (the NE-
recognition process in KIM/GATE can serve as a working example of this);
and

• protons:Trusted – it may be used to indicate entities, imported from
“trusted” sources, like GNS (section 8.3), World Fact Book,
GATE/MUSE/KIM gazetteers, but also any other source that may be counted
on to provide “trusted” information in terms of its correctedness in some
universal sense of “being true”.

In the long run, the key role of protons:EntitySource is to record the provenance
of the instance data; moreover, the Semantic Web community is aware of systems,
which are not related to SEKT and which also use similar primitives to record the
provenance of instance data when knowledge is derived from multiple sources (one
such example is the Flink12 system). Actually, each instance of protons:Entity is
linked to an instance of protons:EntitySource via the protons:generatedBy
relation.

The protons:LexicalResource super-class is mostly dedicated to the encoding of
various data (such as company suffixes like “AG” and “Ltd.”, first names of persons,
etc), related to IE and data mining processes. Such an approach is expected to prove
useful for use cases within (and outside) the SEKT project. All the branches that used
to be located “under” the protons:LexicalResource super-class, except for
protons:Alias, were moved to, and are now considered part of, the KIM-specific
KIM Lexical Ontology that is not a subject of this discussion. However, it is worth
noting that two new sub-classes of protons:LexicalResource were recently added:
protonkm:Mention (section 7.7) and protonkm:WeightedTerm (section 7.8), which
are part of the newly integrated PROTON Knowledge Management module (section
7).

protons:Alias is an important class within this branch, representing the names of
the instances of the protons:Entity class.

The protons:hasAlias relation is used to link an protons:Entity to its alternative
names. Actually, it denotes an alias or a lexicalization of a concept - in most cases we
are speaking not of a general term but rather of an alternative name of something.

12 http://prauw.cs.vu.nl:8080/flink/

D1.8.1 Base-upper-level-ontology Guidance SEKT

23

Specific names, such as “John” and “Smith”, are not aliased on themselves; however,
"John Smith" and "Mr. Smith" could be. The most frequently used lexicalization of an
entity is referred to by the protons:hasMainAlias property.

The high-level system- or meta-primitives and properties, contained in the PROTON
System module, as shown in Fig. 4. below, are as follows:

Fig. 4. PROTON System module primitives and properties13

• protons:description – this property denotes a textual description of an
entity, usually a free text in some natural language; as defined in Dublin Core
(see 8.1) for dc:InformationResources; in a sense, it is a specialization of
rdf:comment.

• protons:laconicDescription – denotes an extremely short (typically, a
single sentence) description of an entity; a sub-property of
protons:description.

• protons:generatedBy – this property identifies the party that introduced the
entity into the respective knowledge base; it relates the protons:Entity and
protons:EntitySource super-classes of the PROTON system module.

• protons:hasAlias – this property refers an alias of the entity; it relates the
system classes protons:Entity and protons:Alias.

• protons:hasMainAlias – refers the official (or otherwise most important)
alias of the entity; a sub-property of protons:hasAlias property.

• protons:systemPrimitive - the system classes and properties are used to
encode system specific information; those, as well as their instances, and
related information, should usually not be presented to the end-user; in
practice, user-interface and visualization modules can filter such primitives.

• protons:transitiveOver - it suggests that one property is transitive with
respect to another one, thus making the modelling of a specific, but rather
useful modelling pattern, possible; the semantics is defined with the following
axiom (also available in Appendix A at the end of this document):

 (p,transitiveOver,q) (x,p,y) (y,q,z) => (x,p,z).

An usage example of protons:transitiveOver follows:

 (locatedIn, transitiveOver, subRegionOf)
 (Ontotext,locatedIn,Bulgaria)

13 Legend: The items coloured in yellow on all figures of this type throughout this document have a domain and a

range, while the blue ones do not have a range specified.

D1.8.1 Base-upper-level-ontology Guidance SEKT

24

 (Bulgaria,subRegionOf,Europe) =>
 (Ontotext,locatedIn,Europe)

5.2 PROTON Top Module Coverage
The PROTON Top module represents the most
general classes, required by the SEKT case
studies, as shown in Fig. 5. Those classes are
discussed in more detail in section 6.

5.3 PROTON Upper Module Coverage
The PROTON Upper module is an extension of
the Top module - roughly speaking, the sub-class
branches of the Top module classes, as well as
the corresponding properties and axioms. The
major branches are discussed in section 6.

Fig. 5. PROTON Top module classes

5.4 PROTON Knowledge Management Module
The PROTON Knowledge Management Module contains the former SKULO
ontology [15]. Its classes and properties are described in detail in section 7.

5.5 Naming Conventions
The naming conventions in PROTON, concerning the classes, the relations, and the
attributes in the ontology, are as follows: the label of a class is composed of one or
more words, written with capital first letters for each of the words, and without any
intervals or alphanumeric symbols between them (in case a class label is a two-word
one, for instance protont:InformationResource). The labels of relations and
attributes follow the same rule, except for the non-capital first letter of the
relation/attribute (e.g. protont:locatedIn).

5.6 Current Status
PROTON is in a process of constant development and improvement on the basis of
the feedback regarding its usage within different projects and scenarios. The
appropriate “community process” for collaborative discussion and development is to
be realized within a mid-term time schedule.

D1.8.1 Base-upper-level-ontology Guidance SEKT

25

6 PROTON Top Module Definitions and Upper Module Branches
The top module of PROTON contains some general classes, which will be used in the
three SEKT case studies, the knowledge discovery, metadata generation, and
intelligent knowledge access tools. These top-level classes represent the most
common, basic, and inclusive notions of world knowledge. This section describes in
detail the PROTON Top module super-classes, plus some of their more significant
sub-classes, belonging to the PROTON Upper module.

The design at the highest level of the Top module
follows the stratification principles of DOLCE,
[16] through the establishment of the PROTON
trichotomy of Objects (dolce:Endurant),
Happenings (dolce:Perdurant), and Abstracts
(dolce:Abstract).

6.1 Object branch

protont:Object-s (a PROTON Top module
class) are entities that could be claimed to exist (in
some sense of existence). An object can play a
certain role in some happenings. Objects could be
substantially real (as the Buckingham Palace or a
hardcopy book) or substantially imperceptible
(say, an electronic document – it only “exists”
virtually, one cannot touch it). The proprietary
relations and attributes of protont:Object are:

• protont:hasContactInfo – this property
allows for relations between the
protont:Object and
protont:ContactInformation (6.3.2) (a
branch of protont:Abstract).

• protont:isOwnedBy – this property
relates a particular organization to the
agents, which are members of that
organization. This predicate indicates a
`generic' type of membership, although
there may be specialized kinds of
membership in the same organization.

Fig. 6. protont:Object class hierarchy

Typically, membership eligibility is determined by the organization and
accepted with the agent's voluntary affiliation. In many cases
protont:Person-s that take protont:JobPosition-s within an
protont:Organization are considered members of the organization,
although this is not encoded here formally in any way.

The protont:Object top module class is a super-class of the following Top module
classes (sub-sections in brakets): protont:Agent (6.1.1), protont:Person (6.1.2),

D1.8.1 Base-upper-level-ontology Guidance SEKT

26

protont:Group (6.1.3), protont:Organization (6.1.3), protont:Location
(6.1.4), protont:Statement (6.1.5), protont:InformationResource (6.1.6),
protont:Document (6.1.6), protont:Product (6.1.7), and protont:Service
(6.1.8).

6.1.1 Agent class

protont:Agent (a PROTON Top module
class) is something, which can show (carry
out) an independent action, whether
consciously or not. Most animals are
considered agents, in most contexts; so are
most organizations. According to DOLCE,
[16], agents are "objects to which we
ascribe intentions, beliefs, and desires".
protont:Agent here also denotes any
automatic services, including web services
and servers.

Fig. 7. protont:Agent class hierarchy

Apart from the properties, inherited from the protont:Object super-class,
protont:Agent has three proprietary ones, as follows:

• protont:involvedIn – this property allows for various relations between
protont:Agent and members of the protont:Happening branch, for
instance.

• protont:isLegalEntity – this property determines whether a particular
protont:Agent is a legal entity or a non-legal one. Its range should be
constrained to Boolean. protont:Agent-s, for which the value is True,
correspond to instances of http://www.cyc.com/2003/04/01/cyc#LegalAgent,
which is defined as follows "Each instance of #$LegalAgent is an agent who
has some status in a particular legal system. At the very least, such an agent is
recognized by some legal authority as having some kinds of rights and/or
responsibilities as an agent (e.g., #$citizens of Germany), ...". In PROTON, it
is modelled as a property in order to avoid multiple inheritance of classes
and/or multiple classifications of instances.

This property is quite specific and its inclusion as a property of
protont:Agent was triggered by practical considerations, as the legal/non-
legal connotation for an agent. Because of the relation it provides, it allows the
user of a respective application, using the ontology, to narrow his/her search to
a great extent. For instance, if one searches for documents, containing the
company name Morgan Stanley, and they search for a protont:Agent, the
name of which begins with Morgan, then the potential search result set would
include both company names and proper names (e.g. the “investment banking
giant” Morgan Stanley and Hollywood actor Morgan Freeman); while if the

D1.8.1 Base-upper-level-ontology Guidance SEKT

27

search is specialized further via the protont:isLegalEntity property, the
search should only return documents containing the respective “legal” entities,
i.e. for the purposes of this example - mostly company names.

• protont:partiallyControls - any sort of partial control of an agent with
respect to an object; this intransitive relation provides for dependency relations
between protont:Agent-s and protont:Object-s.

The sub-classes of protont:Agent are both PROTON Top module and PROTON
Knowledge Management module (section 7) classes: protont:Person,
protont:Group, and protont:Organization - described further in this document in
separate sections (6.1.2, 6.1.3) – and protonkm:InformationSpace,
protonkm:SoftwareAgent, and protonkm:User - described in sections 7.1, 7.2,
and 7.3.

6.1.2 Person class

protont:Person (a PROTON Top module class) is an agent
(within the meaning of protont:Agent in PROTON), which
is an individual who is a human being (i.e. any living or
extinct member of the family Hominidae).

Fig. 8. protont:Person class hierarchy

Apart from the properties, inherited from the protont:Object and protont:Agent
super-classes, protont:Person has four proprietary ones, as follows:

• protont:hasPosition – this property relates a protont:Person to a
protont:JobPosition (a sub-class of protont:Situation: the situation of a
person holding a position within an organization) – e.g. in the company he/she
works for.

• protont:hasProfession – this property relates a
protont:Person to a protonu:Profession (a sub-
class of the protonu:SocialAbstraction class in
the protont:Abstract branch).

• protont:hasRelative - this property relates a
protont:Person to another one, who he is a
relative to and who is a relation to the former. This
is a many-to-many, bi-directional relationship. This
relation has a number of specializations, presented
in �

Fig. 9. Hierarchy of Family Relations

• protont:isBossOf – this property relates a protont:Person to another one,
who he is an immediate boss or supervisor of. This is a many-to-many
relationship, i.e. there can be more than one boss of a person, even co-
temporally.

D1.8.1 Base-upper-level-ontology Guidance SEKT

28

6.1.3 Group and Organization classes

protont:Group (a PROTON Top module class) is a group of agents, which is not
necessarily organized in any way. This could be the group of people within a bus or
the shareholders of a company. protont:Organization (also a PROTON Top
module class) is set as a sub-class of protont:Group because of this very difference
in the presence or the absence of organization of the agents in the group.
protont:Organization denotes a group, which is established in such a way that
certain known relationships and obligations exist between the members, and/or
between the organization and its members, and/or between the organization and
`outsiders' (individuals or groups). The informal definition is adapted from OpenCyc
(section 8.4). protont:Organization includes both informal and legally constituted
organizations. Organizations can act as agents - to undertake projects, to enter into
agreements, to own property, etc. Most organizations have names. Almost all have at
least two members.

Fig. 10. protont:Group and protont:Organization class hierarchy

6.1.4 Location class

protont:Location (a PROTON Top module class) is a sub-class of
protont:Object. A location in PROTON is usually deemed a geographic location on

D1.8.1 Base-upper-level-ontology Guidance SEKT

29

the earth, however any sort of 3D regions also fit in this class. The
protont:Location branch of PROTON contains over 100 sub-classes, aligned with
the Alexandria Digital Library Feature Type Thesaurus and GNS14 (see section
8.3). The sub-classes of the latter two, which are not included as specializations of
Location in PROTON, are Administrative areas (those are to be classified directly
as instances of Location), Territorial waters, and Tribal areas. For each specific
type, the corresponding NIMA14 GNS designators (DSG) are given.

Fig. 11. The Location class (of the Top) and its branch (of the Upper module)

The reason for the specialization of the protont:Location Top module class as a
distinctive, broad-leaved branch of PROTON is that geographic features (Location-s)
represent quite a thick piece of the cake of substantial entities of general importance.
In a way, it is a rather autonomous kind of a sub-ontology within the framework of
PROTON. Our goal was to include the most important and frequently used types of
Location-s (which are specializations of protons:Entity through
protont:Object), including relations between them. Such relations are
protonu:hasCapital, protont:subRegionOf (a much more specific relation than
the transitive protont:partOf, having the protons:Entity system module super-
class as its domain), relations between protont:Location-s and other

14 GNS – GEOnet Names Server, the GNS database of NIMA (National Imagery and Mapping Agency of United

States). http://earth-info.nga.mil/gns/html/. See section 8.3.

D1.8.1 Base-upper-level-ontology Guidance SEKT

30

protons:Entity-s (Organization locatedIn Location), and various other
properties. The proprietary relations and properties for protont:Location are as
follows:

• protont:NIMA_GNS_DSG – the designator of the entity according to the
NIMA GeoNames Server.

• protont:NIMA_GNS_UFI – the Unique Feature Identifier from the NIMA
GNS. A number that uniquely identifies the location.

• protonu:hasUniversity – a relation between protont:Location and
protonu:University (a sub-class of protont:Group).

• protont:latitude – in degrees, minutes, and seconds: no sign (+) =
North; negative sign (-) = South.

• protont:longitude – in degrees, minutes, and seconds: no sign (+) =
East; negative sign (-) = West.

• protont:subRegionOf – the general part-of relation, which here
designates a place between a whole and each of its parts. It has a number
of specializations.

The protonu:officialPositionIn property has protont:Location as its range, its
domain being protonu:OfficialPosition. Thus, by inheritance (as
protonu:OfficialPosition is a sub-class of protont:JobPosition – see section
6.2.4), this property models the protont:Person - protont:Location relation.

Also, among the properties that protont:Location inherits from the
protont:Object super-class, the most important one is protont:locatedIn. It is a
transitive relation of great significance because it is the key property that ensures the
relation between other protons:Entity-s and the protont:Location branch.
Further, the protont:subRegionOf relation (described above) extends the “path” into
a specialized ‘part-of’ type of a relation between different protont:Location-s.

The protont:Location entity denotes an area in the 3D space, which includes
geographic entities with physical boundaries, such as geographical areas and
landmasses, bodies of water, geological formations, and also politically defined areas
(e.g. ”U.S. Administered areas”).

The classification hierarchy in the PROTON Upper module layer for
protont:Location (consisting of 108 sub-classes of protont:Location) is based on
the ADL Feature Type Thesaurus version 070203. The differences between the sub-
classes zoom in on considerations of simplicity; a number of distinctions and
unnecessary levels of abstraction were removed wherever they proved irrelevant to a
general (non-geographic) context, as the ontology had to be moulded and kept to be
easy to understand by an “average-level” user. The protont:Location class and its
upper module sub-classes provide the following additional information:

• the exact type of a feature, e.g. to be able to recognize a geographic feature as
an instance of protonu:CountryCapital instead of the more broad-sensed
protont:Location;

• relations between a strictly geographic (spatial) feature and other entities (or at
least different types of locations), e.g. ”Devils Tower” is a protonu:Mountain

D1.8.1 Base-upper-level-ontology Guidance SEKT

31

(a strictly geographic feature) that is protont:locatedIn USA (a country, i.e.
having much larger connotations than just a location on the planet), and it is
protont:subRegionOf the state of Wyoming (i.e. administrative, political,
etc. associations);

• the different names of a location (e.g. ”Peking” and ”Beijing” are two aliases
for one and the same location);

• the transitive protont:subRegionOf relation allows one to search for Entities
located in a continent (e.g. ”Morgan Stanley” - locatedIn - ”New York” –
subRegionOf - ”NY” - subRegionOf - ”USA” – subRegionOf - ”North
America”)

• protons:trusted vs. protons:recognized sources, linked by the
protons:generatedBy property of a protont:Location is an extra hint in
disambiguation tasks. The class hierarchy is shown on Fig. 11.

An interesting new relation where protont:Location is range, is provided by the
property protonkm:hasLocation that relates the class with the PROTON Knowledge
Management module (section 7) class protonkm:UserProfile (section 7.6).

6.1.5 Statement class

protont:Statement (a PROTON Top module class) is a message that is stated or
declared; a communication (oral or written) setting forth particulars or facts etc;
"according to his statement he was in London on that day". Adapted from Wordnet
(section 8.2).

The protont:Statement class has three proprietary properties, as follows:

• protont:statedBy: this property best matches the dc:creator element (an
entity primarily responsible for making the content of the resource; examples
of a Creator include a person, an organization, or a service). Via the
protont:statedBy property, protont:InformationResource can be linked
to the protont:Agent class.

• protont:validFrom, protont:validUntil: these properties define the
range (period) of validity of the information resource. They align to a great
extent to the dc:value element refinement, as defined in Dublin Core (section
8.1)

D1.8.1 Base-upper-level-ontology Guidance SEKT

32

Fig. 12. protont:Statement, protont:InformationResource, and protont:Document class

hierarchy

6.1.6 InformationResource and Document classes

protont:InformationResource (a PROTON Top module class) denotes an
information resource with an identity, as defined in Dublin Core (DC2003ISO, see
section 8.1 for details). Its super-class is protont:Statement. Since
protont:Statement is described as “a message that is stated or declared; a
communication (oral or written) setting forth particulars or facts etc.”,
protont:InformationResource is considered any communication or message that is
delivered or produced, taking into account the specific intention of its originator, and
also the supposition (and anticipation) for a particular audience or counter-agent in the
process of communication (i.e. passive or active feed-back). For instance, an
protonu:Offer differs from an protonu:Announcement by the (non)obligatory
aspect of an audience.

The protont:InformationResource branch contains another top class of the
PROTON Top module - protont:Document. This is the information content of any
sort of a document; any tangible (material) aspects of a document are ignored; it is
usually a document in free text with no formal structure or semantics.
protont:Document is a distinctive type of an information resource: what
distinguishes the protont:Document sub-class, as a specific type of an information
resource, are the aspects of intention and “particularism” of a document, at least in the
“general” connotations and understanding about “what a document is" and what
cannot be described as a document (e.g. a database is not a document, it is rather a
dataset). Descriptions of the proprietary properties and attributes of
protont:Document follow further in this section.

A new sub-class of protont:InformationResource, related to the newly integrated
layer of PROTON – the knowledge managemend module (section 7), is the

D1.8.1 Base-upper-level-ontology Guidance SEKT

33

protonkm:Profile class (section 7.4). Another protonkm-specific news is the
protonkm:occursIn property that relates the protonkm:Mention (section 7.7) class
to protont:InformationResource.

The protont:InformationResource branch was designed with tight adherence to
the Dublin Core (DC, section 8.1) metadata elements set. In this connection, it is
worth mentioning that protont:InformationResource is quite close in
correspondence to what is considered dc:metadata in DC - of course, on the
understanding that a high level of abstraction from the SEKT-specific meaning and
usage of the term “metadata” is kept – the similarity is not in the senses of the two
notions, but rather in the way they are described and defined “from the outside".

An alignment of protont:InformationResource and protont:Document top-
ontology classes and branches in PROTON against Dublin Core (DC, section 8.1),
follows:

PROTON InformationResource classes and properties*, and DC-related
comments

*excluding the ones related to the knowledge management module (section 7)

protont:InformationResource (a PROTON Top module super-class):

An information resource with an identity, as defined in Dublin Core (DC2003ISO).
An important distinction in PROTON is the differentiation between
protont:InformationResource and protont:Document: information resources are
all types of information resources that do not fall under the classification criteria of
the protont:Document super-class.

Proprietary properties/attributes/relations of protont:InformationResource in
PROTON (also valid for protont:Document) include:

• protonu:compliantWithSchema. PROTON description: links a dataset with
a schema it complies to. DC-relevance: in part, this property corresponds to
the dc:relation metadata element, as defined in DC, as regards the
protonu:Dataset and protonu:DataSchema sub-classes.

• protont:derivedFromSource. PROTON description: a reference to a

resource from which the present resource is derived. The present resource may
be derived from the Source resource in whole or in part. Recommended best
practice is to identify the referenced resource by means of a string or number
conforming to a formal identification system. DC2003ISO. DC-relevance: full
equivalence between the protont:derivedFromSource property in
PROTON and the dc:source metadata element (labelled Source) in DC.

• protont:hasContributor. PROTON description: an entity responsible for

making contributions to the content of the resource. Examples of a Contributor
include a person, an organization, or a service. DC2003ISO. DC-relevance:
full equivalence between the protont:hasContributor property in
PROTON and the dc:contributor metadata element (labelled Contributor)
in DC.

D1.8.1 Base-upper-level-ontology Guidance SEKT

34

• protont:hasDate. PROTON description: typically, Date will be associated

with the creation or the availability of the resource. Recommended best
practice for encoding the date value is defined in a profile of ISO 8601
[W3CDTF] and includes (among others) dates of the form YYYY-MM-DD.
For official documents, it could be the date of signature. DC-relevance: full
equivalence between the protont:hasDate property in PROTON and the
dc:date metadata element (labelled Date) in DC.

• protont:hasSubject. PROTON description: A topic of the content of the

resource. Comment: typically, Subject will be expressed as keywords, key
phrases, or classification codes that describe a topic of the resource.
Recommended best practice is to select a value from a controlled vocabulary
or formal classification scheme. (DC2003ISO, Subject). DC-relevance: full
equivalence between the protont:hasSubject property in PROTON and the
dc:subject metadata element (labelled Subject and Keywords) in DC.

• protont:inLanguage. PROTON description: A language of the intellectual

content of the resource. Recommended best practice is to use RFC 3066
[RFC3066], which, in conjunction with ISO 639 [ISO639], defines two- and
three-letter primary language tags with optional sub-tags. Examples include
"en" or "eng" for English, "akk" for Akkadian, and "en-GB" for English used
in the United Kingdom. DC2003ISO. This property relates the
protont:InformationResource and protont:Language top module classes.
DC-relevance: full equivalence between the protont:inLanguage property
in PROTON and the dc:language metadata element (labelled Language) in
DC.

• protont:informationResourceCoverage. PROTON description: The extent

or scope of the content of the resource. Typically, Coverage will include
spatial location (a place name or geographic coordinates), temporal period (a
period label, date, or date range), or jurisdiction (such as a named
administrative entity). Recommended best practice is to select a value from a
controlled vocabulary (for example, the Thesaurus of Geographic Names
[TGN]) and to use, where appropriate, named places or time periods in
preference to numeric identifiers such as sets of coordinates or date ranges.
DC2003ISO. DC-relevance: full equivalence between the
protont:informationResourceCoverage property in PROTON and the
dc:coverage metadata element (labelled Resource Coverage) in DC.

• protont:informationResourceIdentifier. PROTON description: An

unambiguous reference to the information resource within a given context.
Recommended best practice is to identify the resource by means of a string or
number conforming to a formal identification system. Formal identification
systems include but are not limited to the Uniform Resource Identifier (URI)
(including the Uniform Resource Locator (URL)), the Digital Object Identifier
(DOI), and the International Standard Book Number (ISBN). DC2003ISO.
DC-relevance: full equivalence between the
protont:informationResourceIdentifier property in PROTON and the

D1.8.1 Base-upper-level-ontology Guidance SEKT

35

dc:identifier metadata element (labelled Resource Identifier) in DC.

• protont:informationResourceRights. PROTON description: Information
about rights held in and over the resource. Typically, Rights will contain a
rights management statement for the resource, or reference a service providing
such information. Rights information often encompasses Intellectual Property
Rights (IPR), Copyright, and various Property Rights. If the Rights element is
absent, no assumptions may be made about any rights held in or over the
resource. DC2003ISO. DC-relevance: full equivalence between the
protont:informationResourceRights property in PROTON and the
dc:rights metadata element (labelled Rights Management) in DC.

• protont:resourceFormat. PROTON description: The physical or digital

manifestation of the resource. Typically, Format will include the media-type
or dimensions of the resource. Format may be used to identify the software,
hardware, or other equipment needed to display or operate the resource.
Examples of dimensions include size and duration. Recommended best
practice is to select a value from a controlled vocabulary (for example, the list
of Internet Media Types [MIME] defining computer media formats).
DC2003ISO. DC-relevance: full equivalence between the
protont:resourceFormat property in PROTON and the dc:format
metadata element (labelled Format) in DC.

• protont:resourceType. PROTON description: The nature or genre of the

content of the resource. Type includes terms describing general categories,
functions, genres, or aggregation levels for content. Recommended best
practice is to select a value from a controlled vocabulary (for example, the
DCMI Type Vocabulary [DCT]). To describe the physical or digital
manifestation of the resource, use the resourceFormat property. DC2003ISO.
DC-relevance: full equivalence between the protont:resourceType
property in PROTON and the dc:type metadata element (labelled Resource
Type) in DC.

• protont:title. PROTON description: A name given to an information

resource. Typically, title will be a name by which the resource is formally
known. (DC2003ISO, Title there). DC-relevance: full equivalence between
the protont:title property in PROTON and the dc:title metadata element
(labelled Title) in DC.

Further comments: the protont:InformationResource property set covers a major
part of the Dublin Core Metadata Element Set. Some of the DC metadata elements
dc:relation, dc:publisher, dc:description, and dc:creator correspond to the
properties that the protont:InformationResource super-class inherits from the
protons:Entity master-class, respectively:

PROTON property, inherited by
protonu:InformationResource:

Corresponding Dublin Core metadata
element or element refinement:

protons:description: a textual
description of an entity. Usually a free

dc:description: a textual description
of an entity. Usually a free text in some

D1.8.1 Base-upper-level-ontology Guidance SEKT

36

text in some natural language. As
defined in DC2003ISO for
protont:InformationResource-s.

natural language. As defined in
DC2003ISO for Information Resources.

The property, which corresponds to the
dc:creator element best, is the
protont:statedBy property, inherited
from the protont:Statement super-
class (see the description of
protont:Statement in the previous
section for details). Via this property,
protont:InformationResource can be
linked to the protont:Agent class. The
protons:generatedBy property
(inherited from protons:Entity) could
not play the role of a creator of the
information resource in the sense
defined in DC, since it denotes "the
party that introduced the entity into the
KB" - which is not the creator/author of
the resource.

dc:creator: an entity primarily
responsible for making the content of
the resource. Examples of a Creator
include a person, an organization, or a
service. Typically, the name of a Creator
should be used to indicate the entity.

Lacking in a directly corresponding
property.
The protonu:compliantWithSchema
property partially covers the relation
between the protonu:Dataset and
protonu:DataSchema sub-classes.

dc:relation: a reference to a related
resource. Recommended best practice is
to reference the resource by means of a
string or number conforming to a formal
identification system.

The protont:InformationResource
branch of PROTON contains many sub-
classes, some of which are quite specific
- e.g. protonu:MagazineIssue. A
protonu:hasPublisher relation
(exactly matching the dc:publisher
metadata element in DC in terms of
definition and purpose) is provided for
the sub-classes that need such a property
– in the case with the
protont:InformationResource class
branch, these are
protonu:MagazineIssue,
protonu:MeetingProceedings, and
protonu:NewspaperIssue, which
inherit the protonu:hasPublisher
property from their other (multiple)
super-class protont:Document.

dc:publisher: an entity responsible for
making the resource available.
Examples of a Publisher include a
person, an organization, or a service.
Typically, the name of a Publisher
should be used to indicate the entity.

protont:partOf: the general part-of
relation which in place between a whole
and each of its parts. It has number of
specializations.

dc:isPartOf: the described resource is
a physical or logical part of the
referenced resource. Label: Is Part Of.
Type of term: metadata element
refinement.

D1.8.1 Base-upper-level-ontology Guidance SEKT

37

protont:locatedIn: it has just a partial
correspondence, in special cases, to the
dc:spatial metadata element
refinement of DC.

dc:spatial: the described resource is a
physical or logical part of the referenced
resource. Label: Is Part Of. Type of
term: metadata element refinement.

protont:validFrom and
protont:validUntil: these define the
range (period) of validity of the
information resource.

dc:valid: date (often a range) of
validity of a resource. Type of term:
metadata element refinement.

A mapping between the subclasses of protont:InformationResource, including the
protont:Document sub-class branch, and Dublin Core, follow:

protonu:DataSchema:
A particular notation for representation, standardization, and/or structuring of
information. It can range from db schema, through ontology, to any sort of
taxonomies, nomenclatures and subject hierarchies. Examples are Dublin Core,
KIMO, SIC, XML, RDFS. DC-relevance: full equivalence between the
protonu:DataSchema sub-class in PROTON and the dc:title metadata element
(labelled Title) in DC.

protonu:Dataset:
A dataset is information encoded in a defined structure (for example, lists, tables, and
databases), intended to be useful for direct machine processing (DCMI Type).
Somehow structured and interrelated body of information, data, or knowledge. This
includes databases, knowledge bases, catalogues, registries, specific lists, etc. All
tangible aspects (like media or host) are irrelevant for this class - it only considers the
abstract information. What can be considered as a single document is outside the
scope of this class, although it can be comprehensive in terms of size and structure.

protonu:Legislation:
Various sorts of legislative documents, including constitutions, laws, etc.

protonu:Patent:
A registered (or awaiting registration) patent for a specific invention or design.

protonu:ResourceCollection:
A collection is an aggregation of information resources. The term collection means
that the resource is described as a group; its parts may be separately described and
navigated. (DCMI type Collection) DC-relevance: here the
protonu:ResourceCollection sub-class in PROTON is aligned to the much more
broadly defined dc:collection metadata element (labelled Collection) in DC, which
is described as “an aggregation of items” – i.e. the type of “items” is not
particularized to more concrete terms or “entities”.

protonu:MagazineIssueM:

D1.8.1 Base-upper-level-ontology Guidance SEKT

38

A specific issue of a magazine, journal or digest. Being a multiple-inheritance class15,
protonu:MagazineIssueM has two (multiple) super-classes – the other super-class,
protonu:IssueOfPeriodical (and its protonu:PublishedMaterial super-class),
define the additional properties, inherited by protonu:MagazineIssueM –
protonu:issueOf, protonu:datePublished, and protonu:hasPublisher.

protonu:MeetingProceedingsM:
A collection of articles or presentations published as a book. Being a multiple-
inheritance class15, protonu: MeetingProceedingsM has two (multiple) super-
classes – the other super-class - protonu:Book - defines the additional property
protonu:ISBN (International Standard Book Number - a unique machine-readable
identification number, which marks any book unmistakably; this property aligns well
with the dc:Identifier metadata element as defined in DC), inherited by
protonu:MagazineIssueM.

protonu:NewspaperIssueM:
A specific issue of a newspaper. Being a multiple-inheritance class15,
protonu:NewspaperIssueM has two (multiple) super-classes – the other super-class,
protonu:IssueOfPeriodical (and its protonu:PublishedMaterial super-class),
define the additional properties, inherited by protonu:NewspaperIssueM –
protonu:issueOf, protonu:datePublished, and protonu:hasPublisher.

protont:Document (a PROTON Top module super-class):
The information content of any sort of a document. Any tangible (material) aspects of
a document are ignored. It is usually a document in free text with no formal structure
or semantics. A distinctive type of an information resource; what distinguishes the
protont:Document class, as a specific type of an information resource, are the
aspects of intention and particularism of a document, at least in the “general”
connotations and understanding about “what a document is" and what cannot be
described as a document (e.g. a database is not a document, it is rather a dataset).
Proprietary properties/attributes/relations in PROTON:

• protont:documentAbstract. PROTON description: An abstract or
summary of a document. protont:documentAbstract is a direct
specialization of the system property protons:Desription DC-relevance:
this property matches almost in full the Dublin Core metadata element
refinement dc:Abstract, which is described as “a summary of the content of
the resource”.
• protont:documentSubTitle. PROTON description: A very short
sub-title of a document, usually a single sentence.
protont:documentSubTitle is a direct specialization of the system property
protons:laconicDesription., which in its turn is a specialization of
protons:Desription. DC-relevance: this property does not have a
corresponding element in DC. However, it can be regarded as a further
specialization of protonu:Title – as defined in both PROTON and DC.

protonu:Contract:

15 The superscript M sign in the name of a class in PROTON means that this class is a multiple-inheritance class,

i.e. it has two or more superclasses.

D1.8.1 Base-upper-level-ontology Guidance SEKT

39

Any sort of contract or treaty, as well as other documents signed or otherwise
accepted by more than one agent, in the sense of a binding agreement between two or
more persons that is, typically, enforceable by law.

protonu:Message:
A written message, including various postings in newspapers or public sources, job
position adverts, etc. The emphasis here, in this specialization of the term in
PROTON, is that this is a written type of a document. I.e. some other meanings of
"message” should be ignored.

protonu:PublishedMaterialM:
A document which is published or intended for publishing. Being a multiple-
inheritance class15, protonu:PublishedMaterialM has two super-classes -
protont:Document and protonu:MediaProduct. In this context, publishing is used
in all of its main meanings: to prepare and issue for public distribution or sale; to put
into print; and to have (one's written work) issued for publication (WorldNet 2.0 - see
8.2). DC relevance: making a resource available (what DC means by “publishing”) is
not inclusive, comprehensive, and particular enough for the purpose of PROTON.

protonu:Announcement:
A formal public statement; "the government made an announcement about changes in
the drug war"; "a declaration of independence" (Wordnet, see section 8.2).

protonu:Article:
A relatively short document, published as a part of a protonu:ResourceCollection.
protonu:Article has a proprietary property – protonu:publishedWithin, which
further specializes the class relations to other classes. In a way, this class falls under
the broader interpretation of dc:Text in Dublin Core: “a text is a resource whose
content is primarily words for reading.”

protonu:Book:
A relatively big published document (as opposed to protonu:Article). It may or
may not have chapters. There could be a series of books considered as volumes of a
bigger one. In a way, this class falls under the broader interpretation of dc:Text in
Dublin Core: “a text is a resource whose content is primarily words for reading.”

protonu:MeetingProceedingsM:
See the description of this multiple-inheritance sub-class above in this section.

protonu:IssueOfPeriodical:
A specific issue, number, and/or volume of a periodical publication such as a
magazine. The proprietary protonu:issueOf property of this sub-class provides a
relation to a periodical publication (as it is a property of multiple classes). In this way,
a concrete issue of a periodical is matched to the periodical publication in general.
The issuance is supposed to be a formal one, as implied in Dublin Core (dc:Issued
element refinement).

protonu:MagazineIssueM:
See the description of this multiple-inheritance sub-class above in this section.

D1.8.1 Base-upper-level-ontology Guidance SEKT

40

protonu:NewspaperIssueM:
See the description of this multiple-inheritance sub-class above in this section.

protonu:Report:
A report could be a written document describing the findings of some individual or
group, or a short account of the news, or, in some specific contexts, it could be
assumed the act of informing by verbal report.

6.1.7 Product class

protont:Product (a PROTON Top module class, a sub-class of protont:Object)
covers the general concept of a product model, say, Ford T. The instances of this class
are not specific instances of the product - the latter are just objects. Analogous to
FormalProductType in Cyc (section 8.4). Apart from the properties, inherited from
protont:Object, protont:Product has the proprietary one protont:producedBy -
a relation between the protont:Product and protont:Company/protont:Agent
which produced/produces it. A new sub-class of protont:Product is PROTON
Knowledge Management module (section 7) class protonkm:Device (section 7.9).

6.1.8 Service class
protont:Service (a PROTON Top module class, a sub-class of protont:Object)
denotes any sort of a service, ranging from scheduled flight or train services to
weather forecast information/web service. Many services could be considered
instances of protont:Agent. Apart from the properties, inherited from
protont:Object, protont:Service has the proprietary one protont:operatedBy -
a relation between a protont:Service and a protont:Agent (usually an
organization), which provides it.

6.1.9 CommercialOrganization class

protonu:CommercialOrganization (a PROTON Upper module class, a sub-class of
protont:Organization and a super-class of protonu:Company) denotes an
organization, which buys or sells goods or services for a profit. It may also be a
Business or it may merely be a sub-organization of a Business entity.

The reason for the existence of protonu:CommercialOrganization and the further
specialization of protonu:Company as its sub-class is the equivocality of a potential
assumption that “every commercial organization is a company, so we do not need
both". Actually, a protonu:Company denotes entities that are subject to more specific
(even constraining to some extent) conditions compared to its superclass, i.e. its
instances are private, legal, corporate entities with the legal rights to own property,
manage themselves, and sue or be sued; companies are established by a charter or
registration granted by a government.

Apart from the properties, inherited from protont:Object,
protonu:CommercialOrganization has several proprietary ones, as follows:

• protonu:FISCAL_NET_INCOME - net income during the last fiscal year;
• protonu:FISCAL_SALES – sales during the last fiscal year;
• protonu:activeInSector - denotes that the organization is active within the

respective industry sector. This property relates

D1.8.1 Base-upper-level-ontology Guidance SEKT

41

protonu:ComercialOrganization with protonu:IndustrySector (a sub-
class of protonu:BusinessAbstraction, sections 6.3.6 and 6.3.5);

• protonu:hasShareholder - relates a particular organization to the agents,
which are members of that organization. This predicate indicates a `generic'
membership, although there may be specialized kinds of membership in the
same organization. Typically, membership eligibility is determined by the
organization and it is accepted with the agent's voluntary affiliation. In many
cases, Persons who take Positions within an Organization are considered
members of that organization, although this is not formally encoded here in
any way.

6.2 Happening branch

protont:Happening (a PROTON Top module
class) is something that happens. It can be either
dynamic – like in "drawing a circle" (the
protont:Event sub-class), or static – like in
"being a president" or “sitting on a chair” (the
Situation sub-class). In all cases, a happening
has a certain (usually quite concrete) temporal
positioning (extent) – in the simplest case one,
denoted by start and end points in time. Its
proprietary relations and attributes are:
protont:startTime (the starting moment of a
happening) and protont:endTime (the end point
of a happening).

Also, it is usually the case that some entities16 take
part in the happening – i.e. are involved in, or play
a certain role in it. To this end, PROTON contains
the protont:Role sub-class (see 6.2.5).

The protont:Happening class is a super-class of
the following PROTON Top module classes:
protont:Event (section 6.2.1),
protont:Situation (section 6.2.2),
protont:TimeInterval (section 6.2.3), and
protont:JobPosition (section 6.2.4).

Fig. 13. The PROTON Top module class
Happening and its Upper module branch

16 This is a rather unrestricted modelling; if we have to be more specific, only Objects and Abstract entities are

expected to take part in happenings.

D1.8.1 Base-upper-level-ontology Guidance SEKT

42

6.2.1 Event class

protont:Event (a PROTON Top module class) denotes a dynamic event, such as
"running", or "a concert". protont:Event is in binary logical opposition to
protont:Situation in terms of the dynamic vs. static nature of the
protont:Happening. protont:Event inherits the properties of its super-class
protont:Happening. Its specializations include sub-classes like protonu:Accident,
protonu:Meeting (section 6.2.6), protonu:Project (6.2.7), protonu:SportEvent,
protonu:MilitaryConflict, and protonu:ArtPerformance.

6.2.2 Situation class

protont:Situation (a PROTON Top module class) denotes a static event or
situation, like "sitting on a chair" or "holding position". Typically, those are
temporarily homogeneous, i.e. their nature is not expected/required to change within
their duration. As a protont:Happening, they use to happen/take place/be true for
some periods of time and may or may not have a well-defined space extension.
protont:Situation is in binary logical opposition to protont:Event in terms of the
dynamic vs. static nature of the protont:Happening. protont:Situation inherits
the properties of its super-class protont:Happening. Its specializations include sub-
classes like protont:JobPosition (section 6.2.4) and protont:Role (6.2.5).

6.2.3 TimeInterval class, modelling of time

protont:TimeInterval (a PROTON Top module class) is a general time expression
(TIMEEX), which refers to a particular period of time, an interval. Repeating periods
(like the Spring or Christmas) are not time intervals, while
specific instances of theirs (like the Spring of 1944) are. A
protont:TimeInterval could collapse, in very special
cases, to a time point, however in this case, in contrast to the
protont:Abstract time point (referring to some time
during the day), it should be bound to a specific date, i.e. to
represent a timestamp.

Fig. 14. protont:TimeInterval class hierarchy

protont:TimeInterval in PROTON is considered a specialization of
protont:Happening, because this is the place in PROTON for all entities that are
largely defined through their temporal extent. Indeed, it is not a necessity that
something should be “happening” (in the primal literal sense of the word) during a
time interval, but on the other hand we have no doubt that every “happening” surely
takes place within a time interval (otherwise it should not be classified as an instance
of protont:Happening). Therefore, in a much broader sense, the sheer demarcation
of a specific period of time into a Time Interval could hardly be triggered off simply
by chance, without anything “happening” within (and also beyond) this period of
time: it is rather vice versa - the start and end points in time mark in and out the
beginning and the closing, in-between, or final point of an event, a process, an
accident, or something that takes (is taking) place and for some reason its happening
is important in the global context of events. To go further, a “happening” is not nolens
volens anything tangible, or dynamically discernible, or appreciable by human senses,
or consciously noticeable, or substantially perceptible, or necessarily visible - it is

D1.8.1 Base-upper-level-ontology Guidance SEKT

43

Kantian subjective reality17 that gives the essence of a time interval as a space of time
between events or states, the designation of the latter two as such being highly a
matter of fairly subjective interpretation.

Abstract seasons, months, days of the week are represented as sub-classes of the
protonu:TemporalAbstraction in the protont:Abstract branch of PROTON.
Thus, the general notions of Tuesday and July appear as instances of classes in this
branch. It ought to be made clear that those do not have a temporal extent – they are
just abstractions, symbols, which can be used to refer to particular periods of time.

6.2.4 JobPosition class and modelling

protont:JobPosition-s (a PROTON Top module class) of people within
organizations are modelled as a special sort of a situation, i.e. a “static” happening.
This matches their nature well, as seen in the following context: “it happened that he
was a CTO at XYZ Corp between 2001 and 2003.” Its proprietary relations and
attributes are:

• protont:holder – relates the position to the protont:Person who holds it.
There is an inverse relation to this one, named hasPosition, defined for
persons.

• withinOgranization – the protont:Organization where the position is
situated.

• protont:heldFrom and protont:heldTo – two literal-ranged attributes, to
be used to encode the start and end of the period, for which the particular
person used to take this position, if known. Those are specializations
respectively of the protont:startTime and protont:endTime attributes of
protont:Happening.

There is a more specialized support for official (e.g. government positions), through
the protonu:OfficialPosition sub-class with an protonu:officialPositionIn
property ranged protont:Location. The latter provides a useful shortcut as seen on
Fig. 15. (the dashed arrows and nodes.)

17 I.e. the concept that ideas can have truth independently from the reality outside of our minds, and that reality is

only known when it conforms to the mind that holds its knowledge (Kant, I. The Critique of Pure Reason).
According to Kant, all that is stretched beyond our experience is unknowable, but at the same time it is
necessary to presume that those things beyond our perception exist – they are real despite that they are not
subjectively essential. Along this line of thoughts, an event can be deemed even a strip of silence during a
concert perofmance of an orchestra: now, does silence “happen” or not? Or is it a state?

D1.8.1 Base-upper-level-ontology Guidance SEKT

44

Fig. 15. Modelling of (Official) JobPosition-s

There is a general temptation (or expectation) to model protont:JobPosition-s with
relationships (instead of classes/instances), e.g. <pers1, pos1, org1>. It would
work well if those were pure binary relations, but, as it can be seen at Fig. 15. there is
more information (than just source and target) to be managed. Then, an alternative to
the current approach would be a sort of an n-ary relation or reification, none of which
could be judged as a better option.When it comes to using sub-classes of the
protont:JobPosition, it should be taken into account that such a sub-class should
still be instantiated to model a particular position. Fig. 16. below gives an example
how the protonu:Executive sub-class of protont:JobPosition in PROTON can
be used.

Fig. 16. Modelling of a sub-class of protont:JobPosition

protont:holder

proront:hasPosition

protons:hasAlias protont:heldFrom

protont:withinOrganization

Pers1 Company1 JobPos1

“10/08/2004” “COO” “Captain Cook”

protons:hasAlias

Executive

rdf:type

JobPosition

rdfs:subClassOf

hasPosition

label heldFrom

withinOrganization

ofCountry

hasPosition

holder

officialPositionIn

Pers1 Gov1 JobPos1

Cntr1

“20/11/2003” “Prime minister” “Captain Nemo”

label

JobPos1

D1.8.1 Base-upper-level-ontology Guidance SEKT

45

6.2.5 Role class

A protont:Role (a PROTON Top module class) designates the role of an entity
(usually an agent) within/for/during/effecting (intentionally or not) a particular
happening. For instance, the role played by a coordinator of a project, or a defendant
in a trial, or even an evidence in a trial (e.g. a material object that serves as an
evidence, for example a knife a murder was committed with). Its proprietary
properties are:

• protont:roleHolder – relates the role to the protons:Entity that holds
(“plays”) it.

• protont:roleIn – relates the role to the protont:Happening that conditions
and takes on the effect of the role.

• protonkm:hasRole – relates the role to the protonkm:UserProfile (section
7.6) to link the protonkm:User (section 7.3) with the role he/she plays with
respect to a certain system(s).

As shown in the example in Fig. 17. when sub-classes of protont:Role are to be
modelled (e.g. in a domain ontology), it should be taken into account that
interdependencies between some roles are highly possible, so that transitive role-to-
role relations might be necessary at some point.

Fig. 17. Modelling of the protont:Role class

Moreover, by an axiom in PROTON, when the protont:roleHolder of a role
instance is an instance of a protont:Agent, then this protont:Agent is assumed to
be protont:involvedIn the respective protont:Happening.

label

roleIn roleHolder
Entity1 Happening1 Role1

“murderer” “Jack the Ripper”

label

Role2

Entity2

label

“murder act”

“a knife”

label label
“weapon of crime”

roleIn

roleHolder

D1.8.1 Base-upper-level-ontology Guidance SEKT

46

6.2.6 Meeting class

protonu:Meeting (a PROTON Upper module class, a sub-class of protont:Event –
section 6.2.1) denotes a formal or informal meeting, regarded as an event (i.e. it is
specific in temporal and spatial aspects). It is worth noting that protonu:Meeting
here primarily implies the following senses of the word – i.e. a coming together of
persons or things, or an assembly, gathering of people, especially to discuss or decide
on matters. protonu:Meeting has no properties of its own - it inherits the ones of its
super-class.

6.2.7 Project class

protonu:Project (a PROTON Upper module class, a sub-class of protont:Event –
section 6.2.1) may denote a special unit of work, research, etc.; a proposal of
something to be done, like a plan or a scheme; an organized undertaking; an extensive
public undertaking, as in construction, conservation, etc. In any case, a
protonu:Project has a duration in time, i.e. it has its temporal connotations.
protonu:Project has no properties of its own - it inherits the ones of its super-class.

6.2.8 OfficialPosition class

protonu:OfficialPosition (a PROTON Upper module class, a sub-class of
protont:JobPosition - section 6.2.4) denotes a specific position, which models the
Person->hasPosition->Location, e.g. "president of USA", "mayor of NY". It is
usually a shortcut to holding a position within the local government or other local
administration, including military positions. Apart from the properties it inherits from
its super-class - protont:JobPosition, protonu:OfficialPosition has the
proprietary property protonu:officialPositionIn, which relates it to the
protont:Location class (section 6.1.4).

6.2.9 Employee class

protonu:Employee (a PROTON Upper module class, a sub-class of
protont:JobPosition - section 6.2.4) denotes an employee of a protont:Group
(usually a protont:Organization). It has protonu:Manager as a sub-class, and on
the next level, the sub-class protonu:ExecutiveM 18 (a protont:Person who holds
an executive managerial protont:JobPosition in a certain protont:Organization
; protonu:Executive-s are top managers of organizations, including corporate
officers (CompanyPresident, etc.), Chiefs of Staff, Generals, Admirals, and others like
Chief Corporate Counsel, Managing Partner, Producer, Chief Scientist, Chief
Engineer, as well as other top and middle-top managers; at the same time, a
protonu:Executive is usually employed by the owners of the respective
Organization), which is a multiple-inheritance sub-class of both protonu:Manager
and protonu:Leader. protonu:Employee has no properties of its own - it inherits
the ones of its super-class.

6.2.10 Leader class

protonu:Leader (a PROTON Upper module class, a sub-class of
protont:JobPosition – section 6.2.4) denotes a protont:JobPosition for a

18 The superscript M sign in the name of a class in PROTON means that this class is a multiple-inheritance class,

i.e. it has two or more super-classes.

D1.8.1 Base-upper-level-ontology Guidance SEKT

47

protont:Person who heads a protont:Organization. Typically, a leader of an
organization makes major decisions on behalf of the whole organization, has the
authority to direct the personnel of the organization to carry out those decisions, and
is empowered to engage or negotiate with external agents to achieve the goals of the
organization. This collection includes leaders of divisions, such as department heads
within larger organizations. Also, a single person may be a leader in more than one
organization.

protonu:Leader has as sub-classes protonu:Chairman, protonu:President, and
the multiple-inheritance class protonu:ExecutiveM (see section 6.2.9).
protonu:Leader inherits the properties of its super-class protont:JobPosition.

6.2.11 Date class

protonu:Date (a PROTON Upper module class, a sub-class of
protont:TimeInterval – section 6.2.1) denotes a specific date, as 12th of April,
1956, as the time period (the 24 hours of the day). protonu:Date inherits the
properties of protont:TimeInterval.

D1.8.1 Base-upper-level-ontology Guidance SEKT

48

6.3 Abstract branch

protont:Abstract (a PROTON Top module class)
denotes an abstraction: i.e. something, which neither
happens nor exists, e.g. a number or a chemical
compound. Those are usually some symbols
invented to refer to general notions.

The protont:Abstract class is a super-class of the
following PROTON Top module classes:
protont:Number (6.3.1),
protont:ContactInformation (6.3.2),
protont:Language (6.3.3), and protont:Topic
(6.3.4).

In some cases, when a class has specific, well-
definable instances, which however may not be
modelled as sub-classes, those instances are
included in the knowledge base (e.g. some special
instances of the protonu:Profession class - artist,
politician, religious person, scientist, sportsman –
have been instaniated in the system part of the
ontology).

Fig. 18. protont:Abstract class hierarchy

6.3.1 Number class

protont:Number (a PROTON Top module class) is any given number, within the
meaning that a number is: a concept of quantity derived from zero and units (“every
number has a unique position in the sequence"); or a number is a numeral or string of
numerals used for identification ("she refused to give them her Social Security
number"); or a phone number, etc. A further specialization of protont:Number is the
protonu:Percent sub-class, which denotes a specific percent value and thus it is a
quite more specific kind of a number in terms of representation and meaning.

D1.8.1 Base-upper-level-ontology Guidance SEKT

49

Fig. 19. protont:Number class

6.3.2 ContactInformation class

protont:ContactInformation (a PROTON Top module class) is any instance of a
particular notation, used to make the contact with an individual or an organization
possible. The class hierarchy is of the different sorts of contact information is shown
on the left-hand side of Fig. 20. (the hierarchy of properties is presented on its right-
hand side).

Fig. 20. Modelling protont:ContactInformation

6.3.3 Language class

protont:Language (a PROTON Top module class) denotes a spoken or written
natural language – i.e. a human written or spoken language used by a community;
opposed to e.g. a computer language (adapted from Wordnet - section 8.2).

Along with the general properties that the protont:Language class inherits from the
protons:Entity superclass (defined in the PROTON System module), there is the
following important property that concerns protont:Language but is not proprietary
to this class: protont:inLanguage – it relates the protont:InformationResource
(section 6.1.6) and protont:Language top module classes. The domain of this
property is the protont:InformationResource class. It links an information
resource to the language of the intellectual content of the resource.

6.3.4 Topic class and modelling

protont:Topic (a PROTON Top module class) is any sort of a topic or a theme,
explicitly defined for classification purposes. As long as any other class or entity can
play the role of a topic, the instances of this class are only those concepts, which are
defined to serve as topics. The topic class is the natural top-class for linkage of
logically informal taxonomies.

PROTON does not provide any protont:Topic branches as part of its Upper module
layer. However, protont:Topic is in certain relations with some of the classes in the
Knowledge Management module of PROTON (section 7):

• protonkm:UserProfile (section 7.6) and
protonkm:InformationSpaceProfile (section 7.7), where the properties
protonkm:isInterestedIn and protonkm:isInterestedIn (proprietary for

D1.8.1 Base-upper-level-ontology Guidance SEKT

50

protonkm:UserProfile and protonkm:InformationSpaceProfile) relate
those two classes with protont:Topic;

• protonkm:WeightedTerm (section 7.8), where the property
protonkm:hasWeightedTerm (proprietary for protont:Topic) provides a
relation between the two classes.

There are many cases when it is useful to have a non-formal hierarchy that does not
comply with the formal logic of an ontology like PROTON. In other words, the
members in the respective hierarchy branch are such that they cannot be defined as
classes, but rather as a mixture of class-like entities and some specific instances of
them down the dependency tree. For instance, many big portal sites often provide
dynamic, quick-search lists of "entities" to pick from, the relations and entities there
being the result of a survey (e.g. words/entities, queried most often) or some particular
set of criteria the designer had in mind when organizing such a list. In those cases, it
is unacceptable to stick together a class and its instance as a sub-class.

A good example of such a case is available in [14]. We particularly prefer the
approach, presented in “Approach 3" there (using a property other than
rdfs:subClassOf to organize the subject hierarchy), and this is the purpose of the
Topic class – it allows the addition of arbitrary pseudo-classes (although formally
presented as classes in PROTON), which by convention do not comply with the
formal description logic reasoning, used for the rest of the ontology; the aim is to have
a "parallel" hierarchy tree under the Topic super-class, containing logically informal
taxonomies (e.g. Travel > Continent > Africa >), and to relate its pseudo-classes to
the other PROTON classes via a special RDFS property like rdfs:seeAlso. Fig. 21.
shows this modelling approach. The example figure follows below:

Fig. 21. Dealing with logically informal classification, using a rdfs:seeAlso property to

organize the subject hierarchy (see [14])

D1.8.1 Base-upper-level-ontology Guidance SEKT

51

Within PROTON, topics have to be represented as instnaces of the protont:Topic
class (or its sub-classes). protont:Topic-s can be related to sub-topics via the
PROTON protont:subTopicOf transitive relation - a relation from a less general to
a more general topic that is defined to be transitive via a rule. The
protont:subTopicOf property is proprietary for the protont:Topic class.
Typically, the instances of protont:Topic are values of the protont:hasSubject
property (equivalent to dc:subject) of the protont:InformationResource class in
PROTON (see section 6.1.6.).

An example for modelling of topics is given on Fig. 22. Suppose one needs to encode
that a particular document is about Jazz, using the Yahoo!® category hierarchy. Jazz,
Genre, and Music are all instances of YahooCategory, which is a sub-class of
protont:Topic.

Fig. 22. Topic modelling example: classifying a document by Yahoo Category

One can find a more general extension on the distinction between topic- versus
schema-ontologies in section 4.3.

subClassOf

type type

subTopic

subClassOf

subTopic
hasSubject

Doc1

InformationResource

Music

Genre

Jazz

YahooCategory

Topic

type

Document

D1.8.1 Base-upper-level-ontology Guidance SEKT

52

6.3.5 BusinessAbstraction

protonu:BusinessAbstraction (a PROTON Upper module class, a sub-class of
protont:Abstract) denotes an abstract entity that is used in a business context – e.g.
markets, industry sectors, brands, etc. Many products can also be seen as a business
abstraction, but most of the products bear other important aspects, such as engineering
and design.

Fig. 23. An example of a search for entities and documents,

relating to protonu:BusinessAbstraction instances,
performed with the KIM Web UI front-end

D1.8.1 Base-upper-level-ontology Guidance SEKT

53

6.3.6 IndustrySector class and modelling

Industry sectors are to be represented as instances of the protonu:IndustrySector
class (a PROTON Upper module class), which is a sub-class of
protonu:BusinessAbstraction19 (section 6.3.5), which on its turn is a sub-class of
protont:Abstract (section 6.3). Hierarchies of industry sectors can be specified
with the protonu:subSectorOf transitive relation (a specialization of
protont:partOf).

Fig. 24. Topic modelling example: classifying a document by Yahoo Category

An example on Fig. 24. demosntrates how the Danone™ Group is modelled as a
company, active in the sector of manufacturing food and beverages with respect to the
SIC92 classification.

6.3.7 TemporalAbstraction

A protonu:TemporalAbstraction (a PROTON Upper module class, a sub-class of
Abstract) denotes any sort of an abstraction that is used to refer to periods of time in
general, i.e. periods of time, which are not specific or unique as a concrete date, for
instance. Thus, the month of September is an instance of this class, while Sept 1989 is
not (it is a specific protont:TimeInterval, and thus not abstract).

A already hinted, there is a clear, though thin, line of distinction between the two
branches in PROTON that deal with temporal aspects of world knowledge –
protonu:TemporalAbstraction and protont:TimeInterval (section 6.2.3). The
key to this delineation lies in the specific or non-specific nature of the temporal notion
classified.

19 This is just a common super-class for any sort of an abstract business entity (such as Market). It has been

introduced mostly for the sake of some better structuring of the taxonomy, in order to avoid an excessive
number of direct sub-classes of protont:Abstract. See section 6.3.5.

subClassOf

type type

subClassOf

subSectorOf
activeInSector

Danone

Company

Manufactoring

ManufacturingFoodAndBeveradge

SIC92Class

IndustrySector

type

PublicCompany

D1.8.1 Base-upper-level-ontology Guidance SEKT

54

6.3.8 GeneralTerm

A protont:GeneralTerm (a PROTON Top module class, a sub-class of
protont:Abstract) is the “placeholder” for the representation of a general concept
with a well-defined (idiomatic) meaning, which can have a set of distinct lexical items
(surface realizations) associated with it. Such examples are: F2F, I18N, P2P, B2B,
VIP, ASAP, Semantic Web.

A property, related to the newly integrated layer of PROTON – the knowledge
management module (section 7), is the protonkm:hasTerm, which provides a relation
between protont:GeneralTerm and protonkm:WeightedTerm (section 7.8).
protonkm:hasTerm is proprietary for protonkm:WeightedTerm.

6.3.9 NaturalPhenomenon

protonu:NaturalPhenomenon (a PROTON Upper module class, a sub-class of
protont:Abstract) denotes natural phenomena such as a particular disease, the
Gulfstream, or other similar natural abstractions. Important: the particular events or
objects, which could instantiate an abstract natural phenomenon (i.e. a specific event
of a sickness, caused by a disease) are not instances of this class.
protonu:NaturalPhenomenon inherits the properties of its superclass
protont:Abstract.

6.3.10 SocialAbstraction

protonu:SocialAbstraction (a PROTON Upper module class, a sub-class of
protont:Abstract) denotes any sort of a general social phenomenon, such as a
particular sort of art or science. protonu:SocialAbstraction inherits the properties
of its superclass protont:Abstract.

D1.8.1 Base-upper-level-ontology Guidance SEKT

55

7 PROTON Knowledge Management Module Classes
The PROTON Knowledge Management (KM) module is dependent on the System
and Top modules. Actually, this module is the former SKULO ontology [15], which
has been further developed and integrated into PROTON.

Fig. 25. PROTON Knowledge Management Module Classes and Properties (incl. imported

System and Top modules classes having KM properties as range/domain)

7.1 protonkm:InformationSpace
 “Information spaces" denote collections of themed information resources (e.g.
documents, maps, etc.) – for instance, the information space “e-commerce” that
should contain collections of documents relating to activities and entities concerning
electronic commerce. The protonkm:InformationSpace class is a specialization of
protont:Agent (section 6.1.1), which can be described as denoting a
protonkm:user’s personalized set of information “items” in a specific milieu (e.g. a
digital library). Each protonkm:InformationSpace is linked to an
protonkm:InformationSpaceProfile by means of the property
protonkm:hasISprofile.

7.2 protonkm:SoftwareAgent

protonkm:SoftwareAgent is a specialization of protont:Agent (section 6.1.1) and
denotes an artificial agent, which operates in a software environment. No proprietary
properties are associated to this class.

D1.8.1 Base-upper-level-ontology Guidance SEKT

56

7.3 protonkm:User
The concept of a user is central for SEKT, since a key aim of the project is to
represent a user's interests and context so that personalised, timely, relevant
knowledge is provided [15]. protonkm:User is a specialization of protont:Agent
(section 6.1.1) and designates a human user, who plays a protont:Role (section
6.2.5) with respect to some system. Every protonkm:User has an
protonkm:UserProfile (related via the property protonkm:hasUserProfile) and
this is how the relation between a protonkm:User and the protont:Role he/she
plays is realized: via the protonkm:hasRole property that is proprietary for the
protont:Role class.

Each protonkm:User can have several protonkm:UserProfile-s, depending on
his/her location, device, etc. This means that the protonkm:hasUserProfile relation
is a one-to-many relation.

7.4 protonkm:Profile

Every protonkm:User has a profile, and every protonkm:InformationSpace has a
profile associated with it. The class protonkm:Profile is a subclass of
protont:InformationResource (section 6.1.6). It has two specializations:
protonkm:InformationSpaceProfile - and protonkm:UserProfile.

7.5 protonkm:InformationSpaceProfile

Each protonkm:InformationSpace has an protonkm:InformationSpaceProfile.
The relation between them is realized via the property protonkm:hasISProfile
(proprietary for protonkm:InformationSpace).

An protonkm:InformationSpaceProfile is typically linked to a set of
protont:Topic-s. The relation between an protonkm:InformationSpaceProfile
and a protont:Topic is realized by means of the property
protonkm:isInterestedIn (proprietary for protonkm:UserProfile and
protonkm:InformationSpaceProfile). In addition, each protont:Topic can have
several protonkm:WeightedTerm-s assigned to it by means of the
protonkm:hasWeightedTerm property (proprietary for protont:Topic).

7.6 protonkm:UserProfile

Each protonkm:User has an protonkm:UserProfile. The relation between them is
realized via the property protonkm:hasUserProfile (proprietary for
protonkm:User).

An protonkm:UserProfile is typically linked to a set of protont:Topic-s; also, a
protonkm:UserProfile provides information about the location of the user, the
device(s) that the user has access to, and the role the user has with respect to a system.

The relation between an protonkm:UserProfile and a protont:Topic is realized by
means of:

• the property protonkm:isInterestedIn (proprietary for
protonkm:UserProfile and protonkm:InformationSpaceProfile) – it is
used to relate the user with his/her long-term interests in certain topics;

D1.8.1 Base-upper-level-ontology Guidance SEKT

57

• the property protonkm:isCurrentlyInterestedIn (proprietary for
protonkm:UserProfile) – it is used to relate the user with his/her current
interests in certain topics.

Typically, a single protonkm:User is interested in more than one protont:Topic,
therefore more than one instance of this relation is usually available with a given
protonkm:UserProfile as a domain.

Other proprietary properties for protonkm:UserProfile are as follows:

• protonkm:hasDevice - relates protonkm:UserProfile with the
protonkm:Device class (section 7.9), representing the current device the user
has access to;

• protonkm:hasLocation – relates protonkm:UserProfile with the
protont:Location class (section 6.1.4), representing the current location of
the user;

• protonkm:hasRole - a user may have one or more roles that they switch
between, so this relation links the protonkm:UserProfile with a
protont:Role (section 6.2.5).

7.7 protonkm:Mention

protonkm:Mention is a specialization of protons:LexicalResource (section 5.1).
Its main purpose is to model the annotations, which are produced by annotation
components (provided by WP2 of SEKT) when given a protont:Document or an
protont:InformationResource [15]. In this context, a protonkm:Mention
represents the mention of an protons:Entity or a class in an
protont:InformationResource (section 6.1.6). Descriptions of the proprietary
properties of protonkm:Mention follow below.

Attributes (data-properties):
• protonkm:hasStartOffset – start offset in the content of the information

resource;
• protonkm:hasEndOffset – end offset in the content of the information

resource;
• protonkm:hasString – the string of the annotation.

Relations (object-properties):

• protonkm:occursIn – relates protonkm:Mention with
protont:InformationResource;

• protonkm:refersInstance – relates protonkm:Mention with
protons:Entity.

D1.8.1 Base-upper-level-ontology Guidance SEKT

58

7.8 protonkm:WeightedTerm

protonkm:WeightedTerm is a subclass of protons:LexicalResource (section 5.1).
It is closely connected to protont:Topic - each Topic instance may have several
protonkm:WeightedTerm-s assigned to it. The relation between the two classes is
realized via the protonkm:hasWeightedTerm property (proprietary for
protont:Topic). The protonkm:hasWeightedTerm relation is a one-to-many
relation, i.e. each protonkm:WeightedTerm instance is associated with at most one
protont:Topic instance.

The properties that are proprietary for protonkm:WeightedTerm are as follows:

• protonkm:hasWeight – a literal property; provides a relation between
protonkm:WeightedTerm and a real number that expresses the “weight” of
the term;

• protonkm:hasTerm – relates the with the protont:GeneralTerm class
(section 6.3.8).

7.9 protonkm:Device

The protonkm:Device class is a specialization of protont:Product (section 6.1.7).
A protonkm:User can use one or more protonkm:Device-s for his/her activities
regarding information resource search, management, usage, etc. This relation can be
realized via the property protonkm:hasDevice (proprietary to the
protonkm:UserProfile class), which relates the user profile of the user with the
device(s) this user works with.

Another property, proprietary for protonkm:Device, is the
protonkm:hasCapabilities relation, which is designed to provide a relation
between protonkm:Device and a new “Capability” class (still not implemented).

Further details about the attributes and further development issues for the
protonkm:Device class can be found in [15].

.

D1.8.1 Base-upper-level-ontology Guidance SEKT

59

8 Relations to Other Standards
In the process of development of PROTON, a number of the most prominent upper-
level ontologies and metadata standards have been consulted. As a result, some
important concepts were directly imported from there – all such cases are noted
formally in the built-in documentation of PROTON. Many of the PROTON concepts
have been commented informally through descriptions, providing hints to related
concepts elsewhere.

8.1 Dublin Core
The Dublin Core Metadata Workshop Series began in 1995 with an invitational
workshop which brought together librarians, digital library researchers, content
experts, and text-markup experts to promote better discovery standards for electronic
resources. The Dublin Core (DC) is an up-to-date, authoritative specification of all
metadata terms maintained by the Dublin Core Metadata Initiative – elements,
element refinements, encoding schemes, and vocabulary terms (the DCMI Type
Vocabulary). See [3, 4].

The modelling of documents and other sorts of information resources in PROTON
follows Dublin Core, providing direct mapping for all of its elements (see section
6.1.6). Still, some of the names of elements or types are altered for two reasons (i) to
match the naming convention of PROTON and (ii) to avoid ambiguity (with notions
which are missing in DC, but present PROTON). The alignment is done in two ways:

• Most of the DC elements, [3], are mapped to properties with range
protont:InformationResource;

• Most of the resource types, [4], are represented as sub-classes of
protont:InformationResource

8.2 Wordnet
Home page: http://www.cogsci.princeton.edu/~wn/. Online search interface:
http://www.cogsci.princeton.edu/cgi-bin/webwn.

Wordnet® is an online lexical reference system whose design is inspired by current
psycholinguistic theories of human lexical memory. English nouns, verbs, adjectives,
and adverbs are organized into synonym sets, each representing one underlying
lexical concept. Different relations link the synonym sets.

While Wordnet is not a true ontology, it is still an extremely valuable upper-level
resource which have been consulted through the development of PROTON (and
KIMO) and referred in many of the descriptions.

8.3 Alexandria Digital Library and GNS
Home page: http://www.alexandria.ucsb.edu/

Alexandria Digital Library (ADL) is a project at the University of California, Santa
Barbara. The protont:Location branch of PROTON contains about 80 classes
aligned with the ADL Feature Type Thesaurus [13], which on its turn is aligned with
the geographic feature designators, of the GNS database of NIMA (National Imagery
and Mapping Agency of United States), at http://earth-info.nga.mil/gns/html/.

D1.8.1 Base-upper-level-ontology Guidance SEKT

60

8.4 OpenCyc
Home page: http://www.opencyc.org.

OpenCyc is a public upper-level ontology, consisting of about 6000 concepts. It is the
public part of the Cyc ontology. Cyc, http://www.cyc.com, is probably the biggest and
the most prominent AI project on commonsense modelling. The native KR language
of Cyc (and OpenCyc) is CycL, which is a relatively expressive one (it compares
better to OWL Full and KIF than to the other flavours of OWL or RDFS).

OpenCyc has been consulted during the development of PROTON and it is referred to
in many of the descriptions. Here follows a short summary of the differences between
OpenCyc and PROTON:

• OpenCyc provides a lot more comprehensive logical definitions of its
elements.

• OpenCyc has a much wider coverage. Still, there are elements in PROTON,
which are missing in OpenCyc.

• OpenCyc is trying to provide formal modelling of many general notions, such
as space and time. It is also the case that PROTON has no extensive coverage
of general concepts (such as apple and love), which are not likely to be
referred to by name in a text.

In summary, OpenCyc (similarly as DOLCE, [16]) is logically more comprehensive,
which makes it suitable for heavy-weight knowledge engineering. However, it also
makes the ontology classes more complex and abstract, which means that those are
not directly suitable for KM tasks and activities, involving people who are not
knowledge engineers.

D1.8.1 Base-upper-level-ontology Guidance SEKT

61

9 Usage and Extension Guidance
Due to its unique modular architecture and its well-organized subsumption hierarchy,
PROTON is a flexible, lightweight upper level ontology that is easy to adopt and
extend for the purposes of the tools and applications developed within SEKT project.
Also, it is quite all-purpose in the sense that it describes very general concepts like
space, time, events, objects, abstractions, etc., which for the most part are independent
of a particular problem or domain.

In its capacity as a lightweight ontology, PROTON is not packed with an excessive
number of logical axioms (unlike comprehensive upper level ontologies) – on the
contrary, the lightweight approach used in the process of its development (and the
development of its predecessor, KIMO) ensured that it was built with just a basic
subsumption hierarchy and a few axioms. As a result, PROTON is a general purpose
ontology, it is quite easy to understand and interpret it, and its maintenance,
modification, and/or extention would require minor efforts.

Fig. 26. PROTON Usage and Extension Guidelines map

The diagram on Fig. 26. demonstrates the dependencies between the different
modules of PROTON and the KIM specific modules. It also depicts potential
(possible) extension/customization paths. The dependencies on the diagram are to be
interpreted in the direction from the bottom upwards.

The PROTON System module is the most basic module. According to expectation, it
is to be imported into any ontology or KM tool, developed within the SEKT project.

PROTON System Module

PROTON Top Module

PROTON
Upper

Module

Must be
present

Could
Remain

Could be
mapped

Custom top
Ontology

Custom Upper
Ontology

Domain
Ontology

Application
Ontology

Legend:

Application-
specific, could

be used
optionally

Could be
extended

PROTON KM
(Knowledge Management)

Module

KIM Lexical
Ontology

KIM System
Ontology

D1.8.1 Base-upper-level-ontology Guidance SEKT

62

Further, the Top and Upper modules or PROTON are subject to choice when it
comes to their employment in the development of KM tools and the construction of
other ontologies – mainly within SEKT, but also in general. Although we recommend
that at least the Top module be used in any development in the scope of SEKT, this is
however not a necessity, enforced for the sake of knowledge discovery of metadata
generation software. A consideration in this aspect is that the SKULO ontology (now
integrated as the PROTON KM module – see section 7) is dependent on the System
and Top modules only, i.e. protons and protont (e.g. protonkm:Device is
dependent on protont:Product; protonkm:Mention is dependent on
protons:LexicalResource; etc.). This means that any software/ontology, which
depends on the KM module, [15], should also import the Top module of PROTON
along with the System one.

The KIM Platform – as long as its purely software facet is concerned - is dependent
on the System module. This means that one can use KIM only via importing the
PROTON System module and by extending it with any another domain and/or upper
ontology. It should be taken into account that the default information extraction
module of KIM is coupled with grammars, which have dependencies on the Top and
Upper modules. This means that if the latter are not used, some of the automatic
metadata generation capabilities of KIM would vanish, unless the information
extraction component gets tuned for the new ontology that would have been put in
use.

The most “standard” scenario, as regards the usage and, potentially, the extension of
PROTON, should hold that an application, which uses KIM in a specific domain, (i)
provides a (proprietary) Domain Ontology, which is an extension of the PROTON
Top, Upper, or KM Module, and, (ii) optionally, a Lexical Domain Ontology that is
used as a schema for the management of domain-specific lexica (e.g. prefixes and
suffixes, which can be used to recognize “unknown” instances of some of the domain
classes).

For sure, what has been hard-coded in PROTON, and what therefore stays as a must
in the process of integration of PROTON within the process of development of other,
more specialized ontologies, applications, and/or KM tools, is the PROTON System
Module – the Top, Upper, and KM ones can be well overlooked and substituted,
without any “damage”, with alternative ones (or simply modified to a certain extent)
in case they prove that much unsuitable for the requirements of SEKT-focused tools
and applications. However, the System module is quite basic and, at the end of the
day, it simply provides a starting place for the mapping of the Top, Upper, and KM
modules of PROTON or, potentially, of any additional and/or alternative ontology
that may be required by the various connotations of SEKT-specific or general use
cases.

Further, a Custom Top Ontology and a Custom Upper Ontology stand in the places
of any other ontologies that may extend or substitute (partially or completely) the
proprietary PROTON Top and Upper modules, respectively. Such a replacement is
not a hard task, although by expectation the PROTON Top and Upper modules should
be efficient, consistent, and generic enough to satisfy the needs of the majority of use
cases within the SEKT project, at least. The SKULO ontology (now integrated as
PROTON KM module, [15]) can serve as an example of a (more) custom ontology
that extends PROTON with those sets of classes, properties, and relations, which are

D1.8.1 Base-upper-level-ontology Guidance SEKT

63

available to all SEKT applications, irrespective of the application domain, but which
are not included in PROTON.

Application Ontology and Domain Ontology are designators of the respective
specific application and/or domain ontologies that could be mapped to PROTON as
its extensions, according to the requirements of each particular use case.

Lastly, the KIM-specific KIM System Ontology and KIM Lexical Ontology are
mentioned in this diagram due to their smooth integration with the predecessor of
PROTON in the past – the KIMO ontology, moreover as this fact allows for their easy
use (and reuse) when (and if) that may prove relevant.

Further details on ontology engineering on the basis of PROTON within the scope of
the SEKT project can be found in [15].

D1.8.1 Base-upper-level-ontology Guidance SEKT

64

10 Future Development and Community Process
In its capacity as a newborn ontology, PROTON is about to tread the lengthy path of
further development and improvement efforts, which should be mainly driven by the
community that uses, implements, and extends it, via an apposite community process.
Among the number of immediate issues, which are to be taken into account in the
near future, the following ones stand out.

10.1 Community Process
A community process involving all SEKT partners and workpackages is currently
being set up so that the various comments, suggestions, arguments, and issues,
relating to PROTON, could be set forth and out and put to discussion in a fairly
structured and easily traceable way. In this way such issues could be ultimately
resolved for the sake of some consensual ontology improvements.

The results of this process and any consequential updates to PROTON are going to be
reflected in this guidance as updates of the latter at certain regular intervals.

A procedure for the technical organization of such a community process could involve
the use of tools like Wiki20 and Plone21. Also, it would be interesting to investigate the
possible application of the DILIGENT methodology [17] (also available from
University of Karlsruhe, Institute AIFB) with the purpose of engineering of upper-
level ontologies like PROTON (what is more, such an attempt22 has already been
framed by AIFB).

A currently known issue for discussion within the future community process is the
potential further refinement of the modular architecture of PROTON. The modular
dividing line between the Top and Upper modules allows for a great extent of
flexibility; however, in the process of PROTON usage and extension, this border line
may prove slightly imprecise or indistinct. A suitable in-community discussion might
lead to considerations that certain Top module classes be moved to the Upper module,
and/or vice versa (e.g. the protont:hasPosition and protont:isBossOf
properties). Further, the Upper module may be broken down into smaller sub-modules
(i.e. the protont:Location branch).

10.2 Refinement of protont:Location

A refinement of the properties and sub-classes in the protont:Location branch
(section 6.1.4) appears highly desirable. The need of such an improvement has been
triggered by known cases when the current status of some properties may lead to
factually untrue inferences, for instance:

- protont:subRegionOf is an owl:TransitiveProperty;

- "Diego Garcia" is a protonu:MilitaryAreas located in the Indian Ocean;

- "Diego Garcia" protont:subRegionOf "USA";

- "USA" protont:subRegionOf "North America";

20 http://wiki.org
21 http://plone.org
22 http://www.sekt-project.com/internal/sektwikis/diligent/SektTopLevelOntology

D1.8.1 Base-upper-level-ontology Guidance SEKT

65

- therefore, because of the transitivity of protont:subRegionOf, it may be
wrongly assumed that "Diego Garcia" protont:subRegionOf "North
America".

10.3 Remodelling of protonu:Employee

It is likely a good idea to re-model the current protonu:Employee class into a
property. The reason for such a change may be that the current class status of this
position may lead to problems with metadata tools, since the “employee” status of a
person should be considered more a relation between a Person and an Organization
(or, in some cases, between two Persons) rather than an instance of an Employee
class.

10.4 Slimming down multiple-inheritance classes
The multiple-inheritance of classes at the lower levels should be reduced to an
adequate minimum in order to avoid problematic metadata generation due to potential
ambiguity or inconsistent results when processed by metadata tools.

10.5 Remodelling of protons:EntitySource and protons:generatedBy

There are two issues to be taken into account as concerns the protons:EntitySource
and protons:generatedBy conceptualizations:

• although helpful for the SEKT-related applications, projects, and tools, the
current modelling approach narrows the use of this additional information to
instances only. For instance, additional information on concepts/properties
might be of interest for SEKT WP1/WP3; or, information on property
extensions might sometimes prove essential for SEKT WP2;

• the protons:Recognized and protons:Trusted subclasses may be
considered to be remodelled as owl:AnnotationProperty, since their
semantics may appear not clear enough and even arbitrary to a part of the
community.

10.6 Remodelling of other System module entities

The state of affairs, described in the previous section, is analogous for
protons:LexicalResource, protons:Alias, protons:hasAlias,
protons:hasMainAlias, protons:description, and
protons:laconicDescription. In a similar fashion, although such
conceptualizations are generally quite useful for SEKT, there is a serious need for a
possibility to encode rich lexical information and descriptions not only for instances,
but also for concepts, properties, and even property extensions. A possible solution to
this issue could be the remodelling as owl:AnnotationProperty.

10.7 Remodelling of protonu:PublicCompany

The protonu:PublicCompany (a sub-class of protonu:Company) is defined as “a
company, which is publicly traded on some stock exchange”. Firstly, such a
specialization perhaps goes too far into detail, considering that PROTON is an upper-
level ontology. Secondly, metadata generation tools based on IE typically experience

D1.8.1 Base-upper-level-ontology Guidance SEKT

66

problems with multiple classifications of instances – i.e. in our case, there would be a
somewhat artificial dividing line between private companies and ones that may be
private or not, but which are publicly listed on a stock exchange. Such a specialization
seems quite domain-dependent and this feature would better be modelled as a
proprietary property of protonu:Company instead of a sub-class.

10.8 Conversion of protonu:hasUniversity

The protonu:hasUniversity property of protont:Location does not seem to be
the best choice for a property that indicates the existence of relations between
organizations and locations. Therefore, a more generic property could be worked out
to this end.

D1.8.1 Base-upper-level-ontology Guidance SEKT

67

11 Conclusion
This document constitutes a guidance to the PROTON ontology (PROTo ONtology),
developed within the scope of the SEKT project as a basic upper-level ontology to be
used as background or pre-existing knowledge schemata for the purposes of metadata
generation (WP2) and also as a groundwork for the overall knowledge modelling and
integration strategy of a KM environment. In its capacity as a guidance material, this
paper is complementary to the PROTON ontology itself, which provides its own
internal documentation. In addition to the latter, this document presents design
rationales and decisions, comments on the alignment to other ontologies and metadata
schemata, and an introductory exposition of the major layers and branches in
PROTON.

The main ingredients in the paper are the extensive descriptions of the four modules
of PROTON – System, Top, Upper, and KM, including detailed elaboration on all the
Top module classes and also some of the Upper module classes and branches that bear
more relevance to SEKT-related issues.

As PROTON is a natural successor of the KIMO ontology (created and used for the
purposes of the KIM Platform), the paper discusses the main points relating to the
further development of PROTON, the relations and dependencies between the two
ontologies, as well as the design principles observed in the process of designing the
modular architecture of PROTON. In addition, the paper provides a general
introduction to ontologies, knowledge representation, and ontology languages, as well
as a discussion on the scope, coverage, and compliance of PROTON and its relations
to, and alignment against, other standards (section 7).

The 300 classes and 100 properties in PROTON cover most of the upper-level
concepts necessary for semantic annotation, indexing, and retrieval. The smart
modular architecture of PROTON, combined with its simple subsumption hierarchy,
its independence from KIM-related concepts (relocated to specific, separate modules),
its OWL Lite representation, and its SEKT-specific tuning, makes PROTON a
flexible, lightweight, upper level ontology that is easy to adopt and extend for the
purposes of any ontologies or KM tools and applications. Moreover, PROTON is
quite generic in the sense that it describes very basic spatial, temporal, material
(“physical”), and abstract concepts of world knowledge, which for the most part are
independent of a particular problem or domain.

An usage and extension guidance is hereby presented for PROTON, including a
detailed usage and extension guidelines map diagram.

In conclusion, PROTON can be defined as a modular, lightweight, upper-level
ontology that has the following major assets:

• domain-independent;

• compliant with popular metadata standards;

• provides light-weight logical definitions;

• ensures an broad coverage of concrete and/or named entities;

• requires minimal support for general concepts, which ensures the easy
extension in this direction;

• encoded in OWL Lite;

D1.8.1 Base-upper-level-ontology Guidance SEKT

68

• contains a minimal set of custom entilement rules (axioms).

We want to thank to Denny Vrandecic who dedicated considerable time and energy
discussing with us PROTON itself and the organisation of the community process.
PROTON received a number of important improvement as a result of the discussions
related to the case studies of SEKT and their “ontological” needs – we want to thank
for this to all the partners, but most specially to Pompeu Casanovas and Nuria
Casellas Caralt (who motivated as to write down and Design Rationale sections) and
to John Davis and the BT team (for donating the KM module of PROTON).

⎯⎯

D1.8.1 Base-upper-level-ontology Guidance SEKT

69

12 References

1. Brickley, D; Guha, R.V, eds. Resource Description Framework (RDF) Schemas, W3C

http://www.w3.org/TR/2000/CR-rdf-schema-20000327/

2. Chinchor, N.; Robinson, P. MUC-7 Named Entity Task Definition (version 3.5). In Proc.
of the MUC-7. 1998.

3. DCMI Usage Board. (2003). DCMI Metadata Terms.
http://dublincore.org/documents/2003/11/19/dcmi-terms/

4. DCMI Usage Board. (2003). DCMI Type Vocabulary.
http://dublincore.org/documents/2003/11/19/dcmi-type-vocabulary/

5. Dean, M.; Connolly, D.; van Harmelen, F.; Hendler, J.; Horrocks, I.; McGuinness, D.;
Patel-Schneider, P.; Stein, L.A. Web Ontology Language (OWL) Reference Version 1.0.
W3C Working Draft 12 Nov. 2002, http://www.w3.org/TR/2002/WD-owl-ref-20021112/

6. Fensel, D. Ontology Language, v.2 (Welcome to OIL). Deliverable 2, On-To-Knowledge
project, Dec 2001. http://www.ontoknowledge.org/downl/del2.pdf

7. Gruber, T. R. Toward principles for the design of ontologies used for knowledge sharing.
In N. Guarino & R. Poli, (Eds.), International Workshop on Formal Ontology, Padova,
Italy, 1993. http://ksl-web.stanford.edu/KSL_Abstracts/KSL-93-04.html

8. Guha, R.; McCool, R. TAP: Towards a Web of data. http://tap.stanford.edu.

9. Mahesh, K.; Nirenburg, S.; Cowie, J.; Farwell D. An Assessment of Cyc for Natural
Language Processing. MCCS Report, New Mexico State University, 1996.

10. Manov, D.; Kiryakov, A.; Popov, B.; Bontcheva, K.; Maynard, D.; Cunningham, H.
Experiments with geographic knowledge for information extraction. NAACL-HLT 2003,
Canada. Workshop on the Analysis of Geographic References, May 31 2003, Edmonton,
Alberta.

11. Maynard, D.; Tablan, V.; Bontcheva, K.; Cunningham, H.; Wilks, Y. MUlti-Source
Entity recognition – an Information Extraction System for Diverse Text Types. Technical
report CS--02--03, Univ. of Sheffield, Dep. of CS, 2003.
http://gate.ac.uk/gate/doc/papers.html

12. Kiryakov, A.; Popov, B.; Ognyanoff, D.; Manov, D.; Kirilov, A.; Goranov, M. Semantic
Annotation, Indexing, and Retrieval. To appear in Elsevier's Journal of Web Semantics,
Vol. 1, ISWC2003 special issue (2), 2004. http://www.websemanticsjournal.org/

13. University of California, Santa Barbara. Alexandria Digital Library Feature Type
Thesaurus. Version of July 3, 2002.
http://www.alexandria.ucsb.edu/gazetteer/FeatureTypes/ver070302/index.htm

14. Noy, N. Representing Classes As Property Values on the Semantic Web. W3C Working
Draft 21 July 2004. http://www.w3.org/TR/2004/WD-swbp-classes-as-values-
20040721/

15. Davies, J.; Boncheva, K.; Manov, D. D5.0.1 Ontology Engineering in SEKT (informal)

16. Laboratory of Applied Ontologies, Institute of Cognitive Science and Technology, Italian
National Research Council. DOLCE: a Descriptive Ontology for Linguistic and Cognitive
Engineering. http://www.loa-cnr.it/DOLCE.html

17. Pinto, S.; Staab, S.; Tempich, C. DILIGENT: Towards a fine-grained methodology for
Distributed Loosely-controllled and evolvInG Engineering of oNTologies. In Proc. of
ECAI-2004, Valencia, August 2004.

D1.8.1 Base-upper-level-ontology Guidance SEKT

70

Appendix A: PROTON-specific Axioms
These axioms are built in the x.y.z release of Sesame. Therefore they would not work
(at least not without any additional effort) in case PROTON gets to be interpreted by
other tools. Such a customization of Jena seems to be fairly strightforward, taking into
account the general rule engine that is built in it.

What is valid for both of the axioms is that if the engine does not support them, then
the applications should write somewhat more ellaborate queries in order to achieve
the same results. There are no other problematic implications on the ontology, so it is
portable to any OWL (Lite) compliant tools.

1 The semantics of the protons:transitiveOver property

Premises:
 <ppp, protons:transitiveOver, qqq>

 <xxx, ppp, yyyy>

 <yyy, qqq, zzz>

Consequent:
 <xxx, ppp, zzz>

2 Inference of protont:involvedIn about protont:Agent instances that 'hold' a
protont:Role in some protont:Happenning

Premise:
 <xxx, protont:roleHolder, yyy>

 <xxx, protont:roleIn, zzz>

 <yyy, rdf:type, protont:Agent>

Consequent:
 <yyy, protont:involvedIn, zzz>

