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Executive Summary 
 

The aim of this document is to present a way for incorporating background 
knowledge into the semi-automatic topic ontology learning process. This enables the 
machine learning algorithms to discover concepts and relations from a document 
collection which better reflect the user’s view of the collection. More importantly, it 
enables users with different background knowledge (or different interests, views, etc.) 
to construct different topic ontologies from the same document collection using the 
same machine learning algorithms. This is achieved trough the use of word weighting 
schemas which form the basis of bag-of-words text document representation most 
commonly used in machine learning. Different schemas are learned for different 
users, reflecting their background knowledge. 
 
This deliverable starts by making an overview of different approaches to learning 
word weights. It is followed by a description of the chosen approaches, the 
experiments and details about the software implementation. Detailed description of 
the requirements, availability and use of the developed software tools is given in the 
Appendix. 
 
The methods developed as part of this deliverable are integrated into the tool for semi-
automatic topic ontology construction called OntoGen which was developed within 
SEKT project (delivereable D1.7.1 Ontology generation from scratch) and other tools 
from Text Garden. 
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1 Introduction 
When using ontology-based techniques for knowledge management it is important for 
the ontology to capture the knowledge in a proper way. Very often different tasks 
require the knowledge to be encoded in ontology in different ways, depending on the 
task. For instance, the same document-database in a company may be viewed 
differently by marketing, management, and technical staff. Therefore it is crucial to 
develop techniques for building multiple ontologies from the same data where a 
specific ontology captures one of the possible views. In other words, we build 
simultaneous ontologies on the same data. 

As part of deliverable D1.7.1 [Fortuna05] we developed a system called OntoGen for 
semi-automatic construction of topic ontologies. Topic ontology consists of a set of 
topics (or concepts) and a set of relations between the topics which best describe the 
data. The OntoGen system helps the user by discovering possible concepts and 
relations between them within the data. 

As a part of deliverable D1.9.1 we improve this system so that the user can supervise 
the methods for concept discovery by providing background knowledge on the 
specific user’s view on the data used by the system. This allows the user to build an 
ontology which captures the user view on the data. 

To encode the user’s background knowledge we require from the user to group 
documents into categories. These categories do not need to describe the data in 
details, the important thing is that they show to the system the user’s view of the data 
– which documents are similar and which are different from the user’s perspective. 
The process of manually marking the documents with categories is time consuming 
but can be significantly speeded up by the use of active learning, for instance, using 
the work developed inside deliverable D1.2.1 [Novak04]. 

In this report we present how background knowledge provided in this way can be 
used for guiding the methods for concept discovery. The main focus will be on 
finding the similarity measure which captures the user’s background knowledge. This 
measure can then be used to guide the concept discovery and other text mining 
methods used in OntoGen. 

Please note that terms “category” and “topic” are not the same in this report. The 
input needed for incorporating user’s background knowledge into the similarity 
measure is given by providing groups of documents which are similar to in user’s 
view. We refer to these groups as “categories”. The term “topic” refers to concepts in 
the topic ontology. 

In Chapter 2 we review the work that has been done so far in the field of learning 
similarity measures. In Chapter 3 we present our approach to this task and provide an 
idea about its performance while in Chapter 4 we present the architecture of our 
system. In Chapters 5 and 6 we lay down the plans for future development and we 
finish with conclusions. Detailed information about the developed software 
components is available in Appendixes. 

2 Related Work 
An important part of OntoGen [Fortuna05] are methods for discovering concepts from 
a collection of documents. For the representation of documents we use the well 
established bag-of-words representation, where each document is encoded as a vector 
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of term frequencies and the similarity of a pair of documents is calculated by the 
number and the weights of the words that these two documents share. This method 
heavily relies on the weights associated with the words – the higher the weight of a 
specific word the more probable that the two documents are similar if they share this 
word. The weights of the words are commonly calculated by so called TFIDF 
weighting. We argue that this provides just one of the possible views on the data and 
propose an alternative word weighting that enables taking into account the 
background knowledge providing the user’s view on the documents. 

OntoGen discovers concepts using Latent Semantic Indexing (LSI) [Deerwester90] 
and k-means clustering [Jain99]. The LSI is a method for linear dimensionality 
reduction by learning and optimal sub-basis for approximating documents’ bag-of-
words vectors. The sub-basis vectors are treated as concepts. The k-means method 
discovers concepts by clustering the documents’ bag-of-words vectors into k clusters 
where each cluster is treated as a concept. 

Both methods heavily rely on the representation of the documents. Namely, the 
document representation provides the vectors of the documents which LSI tries to 
approximate and, the basis for clustering algorithm is the similarity of document 
which depends on the document representation. 

By incorporating background knowledge directly into document representation via 
word weighting reflecting similarity between the documents we enable our methods 
to discover concepts which resemble the view that the user has on the data.  

For the purpose of building simultaneous ontologies from the same data, we calculate 
word weights from the background knowledge. The background knowledge is 
included by documents’ category information provided by the user. 

In the rest of this chapter we first review some basic definitions of the known bag-of-
words document representation and the most commonly used heuristic approaches for 
calculating word weights. In the second part of the chapter we review the existing 
work on automatically learning similarity measures in the field of machine learning. 
The notation used throughout this report is established in Section 2.1. 

2.1 Basic definitions 

Most commonly used representation of the documents in text mining is bag-of-words 
representation. Let V={w1,…,wn} be vocabulary of words. Let TFk be the number of 
occurrences of the word wk in the document. In the bag-of-words representation a 
single document is encoded as a vector x with elements corresponding to the words 
from a vocabulary providing some word weight, eg. xk = TFk. These vectors are in 
general very sparse since the number of different words that appear in the whole 
collection is usually much larger than the number of different words that appear inside 
one specific document. 

In a similar way we can store category information for each document. Let 
C={c1,…,cm} be set of all categories. For each document we have a bag-of-categories 
vector y where i-th element yi of vector y is one if the document belongs to category ci 
and zero otherwise. Please note that storing category information in this way does not 
include any relations between categories and all categories are regarded equal. 

A labeled document collection is represented by pairs of bag-of-words vectors and by 
bag-of-categories vectors. More formally, labeled document collection is a set of pairs 

D = {(x1, y1), … , (xN, yN)}. 
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Measure usually used to compare text documents is cosine similarity and is defined to 
be the cosine of the angle between two documents’ bag-of-words vectors, 
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Performance of both bag-of-words representation and cosine similarity can be 
significantly improved by introducing word weights. Each word from vocabulary V is 
assigned a weight and elements of vectors xi are multiplied by the corresponding 
weights. Elements of vectors xi can be also extended from simple word frequency TFk 
to the output of a function providing the word statistics θi,k of the k-th word inside the 
i-th document. 

Let μk be the weight of word wk, let θi,k be statistics of the word wk inside the i-th 
document and g:ℜh→ℜ function on word statistics. The elements of weighted bag-of-
words vectors are 

xi
k= μk · g(θi,k). 

We can see that the basic, commonly used bag-of-words model is a specific case of 
that having: μk = 1.0, θi,k = [TFk], g(x) = x. Note that there is no need to treat word 
weights μk separately, as we can have the weights as a part of function g. As we will 
see in the next sections, some methods are based on finding a good function g and 
ignoring weights μk, while some other are based on finding better weights μk and 
keeping function g and word statistics from the basic bag-of-words model.  

Note that the word statistics θi,k does not only depend on the k-th word but also on the 
i-th document since in some cases information such as document length and document 
category are needed. Sometimes (eg., in meta-learning) word statistics also depend on 
categories. In that case we mark it as θi,l,k meaning the statistics of the k-th word 
inside the l-th category and inside the i-th document. 

As we already mentioned, our approach is based on the word weights being the key to 
viewing the same data from different angels. We can use the weights to store the 
background knowledge since the weights define which words are important. We will 
now focus on different ways for calculating weights which were proposed and used 
till now. Note that not all of them are able to incorporate extra knowledge about 
categories. 

2.2 Traditional approach – TFIDF 
Most of the research on word weighting schemas was traditionally done in the 
information retrieval community. The most common goal in information retrieval is to 
find the most relevant documents from the document collection for a given query. 
Many popular methods from information retrieval are based on measuring cosine 
similarity between the documents and a query and their performance can be 
significantly improved by appropriate weighting of the words.  

Most of the popular methods for this task developed in last decades do not involve 
learning. Word weights are calculated by predefined formulas from some basic 
statistics of the word frequencies inside the document and inside the whole document 
collection [Salton91]. These methods are base on intuition and experimental 
validation and not so much on the theoretical foundation of the proposed formulas.  
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2.2.1 TFIDF based weighting methods 

Most term weighting schemas [Salton91, Robertson96, Singhal96] within this family 
are a combination of the following simple statistics of the words, documents and 
collection: 

• Term Frequency (TFk) – number of times i-th word occurs inside the 
document, 

• Inverse Document Frequency (IDFk) – inverse of the number of documents 
from the collection in which i-th word occurs, 

• Inverse Category Frequency (ICFk) – inverse of the number of categories in 
which i-th word occurs, 

• Number of documents in the collection (N), 
• Number of categories in the collection (M), 
• Length of the document (DLi). 
• Average document length (ADL) 

These methods only try to define function g and relevant word statistics and do not 
affect the word weights μk. 

The most widely used is the TFIDF weighting schema [Salton91] which defines 
elements of bag-of-words vectors with the following formula: 

xi
k = TFk · log(N · IDFk). 

We can place this formula inside our framework, the word statistics θi,k and function g 
for the TFIDF weighting schema are: 

 θi,k = [TFk, N, IDFk], g([x,y,z]) = x · log(y · z). 

The intuition behind this weighting schema is that the words which occur very often 
are not so important for determining if a pair of documents is similar while a not so 
frequent words occurring in the both documents is a strong sign of similarity. The 
TFIDF weighting can be easily modified to include category information by replacing 
IDF and number of documents with ICF and number of categories. 

There are many extensions of this schema most famous being Okapi weighting 
schema [Roberston96] which we will skip here since it does not incorporate category 
information. Some of the learning methods that we will mention in next section try to 
learn functions of word statistics similar to the TFIDF or Okapi formulas. This can be 
seen as a more systematic and optimized way of choosing the function g.  

2.3 Learning approaches 
In recent years many authors tried to more systematically search for the most 
appropriate functions of word statistics and word weights by means of machine 
learning. In the next subsections we will review the major work done in this area. 
Names of the forthcoming subsections are selected according to how the authors 
referred to their proposed methods. 

2.3.1 Meta-learning 

In [Do05] authors propose a method for learning function of word statistics for the 
task of multi-class text classification with disjoint categories. The word statistics they 
use depend both on the category and on the documents. The category is needed when 
calculating weighted bag-of-words vector for a specific document even if the correct 
category is not know. 
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In the learning process they searched the function space for a function g which 
maximizes the elements of training documents’ vectors when weights are calculated 
for the correct category (provided with the training data) and minimizes the elements 
when weights are calculated for all the other categories.  

The resulting function g can be used for classification. When a new document arrives 
its vector is calculated for all possible categories. Category for which the document’s 
vector has the largest elements is chosen for prediction. 

The authors first limit function g to be linear function of the word statistics. It turns 
out that word statistics only appears inside inner product which allows them to use the 
kernel trick and to search for g in much larger space of possible functions. 

2.3.2 Inferring document similarity 

Learning a good function of word statistics is also the goal for authors in [Grangier05] 
but this time the task is information retrieval. At learning the functions g authors use 
hyperlinks between the documents instead of category information for guiding the 
search. Their hypothesis is that if two documents are connected by a hyperlink then 
they are similar. 

For word statistics and function g they choose: 

 θi,k = [TFk,  IDFk, DLk/ADL], g([x,y,z]) = MPL(x) · MPL(y) · MPL(z), 

where MPL stands for Multi-Layer Perceptron. In the learning process they optimize 
each MPL so that the documents are more similar to their direct neighbours in the 
hyperlinks graph than to the other documents. 

2.3.3 Distance learning 

The paper [Xing03] is different from the others presented in this chapter because the 
authors try to learn the optimal Euclidian distance and not the optimal cosine 
similarity. However, their ideas can be easily translated to learning optimal weights 
for cosine similarity. 

In order to find the optimal Euclidian distance the authors search over the space of 
Mahalanobis distances in ℜn which are parameterized with positive symmetric 
definite matrices A: 

d(xi, xj) = dA(xi, xj) = || xi – xj||A = sqrt[(xi – xj)TA(xi – xj)]. 

The inputs for the method are sets 

S = {(xi, xj); xi and xj are similar} 

D = {(xi, xj); xi and xj are not similar} 

and the goal of the learning process is to find the matrix A which solves the following 
optimization problem: 
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The intuition is that we want distance to be small between documents known to be 
similar and we want to keep some “margin” between the documents know for not 
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being similar. The problem can be significantly simplified by restricting matrix A to 
be diagonal. 

2.3.4 Weights learning 

A different approach was taken in [Rong05] where category information is used for 
learning word weights μk while the function g and the word statistics are taken from 
the basic bag-of-words model. The authors’ hypothesis is that two documents are 
more similar if they belong to similar categories. For this purpose they use cosine 
similarity also on the bag-of-categories vectors. the authors argue that in the same 
way as not all words are of equal importance not all categories are of the equal 
importance. For determining the similarity between documents based on categories 
they introduce category weights ηk.  

The learning process finds word weights μk and category weights ηk so that the 
similarities based on bag-of-categories vectors and similarities based on bag-of-words 
vectors match as much as possible. The authors formulate that into the following 
optimization problem: 
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The optimization problem can be rewritten in the form of standard quadratic 
programming formulation and solved using Matlab’s Optimization Toolbox. 
However, the criteria function is not convex and that can get us stuck in one of the 
local minima. 

2.4 SVM feature selection methods 

As we will see in the next chapter a different approach can also be taken for 
generating word weights based on feature selection methods. Feature selection 
methods based on Support Vector Machine (SVM) [Cristianini00] has been found to 
increase the performance of classification by discovering which words are important 
for determining the correct category of a document [Brank02]. 

The method proceeds as follow. First linear SVM classifier is trained using all the 
features. Classification of a document is done by multiplying the document’s bag-of-
words vector with the normal vector computed by SVM, 

xTw = x1w1 + x2w2 + … + xnwn, 
and if the result is above some threshold b then the document is considered positive. 
This process can also be seen as voting where each word is assigned a vote weight wi 
and when document is being classified each word from the document issues xiwi as its 
vote. All the votes are summed together to obtain the classification. A vote can be 
positive (document should belong to the category) or negative (the document should 
not belong to the category). 

A simple and naïve way of selecting the most important words for the given category 
would be to select the words with the highest vote values wi for the category. It turns 
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out that it is more stable to select the words with the highest vote xiwi averaged over 
all the positive documents. 

The votes wi could also be interpreted as word weights since they are higher for the 
words which better separate the documents according to the given categories. 

3 Description of approach 
For the purpose of building simultaneous topic ontologies on the same data we need 
methods which can learn optimal weights for words based on the provided category 
information. We have based our approach on Weights learning and SVM feature 
selection approach (see Section 2.34, 2.4), as they seemed the most appropriate for 
our task. Here is a brief description of our reasoning when selecting the two methods. 
The first criterion which we used was to choose methods which involve learning, 
because they can offer better insurance that the final results are “optimal” – optimal in 
the sense of the criteria they optimize. Also, the Meta-learning and Inferring 
document similarity approaches try to learn single optimal function g which is then 
used for calculating all the word weights. But, since we are searching for a method 
that treats each word separately we could not use them. The other methods described 
in Section 2 are appropriate for our task and we focus on the last two since the 
Weights learning was already successfully applied to cosine similarity [Rong05] and 
SVM feature selection was shown to discover important category specific words 
[Brank02]. 

In the rest of this chapter we first show how SVM feature selection can be used for 
calculating word weights. Then we give a description of the dataset we used for 
testing the methods and we finish with the results we obtained using the two methods. 

 
Figure 1 An example of a topic ontology that nicely follows the view provided by 
the topic labels originally associated with the news articles. 



D1.9.1 / Simultaneous ontologies 

12 

3.1 Word weighting with SVM 
The algorithm we developed for assigning weights using SVM feature selection 
method is the following: 

1. Calculate a classifier for each category from the document collection (one-vs-all 
method for multi-class classification). TFIDF weighting schema can be used at 
this stage. Result is a set of SVM normal vectors W = {wj ; j=1,…,m}, one for 
each category. 

2. Calculate weighting for each of the categories from its classifier weight vector. 
Weights are calculated by averaging votes xiwi across all the documents from the 
category. Only weights with positive average are kept while the negative ones are 
set to zero. This results in a separate set of word weights for each category.  By μj

k 
we denote weight for the k-th word and j-th category. 

3. Weighted bag-of-words vectors are calculated for each document. Let C(di) be a 
set of categories of a document di. Element of vector xi are calculated in the 
following way: 

k
dCj
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This approach has another strong point. Weights are not only selected so that 
similarities correspond to the categories given by the user but they also depend on the 
context. Let us illustrate this on a sample document which contains words “machine 
learning”. If the document would belong to category “learning” then the word 

 
Figure 2 An example of a topic ontology that groups the news articles based on 
countries and not on the topics or pure content of the news. 
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“learning” would have high weight and the word “machine” low weight. However, if 
the same document would belong to category “machine learning”, then most probably 
both words would be found important by SVM. 

This is not the case in Weights learning method where weight for a specific word is 
always the same and does not dependent on the context (content of the document). 

3.2 Reuters RCV1 dataset 
As a document collection for testing the above methods we chose Reuters RCV1 
[Lewis04] dataset. The reason for which we chose it is that each news article from the 
dataset has two different types of labels (categories). Each news article is assigned 
labels according to (1) the topics covered and (2) the countries involved in it. We used 
a subset of 5000 randomly chosen documents for the experiments. 

Bellow is a table with the 20 most frequent categories from the used subset of RCV1 
dataset. The statistics are for the subset used in the experiments. Topics are also 
arranged into a simple taxonomy, first two levels of it are visualized in Figure 4. 

TOPICS VIEW COUNTRIES VIEW 
CCAT  corporate/industrial  46% USA 33% 
GCAT  government/social  30% UK 11% 
MCAT  markets  24% Japan 6% 
C15  performance  19% Germany 4% 
ECAT  economics  14% France 4% 
C151  accounts/earnings  10% Australia 3% 
M14  commodity markets  10% India 3% 
C152  comment/forecasts  9% China 3% 
GPOL  domestic politics  7% EEC 3% 
M13  money markets  7% Hong Kong 2% 
C18  ownership changes  7% Russia 2% 
M11  equity markets  6% South Africa 2% 
M141  soft commodities  6% Canada 2% 
C181  mergers/acquisitions  6% Italy 2% 
C31  markets/marketing  5% Poland 2% 
E21  government finance  5% Netherlands 2% 
GDIP  international relations  5% South Korea 2% 
C17  funding/capital  5% Indonesia 2% 
GCRIM  crime/police  5% Mexico 1% 
C13  regulation/policy  5% Belgium 1% 

 

3.3 Examples of discovered concepts from OntoGen 
Both methods for calculating word weights were used on the same dataset. With each 
method two separate sets of weights were constructed, one based on topic labels and 
second based on countries labels. It is expected that OntoGen will discover concepts 
which group news articles together by (1) the topics or (2) by countries involved. 

The topic labels covered fields of business, macro economy, government, politics and 
sports and we are hoping that the discovered topic ontologies would follow this view. 
Note that majority of news articles is about business and economy. 

The country labels cover most major world countries with emphasis on the most 
economically strong ones like USA, Japan, China, European countries, Russia. For 
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this view we are hopping that the countries will be grouped based on similarities of 
their economies and on geo-political similarities since this are the areas mostly cover 
with the news articles in the dataset. 

Ontology construction in OntoGen was done with k-means clustering used as a 
method for concept discovery. Because OntoGen is a semi-automatic tool for 
ontology construction the user has to be involved during the construction. The user 
selects the number of concepts for suggestion, (parameter k for k-means algorithm), 
decides which concepts to add to the ontology, which concepts should be further 
broken into smaller concepts, etc. This makes automatic and fully objective 
comparison of different word weighting schema hard. 

For constructing ontologies that are used in the next paragraph we spent same amount 
of time and work for all word weighting schemas with the goal of obtaining as good 
topic ontology of the news articles as possible. Only suggested concepts were used 
and no concepts were generated from scratch or by manually adding/removing news 
articles. 

The results for SVM feature selection method are presented in a form of visualization 
of the discovered topic ontologies. For each view the top two levels of topic 
ontologies were constructed. For illustration of the approach we show the results 
obtained using SVM future selection method.  Figure 1 shows the result for topic 
view while Figure 2 shows the country view. In Figure 3 we provide results obtained 
when no category information and only the basic TFIDF weighting schema is used for 
word weighting. 

 
Figure 3 Topic ontology generated using TFIDF weighting schema. Results are 
more similar to results with weighting based on topic labels. However, the 
concepts are not so clear for TFIDF weighting schema as they are for learned 
weightings. 
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From the results in Figures 1 and 2 we can see that SVM feature selection method 
succeeds with discovering weights which can reflect the category information, when 
compared to Figure 3. Also, the concepts discovered with OntoGen look clearer when 
SVM feature selection is used for word weighting than the concepts discovered with 
OntoGen when TFIDF schema is used. This is expected since by providing category 
information the similarity measure is supervised to reflect human expectations. 

It is more difficult to compare Figures 1 and 3 to the original taxonomy of topics in 
Reuters dataset in Figure 4. The concepts in Figure 4 are assigned names that were 
carefully chosen by domain experts while the concepts in the other Figures are 
assigned names based on most important keywords. As feature work we plan to make 
the Figures more comparable but already we can see closer resemblance between 
Figures 1 and 4 than between Figures 3 and 4. 

Topic ontologies generated from Weight learning method are omitted here since the 
results failed to show any visual correlation with the topic or country label. Reasons 
for that still need to be investigated because the original paper [Rong05] reports very 
positive results. One possible explanation for our poor results is that different dataset 
was used and the method was applied to different task. 

4 Architecture 
The technology and methods developed as part of deliverable D1.9.1 and described in 
this report is tightly integrated into Text Garden [Grobelnik06] tools. Since the 
traditional word weighting methods are already part of the functionality we only 
extended it with the new word weighting methods. 

The computational complexity of the traditional methods is very low so until now the 
word weights could be calculated on the fly when needed. However, the new methods 

 
Figure 4 First two levels of topic taxonomy used in Reuters RCV1 (topics with 
less than 100 documents in the subset selected for testing are omited). 
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which involve learning are computationally much more complex and time consuming 
so we created an extra tool which pre-computes the weights and stores them on hard-
disk for later use. The utility is called Bag-Of-Words to Bag-Of-Words-Weights 
(Bow2Boww.exe). The files which store weighted bag-of-words vectors have the 
prefix .boww.  

A new option was also added to OntoGen which enables it to load weighted bag-of-
words vectors. The option is available under the menu “Load→Bag-of-words with 
weights”. The user is required to provide the location of standard bag-of-words file 
(.bow) and of the weighted bag-of-words file (.boww). 

Because Weights learning method relies on Matlab Optimization Toolbox 
functionality it currently only runs inside Matlab. Tools are provided which simplify 
the process of connecting Text Garden with Matlab: 

• Bag-of-words file are transformed into Matlab sparse matrices using 
Bow2Txt.exe utility. To sparse matrices are generated, one with bag-of-words 
vectors and one with bag-of-categories vectors. 

• Code that learns the weights is nicely packaged inside two Matlab functions: 

o Function load_data reads two sparse matrices from hard-drive and 
prepares them for the learning 

o Function optimize_weights performs the learning algorithm and 
outputs vector of word weights. The result can be saved to disk using 
Matlab’s save function 

• Utility Bow2Boww.exe gets bag-of-words file (.bow) and Matlab vector 
containing word weights on the input and generates weighted bag-of-words 
file (.boww) as output. 

The SVM feature selection approach is already integrated into Text Garden and can be 
accessed trough the Bow2Boww.exe utility. It uses Text Garden’s SVM 
implementation. Detailed description on the availability, system requirements and a 
user guide for the utilities developed as part of this deliverable can be found in the 
appendixes. 

5 Future development 
For the future we plan to fully integrate the Weights learning approach into Text 
Garden so that whole pipeline will be implemented in Text Garden. This will 
eliminate the dependency on Matlab. We also plan to extensively test Weights 
learning approach and try it on the same data as in the paper [Rong05]. 

Another important step for the future is to test the system on more real world data and 
to apply the word weights learning methods to some practical scenarios. SEKT Case 
studies offer great opportunity for this. For example, in the Legal case study the data 
is already partly labeled and this could be used to improve the quality of the Legal 
Ontology.  

As feature work we also plan to add automatic discovery of complex relations 
between concepts to the OntoGen system. Word weights learning methods will allow 
us to include the user’s background knowledge into this process. 
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Conclusions 
In this report we have shown that different topic ontologies can be constructed with 
OntoGen based on the same data by using category information for determining word 
weights. This allows users to incorporate their background knowledge into the 
similarity measure used for discovering concepts in the data which in turn allows 
different users to provide different view on the data and enables construction of 
simultaneous ontologies.  

On the test data used in this report we have also show that SVM feature selection 
method provides better means of incorporating category information for the concept 
discovery methods. 

We can therefore conclude that SVM feature selection method together with Active 
Learning [Novak04] (for labeling the documents with categories) provide good and 
efficient approach to construction of simultaneous ontologies from a given set of data. 
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Appendix A  – Availability and System Requirements 
All the tools presented here are available trough the website 
http://www.textmining.net/ and run in the Windows operating system. OntoGen also 
needs .NET framework 2.0 which can be freely downloaded from internet. 

Appendix B – User Guide 

B.1 Bow2Txt 
Bow2Txt is a utility which can take Text Garden bag-of-words file on the input (“-i”) 
and can save it as Lined-Documents (“-olndoc”) or generate sparse matrices which 
can be loaded in the Matlab. Two matrices are generated, the one with bag-of-words 
is stored into the file provided with parameter “-oml” and the bag-of-categories is 
stored in the file provided with parameter “-omlcat”. Statistics of the bag-of-words 
file are also stored if parameter “-ostat” is provided. When generating Matlab sparse 
matrix the bag-of-words vectors can be weighted. The type of weighting is provided 
with parameter “-w”. Note that in this stage of processing only traditional weighting 
methods are available. 

Usage: Bow2Txt.exe 
-i: Input-BagOfWords-FileName 
-olndoc: Output-LineDocuments-FileName 
-w: Weighting (none, norm, bin, tfidf) (default:’tfidf’) 
-oml: Output-Matlab-FileName 
-omlcat: Output-Matlab-Category-FileName 
-ostat: Output-Statistics-FileName 

Example: 
 Bow2Txt.exe –i:reuters.bow –oml:reutres_docs.dat  
             –omlcat:reuters_cats.dat –w:none 

In this example we take bag-of-words file reuters.bow and generate two Matlab 
sparse matrices. One with bag-of-words vectors is stored into file reuters_docs.dat 
and the one with bag-of-categories vectors is stored into file reuters_cats.dat file. No 
weighting schema is used which means the basic bag-of-words model. 

B.2 Matlab functions 

B.2.1 Load_data 
Input parameters: 

DocFNm Name of the file with bag-of-words sparse matrix 
CatFNm Name of the file with bag-of-categories sparse matrix 
min_word_fq In how many documents must word appear so it is used 
min_cat_fq In how many documents must category appear so it is used 

The last two parameters can help at reducing the learning time by cutting out less 
frequent words and categories which can be considered noise. 

Output parameters: 
X Bag-of-words matrix 
Y Bag-of-categories matrix 
Words Number of all words 
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Cats Number of all categories 
selected_word_id Vector with Ids of words with high enough frequency 
selected_cat_id Vector with Ids of categories with high enough 

frequency 

Example: 
[W C words cats selected_word_ids selected_cat_ids] =  
        load_data(topic_docs.dat', 'topic_cats.dat', 7, 10); 

The upper example loads two sparse matrices and ignores all the words with 
frequency less than 7 and categories with frequency less than 10. 

B.2.2 Optimize_weights 

Input parameters: 
max_iter Number of iterations 
W Bag-of-words matrix 
C Bag-of-categories matrix 
word_sub_size Size of sub-problems which are solved in each iteration 

Output parameters: 
Mi Calculated word weights 
Ni Calculated category weights 

Example: 
[word_wgt, cat_wgt] = optimize_weights(300, W, C, 500); 

The upper example runs 300 iteration of the optimization procedure with sub-problem 
size of 500 words. 

B.2.3 Save 

This is Matlab’s command for storing the vectors on the hard-drive. Results of 
optimize_weights function should be stored in this way so Bow2Boww utility can 
get it on the input. 

Example: 
full_word_wgt = zeros(words,1);  
full_word_wgt(selected_word_ids) = word_wgt; 
save topic_wgt.dat full_word_wgt -ascii -double 

B.3 Bow2Boww 

Bow2Boww is a utility which can take bag-of-words file on the input (“-i:”) and 
generate weighted bag-of-words file as output (“-o:”). This can be done on two ways 
(“-type”). First way (“load”) means that word weights are loaded from a file which 
was generated with Matlab (“-iwgt”). Second way (“svm”) is to apply SVM feature 
selection approach for calculating weights. Weighted bag-of-words vectors can be 
normalised (“-unitnorm”) and words with small weights (“-cutww”) or low frequency 
(“-mnwfq”) can be deleted from the vectors. 

Usage: Bow2Boww.exe 
-i: Input-BagOfWords-FileName 
-o: Output-BagOfWordWeights-FileName 
-type: Method-Type (load, svm) 
-iwgt: Input-Matlab-WordWeights-FileName 
-unitnorm: Normalize-Document-Vectors 
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-cutww: Cut-Word-Weight-Sum-Percentage 
-mnwfq: Minimal-Word-Frequency 

Examples: 
Bow2Boww.exe -i:country.bow -o:country.boww 
 -type:load -iwgt:country_wgt.dat –unitnorm:T 

Bow2Boww.exe -i:country.bow -o:country.boww -type:svm 

The first examples generates weighted bag-of-words file using weights calculated 
inside Matlab and the second example generates weighted bag-of-words file using 
SVM feature selection method. 

B.4 OntoGen 
Use of OntoGen as a system was already described in the deliverable D1.7.1. This 
deliverable provides an extension trough a possibility of including background 
knowledge while usage of the system as a whole remains the same. 
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