
D1.9.1 / Simultaneous ontologies

1

EU-IST Project IST-2003-506826 SEKT
SEKT: Semantically Enabled Knowledge Technologies

D1.9.1 Simultaneous ontologies

Blaž Fortuna , Marko Grobelnik, Dunja Mladenić
(Jožef Stefan Institute)

Abstract
In this deliverable we describe a solution for incorporating background knowledge
into the OntoGen system for semi-automatic topic ontology construction which was
developed as a part of deliverable D1.7.1 Ontology generation from scratch. This
makes it easier for different users to construct different topic ontologies on the top of
same document collection. To achieve this, a word weighting is learned based on the
user’s background knowledge and than used bz OntoGen’s machine learning and text
mining algorithms.

Keyword list: simultaneous ontologies, multi-view, word weighting schemas, learning
word weighting

WP1
Prototype/Report PU
Contractual date of delivery: 31.12.2005
Actual date of delivery: 22. 12. 2005

D1.9.1 / Simultaneous ontologies

2

 SEKT Consortium

This document is part of a research project partially funded by the IST Programme of
the Commission of the European Communities as project number IST-2003-506826.

British Telecommunications plc.
Orion 5/12, Adastral Park
Ipswich IP5 3RE
UK
Tel: +44 1473 609583, Fax: +44 1473 609832
Contact person: John Davies
E-mail: john.nj.davies@bt.com

Empolis GmbH
Europaallee 10
67657 Kaiserslautern
Germany
Tel: +49 631 303 5540
Fax: +49 631 303 5507
Contact person: Ralph Traphöner
E-mail: ralph.traphoener@empolis.com

Jozef Stefan Institute
Jamova 39
1000 Ljubljana
Slovenia
Tel: +386 1 4773 778, Fax: +386 1 4251 038
Contact person: Marko Grobelnik
E-mail: marko.grobelnik@ijs.si

University of Karlsruhe, Institute AIFB
Englerstr. 28
D-76128 Karlsruhe
Germany
Tel: +49 721 608 6592
Fax: +49 721 608 6580
Contact person: York Sure
E-mail: sure@aifb.uni-karlsruhe.de

University of Sheffield
Department of Computer Science
Regent Court, 211 Portobello St.
Sheffield S1 4DP
UK
Tel: +44 114 222 1891
Fax: +44 114 222 1810
Contact person: Hamish Cunningham
E-mail: hamish@dcs.shef.ac.uk

University of Innsbruck
Institute of Computer Science
Techikerstraße 13
6020 Innsbruck
Austria
Tel: +43 512 507 6475
Fax: +43 512 507 9872
Contact person: Jos de Bruijn
E-mail: jos.de-bruijn@deri.ie

Intelligent Software Components S.A.
Pedro de Valdivia, 10
28006
Madrid
Spain
Tel: +34 913 349 797
Fax: +49 34 913 349 799
Contact person: Richard Benjamins
E-mail: rbenjamins@isoco.com

Kea-pro GmbH
Tal
6464 Springen
Switzerland
Tel: +41 41 879 00
Fax: 41 41 879 00 13
Contact person: Tom Bösser
E-mail: tb@keapro.net

Ontoprise GmbH
Amalienbadstr. 36
76227 Karlsruhe
Germany
Tel: +49 721 50980912
Fax: +49 721 50980911
Contact person: Hans-Peter Schnurr
E-mail: schnurr@ontoprise.de

Sirma Group Corp., Ontotext Lab
135 Tsarigradsko Shose
Sofia 1784
Bulgaria
Tel: +359 2 9768 303, Fax: +359 2 9768 311
Contact person: Atanas Kiryakov
E-mail: naso@sirma.bg

Vrije Universiteit Amsterdam (VUA)
Department of Computer Sciences
De Boelelaan 1081a
1081 HV Amsterdam
The Netherlands
Tel: +31 20 444 7731, Fax: +31 84 221 4294
Contact person: Frank van Harmelen
E-mail: frank.van.harmelen@cs.vu.nl

Universitat Autonoma de Barcelona
Edifici B, Campus de la UAB
08193 Bellaterra (Cerdanyola del Vall` es)
Barcelona
Spain
Tel: +34 93 581 22 35, Fax: +34 93 581 29 88
Contact person: Pompeu Casanovas Romeu
E-mail: pompeu.casanovas@uab.es

Siemens Business Services GmbH & Co. OHG
Otto-Hahn-Ring 6
81739 Munich
Germany
Contact person: Dirk Ramhorst
Tel: +49 (89)63640225; Fax: +49 89 63640233
Email: Dirk.Ramhorst@siemens.com

D1.9.1 / Simultaneous ontologies

3

Executive Summary

The aim of this document is to present a way for incorporating background
knowledge into the semi-automatic topic ontology learning process. This enables the
machine learning algorithms to discover concepts and relations from a document
collection which better reflect the user’s view of the collection. More importantly, it
enables users with different background knowledge (or different interests, views, etc.)
to construct different topic ontologies from the same document collection using the
same machine learning algorithms. This is achieved trough the use of word weighting
schemas which form the basis of bag-of-words text document representation most
commonly used in machine learning. Different schemas are learned for different
users, reflecting their background knowledge.

This deliverable starts by making an overview of different approaches to learning
word weights. It is followed by a description of the chosen approaches, the
experiments and details about the software implementation. Detailed description of
the requirements, availability and use of the developed software tools is given in the
Appendix.

The methods developed as part of this deliverable are integrated into the tool for semi-
automatic topic ontology construction called OntoGen which was developed within
SEKT project (delivereable D1.7.1 Ontology generation from scratch) and other tools
from Text Garden.

D1.9.1 / Simultaneous ontologies

4

Contents

SEKT Consortium ...2
Executive Summary...3
Contents ..4
1 Introduction..5
2 Related Work ...5

2.1 Basic definitions...6
2.2 Traditional approach – TFIDF...7

2.2.1 TFIDF based weighting methods...8
2.3 Learning approaches ..8

2.3.1 Meta-learning...8
2.3.2 Inferring document similarity ..9
2.3.3 Distance learning ...9
2.3.4 Weights learning ..10

2.4 SVM feature selection methods ...10
3 Description of approach ..11

3.1 Word weighting with SVM..12
3.2 Reuters RCV1 dataset ..13
3.3 Examples of discovered concepts from OntoGen..13

4 Architecture..15
5 Future development ...16
Conclusions...17
Appendix A – Availability and System Requirements....................................18
Appendix B – User Guide..18

B.1 Bow2Txt ..18
B.2 Matlab functions ..18

B.2.1 Load_data...18
B.2.2 Optimize_weights ..19
B.2.3 Save..19

B.3 Bow2Boww..19
B.4 OntoGen...20

Bibliography and references ...21

D1.9.1 / Simultaneous ontologies

5

1 Introduction
When using ontology-based techniques for knowledge management it is important for
the ontology to capture the knowledge in a proper way. Very often different tasks
require the knowledge to be encoded in ontology in different ways, depending on the
task. For instance, the same document-database in a company may be viewed
differently by marketing, management, and technical staff. Therefore it is crucial to
develop techniques for building multiple ontologies from the same data where a
specific ontology captures one of the possible views. In other words, we build
simultaneous ontologies on the same data.

As part of deliverable D1.7.1 [Fortuna05] we developed a system called OntoGen for
semi-automatic construction of topic ontologies. Topic ontology consists of a set of
topics (or concepts) and a set of relations between the topics which best describe the
data. The OntoGen system helps the user by discovering possible concepts and
relations between them within the data.

As a part of deliverable D1.9.1 we improve this system so that the user can supervise
the methods for concept discovery by providing background knowledge on the
specific user’s view on the data used by the system. This allows the user to build an
ontology which captures the user view on the data.

To encode the user’s background knowledge we require from the user to group
documents into categories. These categories do not need to describe the data in
details, the important thing is that they show to the system the user’s view of the data
– which documents are similar and which are different from the user’s perspective.
The process of manually marking the documents with categories is time consuming
but can be significantly speeded up by the use of active learning, for instance, using
the work developed inside deliverable D1.2.1 [Novak04].

In this report we present how background knowledge provided in this way can be
used for guiding the methods for concept discovery. The main focus will be on
finding the similarity measure which captures the user’s background knowledge. This
measure can then be used to guide the concept discovery and other text mining
methods used in OntoGen.

Please note that terms “category” and “topic” are not the same in this report. The
input needed for incorporating user’s background knowledge into the similarity
measure is given by providing groups of documents which are similar to in user’s
view. We refer to these groups as “categories”. The term “topic” refers to concepts in
the topic ontology.

In Chapter 2 we review the work that has been done so far in the field of learning
similarity measures. In Chapter 3 we present our approach to this task and provide an
idea about its performance while in Chapter 4 we present the architecture of our
system. In Chapters 5 and 6 we lay down the plans for future development and we
finish with conclusions. Detailed information about the developed software
components is available in Appendixes.

2 Related Work
An important part of OntoGen [Fortuna05] are methods for discovering concepts from
a collection of documents. For the representation of documents we use the well
established bag-of-words representation, where each document is encoded as a vector

D1.9.1 / Simultaneous ontologies

6

of term frequencies and the similarity of a pair of documents is calculated by the
number and the weights of the words that these two documents share. This method
heavily relies on the weights associated with the words – the higher the weight of a
specific word the more probable that the two documents are similar if they share this
word. The weights of the words are commonly calculated by so called TFIDF
weighting. We argue that this provides just one of the possible views on the data and
propose an alternative word weighting that enables taking into account the
background knowledge providing the user’s view on the documents.

OntoGen discovers concepts using Latent Semantic Indexing (LSI) [Deerwester90]
and k-means clustering [Jain99]. The LSI is a method for linear dimensionality
reduction by learning and optimal sub-basis for approximating documents’ bag-of-
words vectors. The sub-basis vectors are treated as concepts. The k-means method
discovers concepts by clustering the documents’ bag-of-words vectors into k clusters
where each cluster is treated as a concept.

Both methods heavily rely on the representation of the documents. Namely, the
document representation provides the vectors of the documents which LSI tries to
approximate and, the basis for clustering algorithm is the similarity of document
which depends on the document representation.

By incorporating background knowledge directly into document representation via
word weighting reflecting similarity between the documents we enable our methods
to discover concepts which resemble the view that the user has on the data.

For the purpose of building simultaneous ontologies from the same data, we calculate
word weights from the background knowledge. The background knowledge is
included by documents’ category information provided by the user.

In the rest of this chapter we first review some basic definitions of the known bag-of-
words document representation and the most commonly used heuristic approaches for
calculating word weights. In the second part of the chapter we review the existing
work on automatically learning similarity measures in the field of machine learning.
The notation used throughout this report is established in Section 2.1.

2.1 Basic definitions

Most commonly used representation of the documents in text mining is bag-of-words
representation. Let V={w1,…,wn} be vocabulary of words. Let TFk be the number of
occurrences of the word wk in the document. In the bag-of-words representation a
single document is encoded as a vector x with elements corresponding to the words
from a vocabulary providing some word weight, eg. xk = TFk. These vectors are in
general very sparse since the number of different words that appear in the whole
collection is usually much larger than the number of different words that appear inside
one specific document.

In a similar way we can store category information for each document. Let
C={c1,…,cm} be set of all categories. For each document we have a bag-of-categories
vector y where i-th element yi of vector y is one if the document belongs to category ci
and zero otherwise. Please note that storing category information in this way does not
include any relations between categories and all categories are regarded equal.

A labeled document collection is represented by pairs of bag-of-words vectors and by
bag-of-categories vectors. More formally, labeled document collection is a set of pairs

D = {(x1, y1), … , (xN, yN)}.

D1.9.1 / Simultaneous ontologies

7

Measure usually used to compare text documents is cosine similarity and is defined to
be the cosine of the angle between two documents’ bag-of-words vectors,

∑∑

∑

==

=

⋅⋅

⋅
=

n

k

k
j

k
j

n

k

k
i

k
i

n

k

k
j

k
i

ji

xxxx

xx
xxsim

11

1),(.

Performance of both bag-of-words representation and cosine similarity can be
significantly improved by introducing word weights. Each word from vocabulary V is
assigned a weight and elements of vectors xi are multiplied by the corresponding
weights. Elements of vectors xi can be also extended from simple word frequency TFk
to the output of a function providing the word statistics θi,k of the k-th word inside the
i-th document.

Let μk be the weight of word wk, let θi,k be statistics of the word wk inside the i-th
document and g:ℜh→ℜ function on word statistics. The elements of weighted bag-of-
words vectors are

xi
k= μk · g(θi,k).

We can see that the basic, commonly used bag-of-words model is a specific case of
that having: μk = 1.0, θi,k = [TFk], g(x) = x. Note that there is no need to treat word
weights μk separately, as we can have the weights as a part of function g. As we will
see in the next sections, some methods are based on finding a good function g and
ignoring weights μk, while some other are based on finding better weights μk and
keeping function g and word statistics from the basic bag-of-words model.

Note that the word statistics θi,k does not only depend on the k-th word but also on the
i-th document since in some cases information such as document length and document
category are needed. Sometimes (eg., in meta-learning) word statistics also depend on
categories. In that case we mark it as θi,l,k meaning the statistics of the k-th word
inside the l-th category and inside the i-th document.

As we already mentioned, our approach is based on the word weights being the key to
viewing the same data from different angels. We can use the weights to store the
background knowledge since the weights define which words are important. We will
now focus on different ways for calculating weights which were proposed and used
till now. Note that not all of them are able to incorporate extra knowledge about
categories.

2.2 Traditional approach – TFIDF
Most of the research on word weighting schemas was traditionally done in the
information retrieval community. The most common goal in information retrieval is to
find the most relevant documents from the document collection for a given query.
Many popular methods from information retrieval are based on measuring cosine
similarity between the documents and a query and their performance can be
significantly improved by appropriate weighting of the words.

Most of the popular methods for this task developed in last decades do not involve
learning. Word weights are calculated by predefined formulas from some basic
statistics of the word frequencies inside the document and inside the whole document
collection [Salton91]. These methods are base on intuition and experimental
validation and not so much on the theoretical foundation of the proposed formulas.

D1.9.1 / Simultaneous ontologies

8

2.2.1 TFIDF based weighting methods

Most term weighting schemas [Salton91, Robertson96, Singhal96] within this family
are a combination of the following simple statistics of the words, documents and
collection:

• Term Frequency (TFk) – number of times i-th word occurs inside the
document,

• Inverse Document Frequency (IDFk) – inverse of the number of documents
from the collection in which i-th word occurs,

• Inverse Category Frequency (ICFk) – inverse of the number of categories in
which i-th word occurs,

• Number of documents in the collection (N),
• Number of categories in the collection (M),
• Length of the document (DLi).
• Average document length (ADL)

These methods only try to define function g and relevant word statistics and do not
affect the word weights μk.

The most widely used is the TFIDF weighting schema [Salton91] which defines
elements of bag-of-words vectors with the following formula:

xi
k = TFk · log(N · IDFk).

We can place this formula inside our framework, the word statistics θi,k and function g
for the TFIDF weighting schema are:

 θi,k = [TFk, N, IDFk], g([x,y,z]) = x · log(y · z).

The intuition behind this weighting schema is that the words which occur very often
are not so important for determining if a pair of documents is similar while a not so
frequent words occurring in the both documents is a strong sign of similarity. The
TFIDF weighting can be easily modified to include category information by replacing
IDF and number of documents with ICF and number of categories.

There are many extensions of this schema most famous being Okapi weighting
schema [Roberston96] which we will skip here since it does not incorporate category
information. Some of the learning methods that we will mention in next section try to
learn functions of word statistics similar to the TFIDF or Okapi formulas. This can be
seen as a more systematic and optimized way of choosing the function g.

2.3 Learning approaches
In recent years many authors tried to more systematically search for the most
appropriate functions of word statistics and word weights by means of machine
learning. In the next subsections we will review the major work done in this area.
Names of the forthcoming subsections are selected according to how the authors
referred to their proposed methods.

2.3.1 Meta-learning

In [Do05] authors propose a method for learning function of word statistics for the
task of multi-class text classification with disjoint categories. The word statistics they
use depend both on the category and on the documents. The category is needed when
calculating weighted bag-of-words vector for a specific document even if the correct
category is not know.

D1.9.1 / Simultaneous ontologies

9

In the learning process they searched the function space for a function g which
maximizes the elements of training documents’ vectors when weights are calculated
for the correct category (provided with the training data) and minimizes the elements
when weights are calculated for all the other categories.

The resulting function g can be used for classification. When a new document arrives
its vector is calculated for all possible categories. Category for which the document’s
vector has the largest elements is chosen for prediction.

The authors first limit function g to be linear function of the word statistics. It turns
out that word statistics only appears inside inner product which allows them to use the
kernel trick and to search for g in much larger space of possible functions.

2.3.2 Inferring document similarity

Learning a good function of word statistics is also the goal for authors in [Grangier05]
but this time the task is information retrieval. At learning the functions g authors use
hyperlinks between the documents instead of category information for guiding the
search. Their hypothesis is that if two documents are connected by a hyperlink then
they are similar.

For word statistics and function g they choose:

 θi,k = [TFk, IDFk, DLk/ADL], g([x,y,z]) = MPL(x) · MPL(y) · MPL(z),

where MPL stands for Multi-Layer Perceptron. In the learning process they optimize
each MPL so that the documents are more similar to their direct neighbours in the
hyperlinks graph than to the other documents.

2.3.3 Distance learning

The paper [Xing03] is different from the others presented in this chapter because the
authors try to learn the optimal Euclidian distance and not the optimal cosine
similarity. However, their ideas can be easily translated to learning optimal weights
for cosine similarity.

In order to find the optimal Euclidian distance the authors search over the space of
Mahalanobis distances in ℜn which are parameterized with positive symmetric
definite matrices A:

d(xi, xj) = dA(xi, xj) = || xi – xj||A = sqrt[(xi – xj)TA(xi – xj)].

The inputs for the method are sets

S = {(xi, xj); xi and xj are similar}

D = {(xi, xj); xi and xj are not similar}

and the goal of the learning process is to find the matrix A which solves the following
optimization problem:

0

1||||..

||||min

),(

2
),(

2

fA

xxts

xx

Dxx
Aji

Sxx
AjiA

ji

ji

∑
∑

∈

∈

≥−

−

The intuition is that we want distance to be small between documents known to be
similar and we want to keep some “margin” between the documents know for not

D1.9.1 / Simultaneous ontologies

10

being similar. The problem can be significantly simplified by restricting matrix A to
be diagonal.

2.3.4 Weights learning

A different approach was taken in [Rong05] where category information is used for
learning word weights μk while the function g and the word statistics are taken from
the basic bag-of-words model. The authors’ hypothesis is that two documents are
more similar if they belong to similar categories. For this purpose they use cosine
similarity also on the bag-of-categories vectors. the authors argue that in the same
way as not all words are of equal importance not all categories are of the equal
importance. For determining the similarity between documents based on categories
they introduce category weights ηk.

The learning process finds word weights μk and category weights ηk so that the
similarities based on bag-of-categories vectors and similarities based on bag-of-words
vectors match as much as possible. The authors formulate that into the following
optimization problem:

nk
mk

ts

xxyy

k

k

n

k
k

m

k
k

N

ji

n

k

k
j

k
ik

m

k

k
j

k
ik

,...,1,0
,...,1,0

1..

min

1

2

1

2

1,

2

1

2

1

2

,

=≥
=≥

≥+

⎟
⎠

⎞
⎜
⎝

⎛
−

∑∑

∑ ∑∑

==

= ==

μ
η

μη

μη
ημ

The optimization problem can be rewritten in the form of standard quadratic
programming formulation and solved using Matlab’s Optimization Toolbox.
However, the criteria function is not convex and that can get us stuck in one of the
local minima.

2.4 SVM feature selection methods

As we will see in the next chapter a different approach can also be taken for
generating word weights based on feature selection methods. Feature selection
methods based on Support Vector Machine (SVM) [Cristianini00] has been found to
increase the performance of classification by discovering which words are important
for determining the correct category of a document [Brank02].

The method proceeds as follow. First linear SVM classifier is trained using all the
features. Classification of a document is done by multiplying the document’s bag-of-
words vector with the normal vector computed by SVM,

xTw = x1w1 + x2w2 + … + xnwn,
and if the result is above some threshold b then the document is considered positive.
This process can also be seen as voting where each word is assigned a vote weight wi
and when document is being classified each word from the document issues xiwi as its
vote. All the votes are summed together to obtain the classification. A vote can be
positive (document should belong to the category) or negative (the document should
not belong to the category).

A simple and naïve way of selecting the most important words for the given category
would be to select the words with the highest vote values wi for the category. It turns

D1.9.1 / Simultaneous ontologies

11

out that it is more stable to select the words with the highest vote xiwi averaged over
all the positive documents.

The votes wi could also be interpreted as word weights since they are higher for the
words which better separate the documents according to the given categories.

3 Description of approach
For the purpose of building simultaneous topic ontologies on the same data we need
methods which can learn optimal weights for words based on the provided category
information. We have based our approach on Weights learning and SVM feature
selection approach (see Section 2.34, 2.4), as they seemed the most appropriate for
our task. Here is a brief description of our reasoning when selecting the two methods.
The first criterion which we used was to choose methods which involve learning,
because they can offer better insurance that the final results are “optimal” – optimal in
the sense of the criteria they optimize. Also, the Meta-learning and Inferring
document similarity approaches try to learn single optimal function g which is then
used for calculating all the word weights. But, since we are searching for a method
that treats each word separately we could not use them. The other methods described
in Section 2 are appropriate for our task and we focus on the last two since the
Weights learning was already successfully applied to cosine similarity [Rong05] and
SVM feature selection was shown to discover important category specific words
[Brank02].

In the rest of this chapter we first show how SVM feature selection can be used for
calculating word weights. Then we give a description of the dataset we used for
testing the methods and we finish with the results we obtained using the two methods.

Figure 1 An example of a topic ontology that nicely follows the view provided by
the topic labels originally associated with the news articles.

D1.9.1 / Simultaneous ontologies

12

3.1 Word weighting with SVM
The algorithm we developed for assigning weights using SVM feature selection
method is the following:

1. Calculate a classifier for each category from the document collection (one-vs-all
method for multi-class classification). TFIDF weighting schema can be used at
this stage. Result is a set of SVM normal vectors W = {wj ; j=1,…,m}, one for
each category.

2. Calculate weighting for each of the categories from its classifier weight vector.
Weights are calculated by averaging votes xiwi across all the documents from the
category. Only weights with positive average are kept while the negative ones are
set to zero. This results in a separate set of word weights for each category. By μj

k
we denote weight for the k-th word and j-th category.

3. Weighted bag-of-words vectors are calculated for each document. Let C(di) be a
set of categories of a document di. Element of vector xi are calculated in the
following way:

k
dCj

j
k

k
i TFx

i

⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= ∑

∈)(
μ .

This approach has another strong point. Weights are not only selected so that
similarities correspond to the categories given by the user but they also depend on the
context. Let us illustrate this on a sample document which contains words “machine
learning”. If the document would belong to category “learning” then the word

Figure 2 An example of a topic ontology that groups the news articles based on
countries and not on the topics or pure content of the news.

D1.9.1 / Simultaneous ontologies

13

“learning” would have high weight and the word “machine” low weight. However, if
the same document would belong to category “machine learning”, then most probably
both words would be found important by SVM.

This is not the case in Weights learning method where weight for a specific word is
always the same and does not dependent on the context (content of the document).

3.2 Reuters RCV1 dataset
As a document collection for testing the above methods we chose Reuters RCV1
[Lewis04] dataset. The reason for which we chose it is that each news article from the
dataset has two different types of labels (categories). Each news article is assigned
labels according to (1) the topics covered and (2) the countries involved in it. We used
a subset of 5000 randomly chosen documents for the experiments.

Bellow is a table with the 20 most frequent categories from the used subset of RCV1
dataset. The statistics are for the subset used in the experiments. Topics are also
arranged into a simple taxonomy, first two levels of it are visualized in Figure 4.

TOPICS VIEW COUNTRIES VIEW
CCAT corporate/industrial 46% USA 33%
GCAT government/social 30% UK 11%
MCAT markets 24% Japan 6%
C15 performance 19% Germany 4%
ECAT economics 14% France 4%
C151 accounts/earnings 10% Australia 3%
M14 commodity markets 10% India 3%
C152 comment/forecasts 9% China 3%
GPOL domestic politics 7% EEC 3%
M13 money markets 7% Hong Kong 2%
C18 ownership changes 7% Russia 2%
M11 equity markets 6% South Africa 2%
M141 soft commodities 6% Canada 2%
C181 mergers/acquisitions 6% Italy 2%
C31 markets/marketing 5% Poland 2%
E21 government finance 5% Netherlands 2%
GDIP international relations 5% South Korea 2%
C17 funding/capital 5% Indonesia 2%
GCRIM crime/police 5% Mexico 1%
C13 regulation/policy 5% Belgium 1%

3.3 Examples of discovered concepts from OntoGen
Both methods for calculating word weights were used on the same dataset. With each
method two separate sets of weights were constructed, one based on topic labels and
second based on countries labels. It is expected that OntoGen will discover concepts
which group news articles together by (1) the topics or (2) by countries involved.

The topic labels covered fields of business, macro economy, government, politics and
sports and we are hoping that the discovered topic ontologies would follow this view.
Note that majority of news articles is about business and economy.

The country labels cover most major world countries with emphasis on the most
economically strong ones like USA, Japan, China, European countries, Russia. For

D1.9.1 / Simultaneous ontologies

14

this view we are hopping that the countries will be grouped based on similarities of
their economies and on geo-political similarities since this are the areas mostly cover
with the news articles in the dataset.

Ontology construction in OntoGen was done with k-means clustering used as a
method for concept discovery. Because OntoGen is a semi-automatic tool for
ontology construction the user has to be involved during the construction. The user
selects the number of concepts for suggestion, (parameter k for k-means algorithm),
decides which concepts to add to the ontology, which concepts should be further
broken into smaller concepts, etc. This makes automatic and fully objective
comparison of different word weighting schema hard.

For constructing ontologies that are used in the next paragraph we spent same amount
of time and work for all word weighting schemas with the goal of obtaining as good
topic ontology of the news articles as possible. Only suggested concepts were used
and no concepts were generated from scratch or by manually adding/removing news
articles.

The results for SVM feature selection method are presented in a form of visualization
of the discovered topic ontologies. For each view the top two levels of topic
ontologies were constructed. For illustration of the approach we show the results
obtained using SVM future selection method. Figure 1 shows the result for topic
view while Figure 2 shows the country view. In Figure 3 we provide results obtained
when no category information and only the basic TFIDF weighting schema is used for
word weighting.

Figure 3 Topic ontology generated using TFIDF weighting schema. Results are
more similar to results with weighting based on topic labels. However, the
concepts are not so clear for TFIDF weighting schema as they are for learned
weightings.

D1.9.1 / Simultaneous ontologies

15

From the results in Figures 1 and 2 we can see that SVM feature selection method
succeeds with discovering weights which can reflect the category information, when
compared to Figure 3. Also, the concepts discovered with OntoGen look clearer when
SVM feature selection is used for word weighting than the concepts discovered with
OntoGen when TFIDF schema is used. This is expected since by providing category
information the similarity measure is supervised to reflect human expectations.

It is more difficult to compare Figures 1 and 3 to the original taxonomy of topics in
Reuters dataset in Figure 4. The concepts in Figure 4 are assigned names that were
carefully chosen by domain experts while the concepts in the other Figures are
assigned names based on most important keywords. As feature work we plan to make
the Figures more comparable but already we can see closer resemblance between
Figures 1 and 4 than between Figures 3 and 4.

Topic ontologies generated from Weight learning method are omitted here since the
results failed to show any visual correlation with the topic or country label. Reasons
for that still need to be investigated because the original paper [Rong05] reports very
positive results. One possible explanation for our poor results is that different dataset
was used and the method was applied to different task.

4 Architecture
The technology and methods developed as part of deliverable D1.9.1 and described in
this report is tightly integrated into Text Garden [Grobelnik06] tools. Since the
traditional word weighting methods are already part of the functionality we only
extended it with the new word weighting methods.

The computational complexity of the traditional methods is very low so until now the
word weights could be calculated on the fly when needed. However, the new methods

Figure 4 First two levels of topic taxonomy used in Reuters RCV1 (topics with
less than 100 documents in the subset selected for testing are omited).

D1.9.1 / Simultaneous ontologies

16

which involve learning are computationally much more complex and time consuming
so we created an extra tool which pre-computes the weights and stores them on hard-
disk for later use. The utility is called Bag-Of-Words to Bag-Of-Words-Weights
(Bow2Boww.exe). The files which store weighted bag-of-words vectors have the
prefix .boww.

A new option was also added to OntoGen which enables it to load weighted bag-of-
words vectors. The option is available under the menu “Load→Bag-of-words with
weights”. The user is required to provide the location of standard bag-of-words file
(.bow) and of the weighted bag-of-words file (.boww).

Because Weights learning method relies on Matlab Optimization Toolbox
functionality it currently only runs inside Matlab. Tools are provided which simplify
the process of connecting Text Garden with Matlab:

• Bag-of-words file are transformed into Matlab sparse matrices using
Bow2Txt.exe utility. To sparse matrices are generated, one with bag-of-words
vectors and one with bag-of-categories vectors.

• Code that learns the weights is nicely packaged inside two Matlab functions:

o Function load_data reads two sparse matrices from hard-drive and
prepares them for the learning

o Function optimize_weights performs the learning algorithm and
outputs vector of word weights. The result can be saved to disk using
Matlab’s save function

• Utility Bow2Boww.exe gets bag-of-words file (.bow) and Matlab vector
containing word weights on the input and generates weighted bag-of-words
file (.boww) as output.

The SVM feature selection approach is already integrated into Text Garden and can be
accessed trough the Bow2Boww.exe utility. It uses Text Garden’s SVM
implementation. Detailed description on the availability, system requirements and a
user guide for the utilities developed as part of this deliverable can be found in the
appendixes.

5 Future development
For the future we plan to fully integrate the Weights learning approach into Text
Garden so that whole pipeline will be implemented in Text Garden. This will
eliminate the dependency on Matlab. We also plan to extensively test Weights
learning approach and try it on the same data as in the paper [Rong05].

Another important step for the future is to test the system on more real world data and
to apply the word weights learning methods to some practical scenarios. SEKT Case
studies offer great opportunity for this. For example, in the Legal case study the data
is already partly labeled and this could be used to improve the quality of the Legal
Ontology.

As feature work we also plan to add automatic discovery of complex relations
between concepts to the OntoGen system. Word weights learning methods will allow
us to include the user’s background knowledge into this process.

D1.9.1 / Simultaneous ontologies

17

Conclusions
In this report we have shown that different topic ontologies can be constructed with
OntoGen based on the same data by using category information for determining word
weights. This allows users to incorporate their background knowledge into the
similarity measure used for discovering concepts in the data which in turn allows
different users to provide different view on the data and enables construction of
simultaneous ontologies.

On the test data used in this report we have also show that SVM feature selection
method provides better means of incorporating category information for the concept
discovery methods.

We can therefore conclude that SVM feature selection method together with Active
Learning [Novak04] (for labeling the documents with categories) provide good and
efficient approach to construction of simultaneous ontologies from a given set of data.

D1.9.1 / Simultaneous ontologies

18

Appendix A – Availability and System Requirements
All the tools presented here are available trough the website
http://www.textmining.net/ and run in the Windows operating system. OntoGen also
needs .NET framework 2.0 which can be freely downloaded from internet.

Appendix B – User Guide

B.1 Bow2Txt
Bow2Txt is a utility which can take Text Garden bag-of-words file on the input (“-i”)
and can save it as Lined-Documents (“-olndoc”) or generate sparse matrices which
can be loaded in the Matlab. Two matrices are generated, the one with bag-of-words
is stored into the file provided with parameter “-oml” and the bag-of-categories is
stored in the file provided with parameter “-omlcat”. Statistics of the bag-of-words
file are also stored if parameter “-ostat” is provided. When generating Matlab sparse
matrix the bag-of-words vectors can be weighted. The type of weighting is provided
with parameter “-w”. Note that in this stage of processing only traditional weighting
methods are available.

Usage: Bow2Txt.exe
-i: Input-BagOfWords-FileName
-olndoc: Output-LineDocuments-FileName
-w: Weighting (none, norm, bin, tfidf) (default:’tfidf’)
-oml: Output-Matlab-FileName
-omlcat: Output-Matlab-Category-FileName
-ostat: Output-Statistics-FileName

Example:
 Bow2Txt.exe –i:reuters.bow –oml:reutres_docs.dat
 –omlcat:reuters_cats.dat –w:none

In this example we take bag-of-words file reuters.bow and generate two Matlab
sparse matrices. One with bag-of-words vectors is stored into file reuters_docs.dat
and the one with bag-of-categories vectors is stored into file reuters_cats.dat file. No
weighting schema is used which means the basic bag-of-words model.

B.2 Matlab functions

B.2.1 Load_data
Input parameters:

DocFNm Name of the file with bag-of-words sparse matrix
CatFNm Name of the file with bag-of-categories sparse matrix
min_word_fq In how many documents must word appear so it is used
min_cat_fq In how many documents must category appear so it is used

The last two parameters can help at reducing the learning time by cutting out less
frequent words and categories which can be considered noise.

Output parameters:
X Bag-of-words matrix
Y Bag-of-categories matrix
Words Number of all words

D1.9.1 / Simultaneous ontologies

19

Cats Number of all categories
selected_word_id Vector with Ids of words with high enough frequency
selected_cat_id Vector with Ids of categories with high enough

frequency

Example:
[W C words cats selected_word_ids selected_cat_ids] =
 load_data(topic_docs.dat', 'topic_cats.dat', 7, 10);

The upper example loads two sparse matrices and ignores all the words with
frequency less than 7 and categories with frequency less than 10.

B.2.2 Optimize_weights

Input parameters:
max_iter Number of iterations
W Bag-of-words matrix
C Bag-of-categories matrix
word_sub_size Size of sub-problems which are solved in each iteration

Output parameters:
Mi Calculated word weights
Ni Calculated category weights

Example:
[word_wgt, cat_wgt] = optimize_weights(300, W, C, 500);

The upper example runs 300 iteration of the optimization procedure with sub-problem
size of 500 words.

B.2.3 Save

This is Matlab’s command for storing the vectors on the hard-drive. Results of
optimize_weights function should be stored in this way so Bow2Boww utility can
get it on the input.

Example:
full_word_wgt = zeros(words,1);
full_word_wgt(selected_word_ids) = word_wgt;
save topic_wgt.dat full_word_wgt -ascii -double

B.3 Bow2Boww

Bow2Boww is a utility which can take bag-of-words file on the input (“-i:”) and
generate weighted bag-of-words file as output (“-o:”). This can be done on two ways
(“-type”). First way (“load”) means that word weights are loaded from a file which
was generated with Matlab (“-iwgt”). Second way (“svm”) is to apply SVM feature
selection approach for calculating weights. Weighted bag-of-words vectors can be
normalised (“-unitnorm”) and words with small weights (“-cutww”) or low frequency
(“-mnwfq”) can be deleted from the vectors.

Usage: Bow2Boww.exe
-i: Input-BagOfWords-FileName
-o: Output-BagOfWordWeights-FileName
-type: Method-Type (load, svm)
-iwgt: Input-Matlab-WordWeights-FileName
-unitnorm: Normalize-Document-Vectors

D1.9.1 / Simultaneous ontologies

20

-cutww: Cut-Word-Weight-Sum-Percentage
-mnwfq: Minimal-Word-Frequency

Examples:
Bow2Boww.exe -i:country.bow -o:country.boww
 -type:load -iwgt:country_wgt.dat –unitnorm:T

Bow2Boww.exe -i:country.bow -o:country.boww -type:svm

The first examples generates weighted bag-of-words file using weights calculated
inside Matlab and the second example generates weighted bag-of-words file using
SVM feature selection method.

B.4 OntoGen
Use of OntoGen as a system was already described in the deliverable D1.7.1. This
deliverable provides an extension trough a possibility of including background
knowledge while usage of the system as a whole remains the same.

D1.9.1 / Simultaneous ontologies

21

Bibliography and references

[Brank02] Brank, J., Grobelnik, M., Milic-Frayling, N., Mladenic, D.:
Feature selection using support vector machines. Proceedings of
the Third International Conference on Data Mining Methods and
Databases for Engineering, Finance, and Other Fields, Bologna,
Italy, 25--27 September 2002.

[Cristianini00] N. Cristianini and J. Shawe-Taylor, An introduction to support
vector machines, Cambridge University Press, 2000

[Deerwester90] S. Deerwester, S. Dumais, G. Furnas, T. Landuer and R.
Harshman, Indexing by Latent Semantic Analysis, Journal of the
American Society of Information Science, vol. 41, no. 6, 391-
407, 1990

[Do05] Chuong B. Do, Andrew Y. Ng. Meta-learning for text
classification. Advances in NIPS, vol. 17, 2005.

[Fortuna05] Fortuna, B., Mladenic, D., Grobelnik, M., (2005a). Semi-
automatic construction of topic ontology. Proceedings of the
ECML/PKDD Workshop on Knowledge Discovery for
Ontologies.

[Grangier05] D. Grangier and S. Bengio. Inferring Document Similarity from
Hyperlinks. Presented at ACM Conference on Information and
Knowledge Management, CIKM, 2005

[Grobelnik06] M. Grobelnik, D. Mladenic. Text Mining Recipes, Springer-
Verlag, Berlin; Heidelberg; New York (to appear), 2006,
(accompanying software available at http://www.textmining.net).

[Jain99] Jain, Murty and Flynn: Data Clustering: A Review, ACM Comp.
Surv., 1999

[Lewis04] Lewis, D. D.; Yang, Y.; Rose, T.; and Li, F. RCV1: A New
Benchmark Collection for Text Categorization Research. Journal
of Machine Learning Research, 5:361-397, 2004.

[Novak04] Novak, B., (2004a). Use of unlabeled data in supervised machine
learning. Proceedings of the 7th International multi-conference
Information Society IS-2004, Ljubljana: Institut "Jožef Stefan",
2004.

[Robertson96] Robertson, S. E., S. Walker, M. M. Hancock-Beaulieu, M.
Gatford and A. Payne. Okapi at TREC-4. The Fourth Text
REtrieval Conference (TREC-4). 1996

[Rong05] Rong Jin, Joyce Y. Chai and Luo Si. Learn to weight terms in
information retrieval using category information. Proceedings of
the 22nd international conference on Machine learning, pages
353-360, 2005

[Salton91] G.Salton. Developments in Automatic Text Retrieval. Science,
Vol 253, pages 974-979. 1991

D1.9.1 / Simultaneous ontologies

22

[Singhal96] Singhal, A., C. Buckley and M. Mitra. Pivoted Document Length
Normalization. Proceedings of the 19th ACM SIGIR Conference
on Research and Development in Information Retrieval. 1996

[Xing03] E. Xing and A. Ng and M. Jordan and S. Russell. Distance metric
learning, with application to clustering with side-information.
Advances in NIPS, vol. 15, 2003

