
D2.1.2 / Ontology-Based Information Extraction (OBIE) v.2 

 

1 

EU-IST Project IST-2003-506826 SEKT 

SEKT: Semantically Enabled Knowledge Technologies 

 

 

 
 

 

 

D2.1.2 Ontology-Based Information 

Extraction (OBIE) v.2 

 

 

Ting Wang (University of Sheffield) 

Kalina Bontcheva (University of Sheffield) 

Yaoyong Li (University of Sheffield) 

Hamish Cunningham (University of Sheffield) 

 

 

Abstract 
EU-IST Integrated Project (IP) IST-2003-506826 SEKT 

Deliverable D2.1.2 (WP2) 

This deliverable presents an SVM-based approach for hierarchical relation extraction 

and experiments on ACE2004 training data. Automatic extraction of semantic 

relationships between instances in an ontology is necessary in order to attach richer 

semantic metadata to documents. We propose an SVM approach to hierarchical 

relation extraction, using features derived automatically from a number of GATE-

based open-source language processing tools. We introduced several new, semantic 

features and investigated in detail the impact of various factors on performance: the 

features, the classification hierarchy and the amount of training data. Experimental 

results show a trade-off among these factors is important for the relation extraction 

task and as the relation hierarchy gets deeper, more semantic features are needed in 

order to improve the performance of the ontological relation extraction task. 

Keyword list: Ontology-based Information Extraction, Machine Learning, Adaptive 

IE, Relation Extraction, 

 

WP2 Metadata Generation 

Prototype      PU 

Contractual date of delivery: 31/12/05  Actual date of delivery: 18/01/06



D2.1.2 / Ontology-Based Information Extraction (OBIE) v.2 

 

2 

CHANGES 
 

 
Version Date Author Changes 

0.1 04.12.05 Ting 

Wang 

Creation. 

0.2 12.12.05 Ting 

Wang 

Appendix added 

0.3 12.12.05 Kalina 

Bontcheva 

Minor edits 

final 17.12.06 Kalina 

Bontcheva 

Finalised according to reviewer comments 



D2.1.2 / Ontology-Based Information Extraction (OBIE) v.2 

 

3 

SEKT Consortium 
 

This document is part of a research project partially funded by the IST Programme of 

the Commission of the European Communities as project number IST-2003-506826. 
 
British Telecommunications plc. 

Orion 5/12, Adastral Park 

Ipswich IP5 3RE 

UK 

Tel: +44 1473 609583, Fax: +44 1473 609832 
Contact person: John Davies 

E-mail: john.nj.davies@bt.com 

 

Empolis GmbH 

Europaallee 10 

67657 Kaiserslautern 
Germany 

Tel: +49 631 303 5540 

Fax: +49 631 303 5507 

Contact person: Ralph Traphöner 

E-mail: ralph.traphoener@empolis.com 

 

Jozef Stefan Institute 

Jamova 39 

1000 Ljubljana 

Slovenia 

Tel: +386 1 4773 778, Fax: +386 1 4251 038 

Contact person: Marko Grobelnik 

E-mail: marko.grobelnik@ijs.si 

 

University of Karlsruhe, Institute AIFB 

Englerstr. 28 

D-76128 Karlsruhe 
Germany 

Tel: +49 721 608 6592 

Fax: +49 721 608 6580 
Contact person: York Sure 

E-mail: sure@aifb.uni-karlsruhe.de 

 

University of Sheffield 

Department of Computer Science 

Regent Court, 211 Portobello St. 

Sheffield S1 4DP 

UK 

Tel: +44 114 222 1891 
Fax: +44 114 222 1810 

Contact person: Hamish Cunningham 

E-mail: hamish@dcs.shef.ac.uk 

 

University of Innsbruck 

Institute of Computer Science 
Techikerstraße 13 

6020 Innsbruck 

Austria 

Tel: +43 512 507 6475 

Fax: +43 512 507 9872 

Contact person: Jos de Bruijn 

E-mail: jos.de-bruijn@deri.ie 

 

Intelligent Software Components S.A. 

Pedro de Valdivia, 10 

28006 

Madrid 
Spain 

Tel: +34 913 349 797 

Fax: +49 34 913 349 799 
Contact person: Richard Benjamins 

E-mail: rbenjamins@isoco.com 

Kea-pro GmbH 

Tal 

6464 Springen 

Switzerland 

Tel: +41 41 879 00 
Fax: 41 41 879 00 13 

Contact person: Tom Bösser 

E-mail: tb@keapro.net 

 

Ontoprise GmbH 

Amalienbadstr. 36 
76227 Karlsruhe 

Germany 

Tel: +49 721 50980912 

Fax: +49 721 50980911 

Contact person: Hans-Peter Schnurr 

E-mail: schnurr@ontoprise.de 

 

Sirma Group Corp., Ontotext Lab 

135 Tsarigradsko Shose 

Sofia 1784 

Bulgaria 

Tel: +359 2 9768 303, Fax: +359 2 9768 311 

Contact person: Atanas Kiryakov 

E-mail: naso@sirma.bg 

 

Vrije Universiteit Amsterdam (VUA) 

Department of Computer Sciences 
De Boelelaan 1081a 

1081 HV Amsterdam 

The Netherlands 
Tel: +31 20 444 7731, Fax: +31 84 221 4294 

Contact person: Frank van Harmelen 

E-mail: frank.van.harmelen@cs.vu.nl 

 

Universitat Autonoma de Barcelona 

Edifici B, Campus de la UAB 

08193 Bellaterra (Cerdanyola del Vall` es) 

Barcelona 

Spain 
Tel: +34 93 581 22 35, Fax: +34 93 581 29 88 

Contact person: Pompeu Casanovas Romeu 

E-mail: pompeu.casanovas@uab.es 
 

Siemens Business Services GmbH & Co. OHG 

Otto-Hahn-Ring 6 
81739 Munich 

Germany 

Contact person: Dirk Ramhorst 

Tel: +49 (89)63640225; Fax: +49 89 63640233 

Email: Dirk.Ramhorst@siemens.com 



D2.1.2 / Ontology-Based Information Extraction (OBIE) v.2 

 

 4 

Executive Summary 
 

This deliverable presents an SVM-based algorithm for hierarchical relation extraction 

and experiments on ACE2004 training data.  

 

Automatic extraction of semantic relationships between instances in an ontology is 

necessary in order to attach richer semantic metadata to documents than is currently 

possible. In contrast to previous evaluations, ACE2004 introduced a type hierarchy 

for both entities (typically mapped to instances in an ontology) and relations (typically 

mapped to properties of instances), i.e., it is an important step towards ontology-based 

IE. We evaluate our method on the ACE2004 data, as it is a good starting point for 

experiments on learning ontological relations.  

 

Previous work shows that using NLP (Natural Language Processing) tools to derive 

ML (Machine Learning) features can benefit the IE (Information Extraction) results. 

Various features which have been used for relation extractions include word, entity 

type, mention level, overlap, chunks, syntactic parse trees, and dependency, relations. 

Based on this previous work, by using a number of GATE-based open-source 

language processing tools, we developed a set of features for semantic relation 

extraction, among which several new, semantic features are introduced, including 

Part-Of-Speech, entity class, entity role, semantic representation of sentence and 

WordNet synonym set.  

 

Experiments show that the performance improves as more linguistic input is provided 

to the learning algorithm, in the form of features. As the relation hierarchy gets 

deeper, more semantic features are needed in order to improve performance.  

 

We also investigate in detail the impact of various factors on the performance: the 

features, the classification hierarchy and the amount of training data, which shows 

that a trade-off among these factors is important for the relation extraction task. In a 

nutshell, some kinds of linguistic information can be obtained more reliably than 

other (e.g., part-of-speech versus semantic representation of sentences), so the latter 

should only be used in cases where it leads to serious improvement in performance. 

Similarly, training data is expensive to obtain, so if the property (or relation) 

hierarchy is more shallow, less training data would be required. 

 



D2.1.2 / Ontology-Based Information Extraction (OBIE) v.2 

 

 5 

Contents 
 

SEKT Consortium.........................................................................................................3 

Executive Summary ......................................................................................................4 

Contents .........................................................................................................................5 

1  Introduction...............................................................................................................6 

2   The ACE Entity and Relation Hierarchies ..............................................................7 
2.1 The ACE2004 Entity Hierarchy .............................................................................7 

2.2 The ACE2004 Relation Hierarchy .........................................................................8 

3   Using SVM for Relation Extraction.........................................................................9 

4   Features for Relation Extraction ...........................................................................10 
4.1   Using GATE for Feature Extraction...................................................................11 

4.2 Word Features .....................................................................................................11 

4.3 POS Tag Features ................................................................................................12 

4.4 Entity Features.....................................................................................................14 

4.5 Mention Features .................................................................................................14 

4.6 Overlap Features..................................................................................................15 

4.7 Chunk Features....................................................................................................15 

4.8 Dependency Features...........................................................................................16 

4.9 Parse Tree Features..............................................................................................17 

4.10 Semantic Features from SQLF ...........................................................................18 

4.11 Semantic Features from WordNet ......................................................................19 

5  Experiment Results .................................................................................................21 
5.1 Experimental Settings ..........................................................................................21 

5.2 Experiments on Features......................................................................................22 

5.3 Experiments on Hierarchical Classification..........................................................23 

5.4 Learning Curves ..................................................................................................26 

6  Conclusions ..............................................................................................................28 

Bibliography and references .......................................................................................29 

Appendix I    Guide to Runing Relation Extraction on ACE 2004 Traning Data.....31 
1) How to Install........................................................................................................31 

2) How to Run...........................................................................................................31 

3) More about the data Directory ............................................................................32 

4) How to Convert Original ACE2004 Traning Data to GATE Documents................33 

5) How to Processe the GATE Documents with NLP Tools.......................................33 

6) How to Convert the GATE Documents(ACE2004 Traning Data) into Training 

and Testing Data Files for LIBSVM Classifier ..........................................................34 

7) How to Use LIBSVM to Classify Examples ..........................................................35 



D2.1.2 / Ontology-Based Information Extraction (OBIE) v.2 

 

 6 

 

1  Introduction 
 

Information Extraction (IE) [1] is a process which takes unseen texts as input and 

produces fixed-format, unambiguous data as output. It involves processing text to 

identify selected information, such as particular named entity or relations among them 

from text documents. Named entities include people, organizations, locations and so 

on, while relations typically include physical relations (located, near, part-whole, 

etc.), personal or social relations (business, family, etc.), and membership (employ-

staff, member-of-group, etc.). 

 

Until recently, research has focused primarily on use of IE for populating ontologies 

with concept instances (e.g., [2] [3]). However, in addition to this, many ontology-

based applications require methods for the automatic discovery of properties (called 

relations in the corpus used here) of instances. Semantic relations provide richer 

metadata connecting documents to ontologies and enable more sophisticated semantic 

search and knowledge access.  

 

It is in this context that work on relation extraction becomes relevant. However, one 

of the main barriers to applying this work in ontology-based applications comes from 

the difficulty of adapting the algorithms to new domains. In order to overcome this 

problem, recent research has advocated the use of Machine Learning (ML) techniques 

for IE.  

 

A number of ML approaches have been used for relation extraction, e.g. Hidden 

Markov Models (HMM) [4], Conditional Random Fields (CRF) [5] and Maximum 

Entropy Models [6]. Among those, Support Vector Machines (SVM) [7] have been 

particularly successful and tended to outperform other methods.  

 

Zelenko et al. [10] proposed extracting relations by computing kernel functions 

between shallow parse trees [8]. Kernels have been defined over shallow parse 

representations of text and have been used in conjunction with SVM learning 

algorithms for extracting person-affiliation and organization-location relations. 

Culotta et al. [9] extended this work to estimate kernel functions between augmented 

dependency trees.  

 

Zhou et al. [10] further introduced diverse lexical, syntactic and semantic knowledge 

in feature-based relation extraction using SVM. The feature system covers word, 

entity type, overlap, base phrase chunking, dependency tree and parse tree, together 

with relation-specific semantic resources, such as country name list, personal relative 

trigger word list. Their results show that the feature-based approach outperforms tree 

kernel-based approaches, achieving 55.5% F-measure 1  in relation detection and 

classification on the ACE2003 training data. This is in fact a state-of-the-art 

performance on this task, as it is a lot harder than other information extraction tasks, 

e.g., recognising names of people. 

 

Motivated by this work, we apply a diverse set of Natural Language Processing (NLP) 

                                                
1 F-measure is a standard performance metrics used for evaluating Information Extraction systems against each 

other. It is a combination of two other frequently reported measures – precision and recall. For further 

information, see [20]. 



D2.1.2 / Ontology-Based Information Extraction (OBIE) v.2 

 

 7 

tools to derive features for relation extraction. In particular, several new, semantic 

features are introduced, including Part-Of-Speech, entity class, entity role, semantic 

representation of sentences and synonymous words. 

 

In the rest of the deliverable, we first describe the ACE2004 entity and relation type 

hierarchy from an ontological perspective (Section 2). Then we give a brief 

introduction to SVMs used as the classifier for relation extraction (Section 3) and 

introduce GATE, which provides a set of NLP tools for deriving an extensive set of 

features (Section 4). Section 5 presents and discusses a series of experiments that 

investigate the impact of of various factors on performance. Finally, we summarise 

the work and discuss some future directions. 

 

2   The ACE Entity and Relation Hierarchies 
 

Relation extraction from text aims to detect and classify semantic relations between 

entities according to a predefined entity and relation hierarchy or an ontology. The 

Automatic Content Extraction (ACE) programme [11] defines this task as Relation 

Detection and Characterization (RDC). RDC uses the results of named entity 

recognition, which detects and classifies entities according to a predefined entity type 

system. 

 

In contrast to previous evaluations, ACE2004 introduced a type and subtype hierarchy 

for both entities and relations, i.e., it is an important step towards ontology-based IE. 

We evaluate our method on the ACE2004 data, as it is a good starting point for 

experiments on learning ontological relations.  

 

2.1 The ACE2004 Entity Hierarchy  
 

Entities are categorized in a two level hierarchy, consisting of 7 types and 44 subtypes 

as shown in Table 1 [12].  

Table 1. ACE2004 entity types and subtypes. 

Type Subtype 

Person (PER) (none) 

Organization (ORG) Government, Commercial, Educational, Non-profit, Other 

Facility (FAC) Plant, Building, Subarea_Building, Bounded Area, Conduit, Path, Barrier, 
Other 

Location (LOC) Address, Boundary, Celestial, Water_Body, Land_Region_natural, 
Region_Local, Region_Subnational, Region_National, Region_International, 

Other 

Geo-Political 
 Entities (GPE) 

Continent, Nation, State/Province, County/District, City/Town, Other 

Vehicle (WEH) Air, Land, Water, Subarea_Vehicle, Other 

Weapon (WEA) Blunt, Exploding, Sharp, Chemical, Biological, Shooting, Projectile, 
Nuclear, Other 

 

Each entity has been assigned a class which describes the kind of reference the entity 

makes to something in the world. The class can be one of four values [12]:  

• Negatively Quantified (NEG):  the entity refers to the empty set of the type of 



D2.1.2 / Ontology-Based Information Extraction (OBIE) v.2 

 

 8 

entity mentioned, i.e., indicates that no such entity exists, e.g., [No one] can 

guarantee the success. 

• Specific Referential (SPC): the entity being referred to is a particular, unique 

object (or set of objects), e.g. [Mike’s friend] appreciated what he has done. 

• Generic Referential (GEN): the entity being referred to is not a particular, 

unique object (or set of objects), e.g., [Friends] are lost by calling often... 

• Under-specified Referential (USP): indicates non-generic non-specific 

reference, for example: I don’t know [how many people] came. 

 

The occurrence of each entity in the dataset is called an entity mention, which can be 

one of the following [12]: 

• Names (NAM): indicates that the entity mention is a proper noun and nickname, 

such as: [Chancellor Gordon Brown] has announced the new plan. 

• Quantified Nominal Constructions (NOM): the entity mention is a noun 

quantified with a determiner, a quantifier, or a possessive, e.g.: John stands on 

[the top of the mountain]. 

• Pronouns (PRO): the entity mention is a pronoun with the exception of wh-

question words and the specifier ‘that’, e.g., he, I, they. 

• Pre-modifier (PRE): mentions, which occur in a modifying position before 

another word(s), e.g. Best is one of the greatest [British] football players. 

 

In addition, geo-political entities are regarded as composite entities comprising of 

population, government, physical location, and nation (or province, state, county, city, 

etc.). Consequently, each GPE mention in the text has a mention role which indicates 

which of these four aspects is being referred to in the given context:  Person (PER), 

Organization (ORG), Location (LOC), and GPE.  

 

2.2 The ACE2004 Relation Hierarchy  
 

In an ontology, the concepts are not only organised in a taxonomy representing IS-A 

relations, but also linked together by semantic relations such as Part-Whole, 

Subsidiary, LocatedIn, etc. ACE2004 defines a hierarchy of relations with 7 top types 

and 22 sub-types, shown in Table 2 [13]: 

Table 2. ACE2004 relation types and subtypes. 

Type Subtype 

Physical (PHYS) Located, Near*, Part-Whole 

Personal/Social (PER-SOC) Business*, Family*, Other* 

Employment/Membership/ Subsidiary 
(EMP-ORG) 

Employ-Exec, Employ-Staff, Employ-Undetermined, 
Member-of-Group, Subsidiary, Partner*, Other* 

Agent-Artifact (ART) User/Owner, Inventor/Manufacturer, Other 

PER/ORG Affiliation (OTHER-AFF) Ethnic, Ideology, Other 

GPE Affiliation (GPE-AFF) Citizen/Resident, Based-In, Other 

Discourse (DISC) (none) 

This relation type and subtype hierarchy can also be depicted as a three levels tree 

(see Fig 1). 



D2.1.2 / Ontology-Based Information Extraction (OBIE) v.2 

 

 9 

 

Fig. 1. The hierarchy of the ACE2004 relation types and subtypes 

 

There are 6 symmetric relations (marked with a star in the table 2) and the remaining 

ones are asymmetric relations2. Below are some examples: 

Table 3. Examples of ACE2004 relations. 

Examples Realtions -- Type.Subtype(arg1, arg2) 

the president of US EMP-ORG.Employ-exec(president, US) 

some Missouri voters GPE-AFF.Citizen/Resident(voters, missouri) 

part of Louisiana PHYS. Part-Whole(part, Louisiana) 

John’s superiors PER-SOC.Business(John,  superiors) 

Fox comes from a rich family. PER-SOC.Family(Fox, family) 

Jean’s computer has crashed. ART.User-Owner(Jean, computer) 

 

In the experiments reported next, we use the ACE2004 corpus to evaluate ontological 

relation extraction. The ACE corpus consists of the following types of input data: text 

from newswire; broadcast news; and newspapers. The texts are unstructured and 

encompass a wide variety of domains, such as sport, politics, religion, popular culture, 

etc. 

 

3   Using SVM for Relation Extraction 
 

SVM is one of the most successful ML methods for IE, which has achieved the state-

of-the-art performance on many classification and IE tasks. As SVM were originally 

designed for binary classification, much work has been done to extend it for multi-

class classification, which can be divided into two types [14]: (i) constructing and 

combining several binary classifiers; (ii) directly considering all data in one 

optimization formulation.  

 

This work uses the LIBSVM implementation of an SVM classifier for multi-class 

classification [14]. For a k-class classification task, this method constructs k (k -1)/2 

classifiers where each one is trained on data from two classes. LIBSVM uses the 

“Max Wins” voting strategy to predict the class [14]: apply every classifier to predict 

x; if one classifier says x is in the ith class, then the vote for the ith class is 

incremented by one; in the end x is classified in the class with the highest number of 

                                                
2 Symmetry of relation is important when determining which entity is the subject and which is the object of the 

relation. 

ACE2004 Relation 

PHYS PER-SOC EMP-ORG DISC … 

Government … Building … Blunt … 

Relation 

Subtype 

Type 



D2.1.2 / Ontology-Based Information Extraction (OBIE) v.2 

 

 10 

votes. 

 

We built SVM models for detecting the relations, predicting the type and subtype of 

relations between every pair of entity mentions within the same sentence. As defined 

in the ACE evaluation, we only model explicit relations rather than implicit ones3. For 

example, the sentence  

Texas has many cars. (1) 

explicitly expresses a ART.User/Owner relation between the two entity mentions 

Texas and many cars. The relation extraction system needs to determine the relation 

and its type and subtype based on the context information within this sentence. The 

procedure used to do that is described in the following section. However, end-users 

and readers not interested in the technical details can skip this section and continue 

with Section 5. 

 

4   Features for Relation Extraction 
 

Using NLP tools to derive ML features has been shown to benefit IE results. Features 

which have been used for relation extraction include word, entity type, mention level, 

overlap, chunks, syntactic parse trees, and dependency relations [4] [6] [8] [10].  

 

Based on this previous work, we developed a set of features for semantic relation 

extraction, many of which are adopted from [10]. Further, we introduce some new 

features such as Part-Of-Speech (POS) tags, entity subtype and class features, entity 

mention role feature, and several general semantic features. Zhou et al. [10] have 

designed some relation-specific semantic features. For example, some  important 

trigger word lists have been collected from WordNet [15] in order to differentiate the 

six personal social relation subtypes. However, these lists are too specific to the 

dataset to be applicable for general purpose relation extraction. Therefore in our 

method, we introduce instead a set of more general semantic features produced by a 

semantic analyser and WordNet.  

 

WordNet [15] is a widely used linguistic resource which is designed according to 

psycholinguistic theories of human lexical memory. English nouns, verbs, adjectives 

and adverbs are organized into synonym sets (called synsets), each representing one 

underlying lexical concept. In this work, WordNet is used to derive several semantic 

features based on the synset and hypernym information. 

 

NP (Noun Phrase) and VP (Verb Phrase) Chunkers are NLP modules which identify 

the noun and verb phrases in each sentence.  

 

BuChart (which has been renamed to SUPPLE) is a bottom-up parser that constructs 

syntax trees and logical forms for English sentences [16]. One of its significant 

characteristics is that it can produce a semantic representation of sentences – called 

simplified quasi-logical form (SQLF). Previously, one of the limitations in applying 

general semantic information in IE is the relative lack of robustness of semantic 

analysers. However, BuChart is a general purpose parser that can still produce partial 

                                                
3  Explicit relations have surface linguistic forms that signal them, e.g., possessive, appositions, prepositional 

phrases. Implicit relations are relations that can be inferred from the text, but are not clearly signalled, e.g., a text 

mentioning “Prime minister Tony Blair” and “Britain”  implicitly conveys a relation that Tony Blair has a job as 

prime minister of Britain. For further details see [10].  



D2.1.2 / Ontology-Based Information Extraction (OBIE) v.2 

 

 11 

syntactic and semantic results for fragments even when the full sentential parses 

cannot be determined. Therefore, it is particularly suitable for deriving semantic 

features for ML-based relation extraction , because real-world texts frequently contain 

sentences that are difficult to parse in full. 

 

4.1   Using GATE for Feature Extraction  
General Architecture for Text Engineering (GATE) [17] is an infrastructure for 

developing and deploying software components that process human language. It 

provides a set of NLP tools including a tokeniser, gazetteer, POS tagger, chunker, 

parsers, etc. For the relation extraction task, we make use of a number of GATE 

components as follows: 

 

• English Tokeniser 

• Sentence Splitter 

• POS Tagger 

• NP Chunker 

• VP Chunker 

• BuChart Parser 

• MiniPar Parser 

• WordNet 

 

4.2 Word Features  
 

This set consists of 14 features including the word list of the two entity mentions and 

their heads, the two words before the first mention, the two after the second mention, 

and the word list between them.  In the following, we use M1 and M2 denote the first 

and second entity mention involved in the relation, H1 and H2 denote the heads of the 

entity mentions. The word level features are defined as: 

 

• WM1: word list of M1  

• HM 1: the head word of M1  

• BM1F: the first word before M1  

• BM1L: the second word before M1  

• WM2: word list in M2  

• HM2: head word of M2  

• AM2F: the first word after M2  

• AM2L: the second word after M2  

• HM12: combination of HM1 and HM2  

• WBNULL: if there is no word in between  

• WBFL: the only word in between when only one word in between  

• WBF: first word in between when at least two words in between  

• WBL: last word in between when at least two words in between  

• WBO: other words in between except first and last words when at least three 

words in between  

 

For the example sentence (1), it contains two entity mentions as: 

[Texas] has [many cars]. 

 

So the  word features the two mentions are: 



D2.1.2 / Ontology-Based Information Extraction (OBIE) v.2 

 

 12 

Table 4.  The word features for the example sentence. 

Feature Value 

WM1 Texas 

HM1 Texas 

BM1F NULL 

BM1L NULL 

WM2 many cars 

HM2 cars 

AM2F . 

AM2L NULL 

WBNULL False 

WBFL has 

WBF NULL 

WBL NULL 

WBO NULL 

 

 

4.3 POS Tag Features  

 

Because the word features are often too sparse, we also introduce POS tag features.  

 

Similar to the word features, this set of features includes the POS tag list of the two 

entity mentions and their heads, the two POS tags before the first mention, the two 

after the second mention, and the tag list in between. The POS tag level features are 

defined as: 

 

• HM1POS: POS tag(list) of the head word(list) of M1  

• BM1FPOS: POS tag of the first word before M1  

• BM1LPOS: POS tag of the second word before M1  

• HM2POS: POS tag(list) of the head word(list) of M2 

• AM2FPOS: POS tag of the first word after M2  

• AM2LPOS: POS tag of the second word after M2  

• POS12: combination of POS tags of HM1 and HM2  

• POSBFL: POS tag of the only word in between when only one word in 

between  

• POSBF: POS tag of the first word in between when at least two words in 

between  

• POSBL: POS tag of the last word in between when at least two words in 

between  

• POSBO: POS tags of other words in between except first and last words when 

at least three words in between  

 

 

For example, sentence (1) has been tagged as: Texas/NNP has/VBZ many/JJ 

cars/NNS, where NNP denotes proper name, JJ – adjectives, NNS – plural nouns, etc. 

The values of the corresponding features are shown in Table 5 below: 

Table 5.  The POS tag features for the example sentence. 



D2.1.2 / Ontology-Based Information Extraction (OBIE) v.2 

 

 13 

Feature Value 

M1POS NNP 

HM1POS NNP 

BM1FPOS NULL 

BM1LPOS NULL 

M2POS JJ NNS 

HM2POS NNS 

AM2FPOS . 

AM2LPOS NULL 

POS12 False 

POSBFL has 

POSBF NULL 

POSBL NULL 

POSBO NULL 

 

 



D2.1.2 / Ontology-Based Information Extraction (OBIE) v.2 

 

 14 

4.4 Entity Features  
 

As already discussed, ACE2004 divides entities into seven types, as shown in Table 1. 

For each pair of mentions, the combination of their entity types is taken as the entity 

type feature. For the example sentence above, there are two entity mentions: Texas 

categorized as GPE (Geo-Political Entities), and many cars which is WEH (Vehicle). 

 

In addition, the entity hierarchy is used, because subtypes carry more accurate 

semantic information for the entity mentions. Therefore, the combination of the entity 

subtypes of the two entity mentions is provided as the entity subtype feature. The 

subtypes of the two example mentions are State-or-Province and Land. 

 

Finally, each entity has also been annotated with a class which describes the kind of 

reference for the entity. So the entity class is also used in this paper to predicate 

semantic relations. The classes for the above two mentions are SPC (Specific 

Referential) and USP (Under-Specified Referential). 

 

The definitions of these features are listed as follows: 

• ET12: combination of the mention entity types of both mentions  

• EST12: combination of the mention entity subtypes of both mentions 

• EC12: combination of the mention entity classes of both mentions 

 

The values of these features are: 

 Table 6.  The entity features for the example sentence. 

Feature Value 

ET12 GPE + WEH 

EST12 State-or-Province + Land 

EC12 SPC + USP 

 

 

4.5 Mention Features 
 

This set of features includes the mention type and role information of both mentions.  

For the example sentence, the mention types for the two mentions in sentence (1) are 

NAM (Name) and NOM (Nominal), while the mention role for Texas is GPE and there 

is no role information for the second because only a GPE can take role information. 

The definitions are: 

• MT12: combination of the mention types of both mentions 

• MR12: combination of the mention roles of both mentions 

• MM12: combination of the mention metonymies of both mentions 

 

The entity features for the example sentence are: 

Table 7.  The mention features for the example sentence. 

Feature Value 

MT12 NAM + NOM 

MR12 GPE + NULL 

MM12 NULL +NULL 



D2.1.2 / Ontology-Based Information Extraction (OBIE) v.2 

 

 15 

 

 

4.6 Overlap Features 

 

The relative position of the two entity mentions can also be helpful for indicating the 

relationship between them. For these features, we have considered: the number of 

words separating them, the number of other entity mentions in between, whether one 

mention contains the other. As the feature indicating whether one mention contains 

the other is too general, it has been combined with the entity type and subtype of the 

two mentions to form more discriminating features.  The definitions are: 

 

• NUMMB: number of other mentions in between  

• NUMWB: number of words in between  

• CTN12: flag indicating whether M2 is included in M1.  

• CTN21: flag indicating whether M1is included in M2. 

• ET12  CTN12: combination of ET12 and CTN12 

• ET12 + CTN21: combination of ET12 and CTN21 

• EST12 + CTN12: combination of EST12 and CTN12 

• EST12 + CTN21: combination of EST12 and CTN21 

 

For the example sentence, these values are: 
 
Table 8.  The overlap features for the example sentence. 

Feature Value 

NUMMB 0 

NUMWB 1 

M1CNTM2 false 

M2CNTM1 false 

ET12M1CNTM2 GPE + WEH + false 

ET12M2CNTM1 GPE + WEH + false 

EST12M1CNTM2 State-or-Province + Land + false 

EST12M2CNTM1 State-or-Province + Land + false 

 

4.7 Chunk Features 
 

GATE integrates two chunk parsers: Noun Phrase (NP) and Verb Phrase (VP) 

Chunker that segment sentences into noun and verb group chunks. For instance, the 

example sentence (1) is chunked as: [Texas] {has} [many cars], in which, Texas and 

many cars are NPs, while has is the VP between them whose voice and type are 

respectively active and FVG (abbreviation for Finite Verb Group, also referred to 

verb phrase by some other NLP components).  

 

The following information has been used as chunk features: whether the two entity 

mentions are included in the same NP chunk or VP chunk, the type and voice 

information of the verb group chunk in between if there is any.  

 

The definition of the chunk features are listed as: 

• SAMENP: whether M1 and M2 included in the same Noun Phrase 

• SAMEVP: whether M1 and M2 included in the same Verb Phrase  

• VPB: type + voice of the verb group chunk in between 



D2.1.2 / Ontology-Based Information Extraction (OBIE) v.2 

 

 16 

 

The values of these features for the example sentence are: 

 Table 9.  The chunk features for the example sentence. 

Feature Value 

SAMENP false 

SAMEVP false 

VPB FVG + active 

 

 

4.8 Dependency Features 
 

In contrast to Kambhatla [6] and  Zhou et al. [10], who derive the dependency tree 

from the syntactic parse tree, we apply MiniPar to directly build the dependency tree. 

MiniPar is a shallow parser which can determine the dependency relationships 

between the words of a sentence [18]. Fig 2 shows the dependency tree for the 

example sentence. 

 
Fig. 2. The dependency tree for the example sentence. 

 

From the resulting dependency relationships between words, the dependency features 

are formed, including: combination of the head words and their dependent words for 

the two entity mentions involved; the combination of the dependency relation type 

and the dependent word of the heads of the two mentions; the combination of the 

entity type and the dependent word for each entity mention’s head; the name of the 

dependency relationship between the heads of the two mentions if there is any; the  

word on which  both the heads of the two mentions depend on if there is any; and the 

path of dependency relationship labels connecting the heads of the two mentions.  

 

The detailed definitions of these dependency features are: 

• ET1DW1: combination of the entity type and the dependent word for M1  

• H1DW1: combination of the head word and the dependent word for M1  

• ET2DW2: combination of the entity type and the dependent word for M2  

• H2DW2: combination of the head word and the dependent word for M2  

• DT1DW1: combination of the dependency relation type and the dependent word of 

the head word of M1  

• DT2DW2: combination of the dependency relation type and the dependent word of 

the head word of M2  

• DT12: the name of the dependency relationship between the heads of the M1 and M2 

• DT21: the name of the dependency relationship between the heads of the M2 and M1 

• SAMEDW: if the heads of the two mentions depend on same word  

• DW12: the  word on which  both the heads of the two mentions depend on  

• DRP: path of dependency relationship labels connecting the heads of two mentions  

 

For the example sentence, its dependency features are: 

Texas          has           many             cars. 

s obj 

det 



D2.1.2 / Ontology-Based Information Extraction (OBIE) v.2 

 

 17 

Table 10.  The dependency features for the example sentence. 

Feature Value 

ET1DW1 GPE + has 

H1DW1 Texas + has 

DT1DW1 s + has 

ET2DW2 VEH + has 

H2DW2 cars + has 

DT2DW2 obj + has 

DT12 NULL 

DT21 NULL 

SAMEDW TRUE 

DW12 has 

DRP <s>obj 

note: < and > denote the direction of dependency. 

 

4.9 Parse Tree Features 
 

The features on syntactic level are extracted from the parse tree. As we mentioned 

above, we use BuChart to generate the parse tree and the semantic representation of 

each sentence. Unlike many full parsers which would fail if a full sentential parse 

cannot be found, BuChart can still produce the partial parsing trees and corresponding 

semantic representations for the fragments. 

 

The following lists the parse tree in the bracket form for the example sentence: 
(s(np(bnp(bnp_core(bnp_head(ne_np(tagged_location_np(list_np"Texas"))))))) 

  (fvp(vp(vpcore(fvpcore(nonmodal_vpcore(nonmo-dal_vpcore1(vpcore1(av(v"has"))))))) 

         (np(bnp(bnp_core(premods(premod(jj"many"))) 

                         (bnp_head(n"cars"))))))))  

 

Before giving the features, we first introduce a term named corresponding node 

which is defined as: for a word sequence in the sentence parsed, say W=wiwi + 1…wj, if 

node N in the parse tree satisfied all of the following conditions: 

1) N totally covers W; 

2) if N has father M, M’s coverage is strictly bigger than W; 

3) there is no such descendant of N who can totally cover W but its 

coverage is strictly smaller than the coverage of N. 

We called N the corresponding node for the word sequence W. 

 

We believe using such a corresponding node for phrase when designing features can 

achieve a balance between the over-specific and over-general. For examples, the 

corresponding node for cars is bnp_head (head of noun phrase), while the corresponding 

node for many cars is np (noun phrase), and the one for Texas has many cars is s 

(sentence). 

 

Consequently, from the product of the parser, we extract the following features:  the 

labels of the corresponding nodes and their fathers for each entity mentions involved; 

the labels of the corresponding node covering both entity mentions; the label of the 

corresponding node covering the heads of both entity mentions; the label of the path 

connecting the corresponding nodes of both mentions in the parse tree; and that 

connecting the heads of both mentions. 



D2.1.2 / Ontology-Based Information Extraction (OBIE) v.2 

 

 18 

 

Here is the definition of these features: 

• M1FPT: the labels of the corresponding node for M1  

• M1LPT: the labels of the node who is the father of the corresponding node for M1  

• M2FPT: the labels of the corresponding node for M2  

• M2LPT: the labels of the node who is the father of the corresponding node for M2  

• PTPM12: the labels of the path connecting the corresponding nodes of M1 and M2 in 

the parse tree  

• PTM12: the label of the corresponding node covering both M1 and M2 

• PTH12: the label of the corresponding node covering both H1 and H2 

• PTPH12: the labels of the path connecting the corresponding nodes of H1 and H2 in 

the parse tree 

 

Table 11.  The parse tree features for the example sentence. 

Feature Value 

M1FPT np 

M1LPT s 

M2FPT np 

M2LPT vp 

PTPM12 <np<s>fvp>vp>np 

PTM12 s 

PTH12 s 

PTPH12 <np<s>fvp>vp>np> 

bnp>bnp_core>bnp_head 

 

 

4.10 Semantic Features from SQLF 

 

Using relation- or domain-independent semantic features potentially makes the 

approach easier to adapt to new domains. BuChart provides semantic analysis to 

produce SQLF for each phrasal constituent. The logical form is composed of unary 

predicates that denote entities and events (e.g., chase(e1), run(e2)) and binary 

predicates for properties (e.g., lsubj(e1,e2) 4). Constants (e.g., e1, e2) are used to 

represent entity and event identifiers (see [16] for further details).  

 

The (somewhat simplified) semantic analysis of the example sentence in SQLF is: 

location(e2), name(e2,'Texas'), have(e1), time(e1,present), aspect(e1,simple), 

voice(e1,active), lobj(e1,e3), car(e3), number(e3,plural), adj(e3,many), lsubj(e1,e2)  

From the SQLFs, a set of semantic features is generated, one of which is the path of 

predicate labels connecting the heads of both mentions in the semantic SQLFs. This 

path may be too specific to be effective and cause data sparseness problem, so we also  

take some important predicate labels as separate features, such as the first, second, last 

and penultimate predicates labels in that path.  

 

So these semantic features from SQLF are defined as: 

                                                
4 Lsubj stands for logical subject and lobj – for logical object. 



D2.1.2 / Ontology-Based Information Extraction (OBIE) v.2 

 

 19 

• PRDP: path of predicates labels connecting the head of M1 and M2 in the semantic 

QLF 

• FPRDP: the first predicate in PRDP 

• SPRDP: the second predicate in PRDP 

• LPRDP: the last predicate in PRDP 

• SLPRDP: the second last predicate in PRDP 

• PRDPFL: the only predicate in between when only one predicate in between  

 

The values of Semantic Features from SQLF for the example sentence are in the 

following table: 

 

 Table 12.  The semantic features from SQLF for the example sentence. 

Feature Value 

PRDP lsubj + lobj 

FPRDP lsubj 

SPRDP lobj 

LPRDP lobj 

SLPRDP lsubj 

PRDPFL NULL 

 

 

4.11 Semantic Features from WordNet 
 

To exploit more relation-independent semantic features, we use WordNet together 

with a simple semantic tagging method to find the sense information for the words in 

each sentence. Tagging words with their corresponding WordNet synsets (i.e., word 

sense disambiguation - WSD) is a difficult task, which usually can not achieve 

accuracy as high as other NLP tasks such as POS tagging. However, WordNet’s 

design ensures that synsets are ordered by importance, so a simple and yet efficient 

heuristic can be used instead of a WSD module, without major accuracy penalty5. The 

heuristic is to take the first synset from WordNet, which matches the POS tag of the 

given word. Each synset has been assigned an id (consisting of the POS tag and its 

offset in the WordNet files) which is used in the features. 

 

Similar to the word and POS tag features, the features from WordNet (called 

WordNet synset features) include the synset-id list of the two entity mentions and 

their heads, the two synset-ids before the first mention, the two after the second 

mention, and the synset-id list in between. With considerations of the data sparseness 

problem, we also developed a set of more abstract features by using the hypernym 

information of each synset (called WordNet hypernym features). The hypernym 

features parallel the synset ones by replacing each synset-id with the id of its 

hypernym synset.  

 

The definition of the semantic features from WordNet are categorised into two set: 

one is Synset set, the other is Hypernym set. Here list the: 

                                                
5 The first-sense heuristic achieves precision and recall around 60%, whereas the best WSD methods – around 

70% (see Figure 1 in [19]).  



D2.1.2 / Ontology-Based Information Extraction (OBIE) v.2 

 

 20 

Synset set: 

• M1SYNSET: Synset (List) of word(list) of M1  

• HM1SYNSET: Synset (List) of head word(list) of M1  

• BM1FSYNSET: Synset  of first word before M1  

• BM1LSYNSET: Synset  of second word before M1  

• M2SYNSET: Synset (List) of word(list) of M2  

• HM2SYNSET: Synset (List) of head word(list) of M2 

• AM2FSYNSET: Synset  of first word after M2  

• AM2LSYNSET: Synset  of second word after M2  

• SYNSET12: combination of SYNSETs of the H1 and H2  

• SYNSETBFL: Synset  of the only word in between when only one word in between  

• SYNSETBF: Synset  of first word in between when at least two words in between  

• SYNSETBL: Synset  of last word in between when at least two words in between  

• SYNSETBO: Synset s of other words in between except first and last words when at 

least three words in between  

 

Hypernym set: 

• M1SYNPARENT: Direct Hypernym Synset (List) of word(list) of M1  

• HM1SYNPARENT:  Direct Hypernym Synset (List) of head word(list) of M1  

• BM1F SYNPARENT: Direct Hypernym Synset  of first word before M1  

• BM1L SYNPARENT: Direct Hypernym Synset  of second word before M1  

• M2SYNPARENT: Direct Hypernym Synset (List) of word(list) of M2  

• HM2SYNPARENT: Direct Hypernym Synset (List) of head word(list) of M2 

• AM2FSYNPARENT: Direct Hypernym Synset  of first word after M2  

• AM2LSYNPARENT: Direct Hypernym Synset  of second word after M2  

• SYNPARENT12: combination of Direct Hypernym SYNPARENT s of the HM1 and 

HM2  

• SYNPARENTBFL: Direct Hypernym Synset  of the only word in between when only 

one word in between  

• SYNPARENTBF: Direct Hypernym Synset  of first word in between when at least 

two words in between  

• SYNPARENTBL: Direct Hypernym Synset  of last word in between when at least 

two words in between  

• SYNPARENTBO: Direct Hypernym Synset s of other words in between except first 

and last words when at least three words in between  

 

Table 13 list the values of these features for the example sentence. 

 Table 13.  The semantic features from WordNet for the example sentence. 

Feature Value Feature Value 
M1SYNSET noun_8574816 M1SYNPARENT noun_8126624 

HM1SYNSET noun_8574816 HM1SYNPARENT noun_8126624 

BM1FSYNSET NULL BM1FSYNPARENT NULL 

BM1LSYNSET NULL BM1LSYNPARENT NULL 

M2SYNSET adjective_1500322  

noun_2853224 

M2SYNPARENT NULL +  

noun_3649150 

HM2SYNSET noun_2853224 HM2SYNPARENT noun_3649150 

AM2FSYNSET NULL AM2FSYNPARENT NULL 

AM2LSYNSET NULL AM2LSYNPARENT NULL 

SYNSET12 noun_8574816+ 

noun_2853224 

SYNPARENT12 noun_8126624 + 

noun_3649150 

SYNSETBFL verb_2139918 SYNPARENTBFL NULL 



D2.1.2 / Ontology-Based Information Extraction (OBIE) v.2 

 

 21 

SYNSETBF NULL SYNPARENTBF NULL 

SYNSETBL NULL SYNPARENTBL NULL 

SYNSETBO NULL SYNPARENTBO NULL 

5  Experimental Results  
 

We evaluate our method, especially the contribution of the different features, on the 

ACE2004 training data. As mentioned above in Section 3, only explicit relations 

between pairs of entity mentions within the same sentence are considered. We not 

only evaluate the performance of the system as a whole, but furthermore, we also 

investigate in detail several factors which have impact on the performance, such as the 

features set and the relation classification hierarchy. 

 

5.1 Experimental Settings 

 

The ACE2004 training data consists of 451 annotated files (157,953 words) from 

broadcast, newswire, English translations of Arabic and Chinese Treebank, and Fisher 

Telephone Speech collection. Among these files, there are 5,914 relation instances 

annotated which satisfied the experiment set up described above. The data has been 

divided into two sets: the training set consists of 361 files, 4,744 relation instances; 

the testing set consists of 90 files which contains 1,170 instances. The distribution of 

the instances is listed in Table 14. 

Table 14.  The distributions of the relation instances in ACE 2004 training data. 

Number Type Subtype 
Total Train Test 

 1,688 1,331 357 

Located 1,029 809 220 

Near 141 106 35 

PHYS 
 
 
 

Part-Whole 518 416 102 
 444 366 78 

Business 197 163 34 

Family 178 143 35 

PER-SOC 
 
 
 

Other 69 60 9 
 2,084 1,675 409 

Employ-Exec 630 502 128 

Employ-Staff 694 562 132 
Employ-

Undetermined 
129 94 35 

Member-of-Group 225 185 40 

Subsidiary 300 238 62 

Partner 16 13 3 

EMP-ORG 
 
 
 
 
 
 
 

Other 90 81 9 
 293 233 60 

User/Owner 273 222 51 
Inventor/Manufactu

rer 
13 8 5 

ART 
 
 
 

Other 7 3 4 
 183 143 40 

Ethnic 53 43 10 

Ideology 55 42 13 

OTHER-AFF 
 
 
 

Other 75 58 17 
 788 650 138 

Citizen/Resident 368 289 79 

Based-In 333 284 49 

GPE-AFF 
 
 
 

Other 87 77 10 
DISC  434 346 88 



D2.1.2 / Ontology-Based Information Extraction (OBIE) v.2 

 

 22 

Total  5,914 4,744 1,170 

 

Following previous work, in order to focus on the performance of the relation 

extraction only, we suppose that all named entities have been recognised without 

mistakes and only  evaluate the performance of relation extraction on “true” named 

entity mentions with correct co-reference chaining between them (i.e. as annotated by 

the human annotators). 

 

Among the 23 relation subtypes (including DISC which has no subtype), there are 6 

symmetric ones. So to model the relation extraction task as multi-class classification, 

we use two labels to denote each non-symmetric relation and only one label for each 

symmetric one. Also we assign a label to the class of no-relation, which indicates that 

there is no relation between the two entity mentions. Consequently, in our 

experiments, relation extraction is modelled as a 41-class classification task, where 

each pair of entity mentions is assigned one of these 41 relation classes, based on the 

features discussed in Section 4. In the following experiments, we use LIBSVM as the 

SVM classifier with a linear kernel function and one-against-one method for multi-

class classification which has been described in Section 3.  

 

From Table 1 we can see that the different relation subtypes and types are distributed 

very unevenly, so we only measure the micro-average of Precision, Recall and F1, 

because in such cases macro-average does not reflect the performance reliably.  

 

5.2 Experiments on Features  
 

The first experiments investigate the impact of different features on the performance 

by adding them incrementally. The results are presented in Table 15. 

Table 15. The result on different feature sets. 

Features Precision Recall F1 

Word 55.19 25.47 34.85 
+POS Tag 59.61 28.63 38.68 
+Entity 61.32 45.38 52.16 
+Mention 62.96 46.92 53.77 
+Overlap 63.00 49.91 55.70 
+Chunk 62.66 50.34 55.83 
+Dependency 63.55 50.51 56.29 
+Parse Tree 63.77 50.26 56.21 
+SQLF 64.15 50.77 56.68 
+WordNet Synset 67.11 51.79 58.47 

 

It can be seen from the table, the performance improves as more features are 

introduced, until the F1 measure reaches 58.47% which is comparable to the reported 

best results (55.5%) of [10] on the ACE2003 training data.  

 

From the new features introduced in this work, the POS tag features and the general 

semantic features all contribute to the improvement. The improvement of the general 

semantic features, including semantic features from SQLF and WordNet Synset, is 

rather significant -- 2.26 % (from 56.21% to 58.47%), while the influence brought by 

some syntactic features such as the chunk, dependency and parse tree features is only 

0.51% (from 55.70% to 56.21%)  in total. Therefore, the contribution of the semantic 



D2.1.2 / Ontology-Based Information Extraction (OBIE) v.2 

 

 23 

features shows that general semantic information is beneficial for relation extraction 

and should receive further attention. 

 

We also tried replacing the synset features with the hypernym features, which led to 

67.54% in Precision, 50.85% in Recall and 58.02% in F1. It shows that using the 

hypernym instead of the synset can increase precision but harms recall, which leads to 

a slight fall in F1. Consequently in the following experiments, we only consider the 

synset features.  
 

The entity features lead to the best improvement in performance. Actually here we use 

only 3 features, among which entity subtype and class are newly introduced. Further 

investigation shows that the two new features are in fact very effective: among the 

overall F1 improvement (13.48%), the entity type feature contributes 9.29% and the 

two new features contribute further 4.19%. This result shows that the more accurate 

information of the entity mentions we have, the better performance can be achieved in 

relation extraction. 

 

From Table 15, we can also see that the impact of the deep features is not as 

significant as the shallow ones. Zhou et al. [10] show that chunking features are very 

useful while the dependency tree and parse tree features do not contribute much. Our 

results even show that features from word, POS tag, entity, mention and overlap can 

achieve 55.70% F1, while the deeper features (including chunk, dependency tree, 

parse tree and SQLF) only give around 1% improvement over simpler processing. As 

the number of features impacts directly the required size of training data and training 

and application efficiency (more features need more annotated data for training the 

model and need more computation resources), there is an interesting trade-off in 

feature selection for relation extraction. 

 

5.3 Experiments on Hierarchical Classification 

 

As already discussed, ACE2004 defined both an entity and relation hierarchy, which 

provides a data resource for evaluating our method for ontology-based IE.  The 

significant contribution of entity subtype and class features demonstrated above 

shows that the entity hierarchy information is important for relation extraction. As 

shown in Fig. 1 the relation hierarchy has three levels, so we ran experiments to 

evaluate our method with these different classification levels: subtype classification -- 

23 relations at leaf level, type classification -- 7 relations at middle level, relation 

detection -- predicating if there is relation between two entity mentions, which can be 

treated as a binary classification task. The experiments on the three different 

classification levels have been done separately. In each experiment, the classifier is 

trained and tested on the corresponding relation labels (i.e., 23, 7, or 1 relations). 

Table 16 shows the overall results using the complete feature set listed in Table 5: 

Table 16. The result on different classification levels. 

Levels Precision Recall F1 
Subtype classification 67.11 51.79 58.47 
Type classification 67.07 61.11 63.95 
Relation detection 70.28 69.80 70.04 

 

The results show that performance on relation detection level is the highest while that 

on subtype classification is the lowest. The Precision, Recall and F1 all show the same 



D2.1.2 / Ontology-Based Information Extraction (OBIE) v.2 

 

 24 

trend, revealing that it is more difficult to classify on deeper levels of the hierarchy 

because there are less examples per class and also the classes are getting more similar 

as the classification level gets deeper. This has been supported by the more detailed 

results for the relations type EMP-ORG and its subtypes, as shown in Table 17. The 

performance for the type EMP-ORG when classifying on the type level is the best 

among all 7 relation types: 75.19% Precision, 72.62% Recall and 73.88% F1. 

However, the performance on the 7 subtypes within EMP-ORG when classifying at 

subtype level is not only much lower than the result for EMP-ORG overall but also 

rather unstable: from zero for Partner to 71.93% for Subsidiary. The two biggest 

subtypes Employ-Exec and Employ-Staff get only 67.23% F1 which is much lower 

than the 73.88% on type level for its parent type EMP-ORG. We consider that the 

zero result for Partner is mainly due to too few instances. Therefore, the closer 

distance between the classes at subtype level causes the performance to decrease and 

become unstable. 

Table 17. The result on the subtypes of EMP-ORG. 

Subtypes Num. of 
instances 

Precision Recall F1 

Employ-Exec 128 72.73 62.50 67.23 

Employ-Staff 132 70.18 64.52 67.23 

Employ-Undetermined 35 77.78 50.00 60.87 

Member-of-Group 40 73.08 47.50 57.58 

Subsidiary 62 78.85 66.13 71.93 

Partner 3 0.00 0.00 0.00 

Other 9 25.00 11.11 15.38 

Table 18. The F1 results on different feature sets and classification levels. 

Features Relation 
detection 

Type 
classification 

Subtype classification 

Word 59.27 41.26 34.85 
+POS Tag 60.39 45.79 38.68 
+Entity 64.25 57.88 52.16 
+Mention 65.97 58.22 53.77 
+Overlap 67.82 61.69 55.70 
+Chunk 67.14 61.48 55.83 
+Dependency 71.80 63.22 56.29 
+Parse Tree 71.38 63.28 56.21 
+SQLF 70.96 63.18 56.68 
+WordNet Synset 70.04 63.95 58.47 

 

We also investigated the influence of different feature sets on the different 

classification levels (see Table 18). The best performance on relation detection 

resulted from the combination from word to dependency features and further features 

from parsing, SQLF and WordNet lead to performance decrease. However, such 

phenomenon does not appear at the type and subtype levels, in which the 

improvements are almost stable as more features are introduced and the best 

performance is achieved with the complete feature set. Such difference suggests that 

the deeper the classification level is, the more significant the effect of the features is 

and more syntactic and semantic features are needed. The difference in the 

improvement at the different levels also supports this hypothesis: as more features are 

used, the improvement in relation detection is only 11.53% (from 59.27% to 71.80%), 

while improvement in type and subtype classification is much more significant: 



D2.1.2 / Ontology-Based Information Extraction (OBIE) v.2 

 

 25 

22.69% (from 41.26% to 63.95%) and 23.62% (from 34.85% to 58.47%). 

Furthermore, the impact of the SQLF and WordNet synset features shows that 

semantic knowledge will play more important role in extracting finer granularity 

relations.  

 



D2.1.2 / Ontology-Based Information Extraction (OBIE) v.2 

 

 26 

5.4 Learning Curves  
 

Learning curves are an important factor in evaluating ML methods, especially for 

supervised IE, because it requires annotated training data which is typically hard to 

obtain. As ontology-based IE is becoming a focus of intensive research, the lack of 

data annotated according to an ontology causes an even greater challenge.  

 

We apply our method with different feature sets and various sizes of training 

instances to investigate the learning curves and features. The feature set has been 

divided into two parts: one is called shallow features consisting of word, POS tag, 

entity, mention and overlap features; the other is deep features including chunk, 

dependency, parsing tree and semantic ones. In the following experiments, we 

measure the classifier using shallow features, deep features and all features separately 

and the training instances increase from 1,000 to all. Figures 3, 4 and 5 show the 

learning curves of the F1 measure for classification on subtype, type and relation 

detection. 

 

From those figures we can see that deep features on their own never lead to a better 

performance than the shallow ones which confirms the conjecture that shallow 

features are more useful. Nevertheless, when all features are used together, the 

performance improves above that of shallow features on their onw, when the number 

of training instances grows. Although there are few exceptions, Figures 3, 4, and 5 

show clearly that the deeper the classification level is, the more training instances are 

needed for all features to outperform the shallow features.  When classifying at 

subtype level (41 classes), the performance of shallow features increases faster until 

the training instances get to 20,000, after which the total feature set outperforms the 

shallow features (Fig 3). When classification is carried out only at type level (i.e., 7 

classes) after only 2,000 examples the total features outperform the shallow ones (Fig 

4, there is an exception at 5,000, after which the trend is stable). For the simplest task, 

i.e., relation detection, even 1,000 training instances are enough for the classifier to 

work better with all features than only the shallow ones (Fig 5, there is also only one 

exception at 10,000). 

 

These results suggest that with the consideration of the data sparseness problem, as 

the classification level gets deeper, more features require more training data. If the 

classification level is shallower, we need less training data to make all features work 

better. However, if the classification level is very deep, shallow features can work 

better separately than together with the deep features, especially when there is not 

enough training data. Therefore, given that large scale ontology-based relation 

extraction usually suffers from lack of training data, it seems more beneficial to use 

shallow features at least initially, until the number of training examples is such that 

the classifier using all features outperforms the one using only shallow ones. 



D2.1.2 / Ontology-Based Information Extraction (OBIE) v.2 

 

 27 

0

10

20

30

40

50

60

70

10
00

200
0

300
0

400
0

50
00

10
000

15
000

20
000

250
00

300
00

350
00

400
00

450
00

500
00

550
00

Number of training instances

F
1

Shallow Features

Deep Features

Total Features

 

Fig. 3. The learning curves for subtype classification. 

0

10

20

30

40

50

60

70

10
00

20
00

30
00

40
00

50
00

10
00

0

15
00

0

20
00

0

25
00

0

30
00

0

35
00

0

40
00

0

45
00

0

50
00

0

55
00

0

Number of training instances

F
1

Shallow Features

Deep Features

Total Features

 
Fig. 4. The learning curves for type classification. 



D2.1.2 / Ontology-Based Information Extraction (OBIE) v.2 

 

 28 

0

10

20

30

40

50

60

70

80

100
0

200
0

30
00

400
0

500
0

100
00

150
00

200
00

250
00

30
000

350
00

400
00

450
00

500
00

55
000

Number of training instances

F
1

Shallow Features

Deep Features

Total Features

 

Fig. 5. The learning curves for relation detection. 

 

6  Conclusions  
 

In this deliverable, we used SVM-based classification for relation extraction, using 

features produced by NLP tools provided within GATE. In comparison to previous 

work, we introduce some new features, including POS tag, entity subtype and class 

features, entity mention role features and even general semantic features which all 

contribute to performance improvements. Experiments shows, for relation extraction 

work and as the classification level gets deeper, the features containing more 

information such as semantic ones can give more significant contribution. We also 

investigated in detail the impact of various factors on performance: the features, the 

classification levels and the amount of training data, which shows there is a trade-off 

among these factors for relation extraction work. 

 

Further research needs to be carried out in two directions. Firstly, as the number of 

features used for relation extraction is very large, we intend to investigate which 

features affect most the performance. To this end, we will apply some ML 

technologies for feature selection, which will help us identify more discriminating 

features. Secondly, though the ACE2004 entity and relation type system provides a 

hierarchy organization which is somewhat like an ontology, it is still very limited for 

large-scale ontology-based IE, due to the small number of relations covered.  

 



D2.1.2 / Ontology-Based Information Extraction (OBIE) v.2 

 

 29 

Bibliography and references 
 

1. Appelt, D.: An Introduction to Information Extraction. Artificial Intelligence 

Communications, 12(3) (1999) 161–172  

2. Handschuh, S., Staab, S., Ciravegna, F.: S-CREAM --- Semi-automatic CREAtion 

of Metadata. Proceedings of the13th International Conference on Knowledge 

Engineering and Knowledge Management (EKAW02), Siguenza, Spain (2002)  

3. Motta, E., Vargas-Vera, M., Domingue, J., Lanzoni, M., Stutt, A., Ciravegna, F.: 

MnM: Ontology Driven Semi-Automatic and Automatic Support for Semantic 

Markup. Proceedings of the 13th International Conference on Knowledge 

Engineering and Knowledge Management (EKAW02), Siguenza, Spain (2002) 

4. Freitag, D., and McCallum A.: Information extraction with HMM structures learned 

by stochastic optimization. Proceedings of the 7th Conference on Artificial 

Intelligence (AAAI-00) and of the12th Conference on Innovative Applications of 

Artificial Intelligence (IAAI-00), 584–589,Menlo Park, CA. AAAI Press (2000) 

5. Lafferty, J., McCallum, A., Pereira. F.: Conditional random fields: Probabilistic 

models for segmenting and labeling sequence data. In Proc. 18th International Conf. 

on Machine Learning, Morgan Kaufmann, San Francisco, CA (2001) 282–289 

6. Kambhatla, N.: Combining lexical, syntactic and semantic features with Maximum 

Entropy models for extracting relations. Proceedings of 42th
 
Annual Meeting of the 

Association for Computational Linguistic. 21-26 July Barcelona, Spain (2004) 

7. Vapnik, V.: Statistical Learning Theory. John Wiley (1998) 

8. Zelenko, D., Aone, C., Richardella, A.: Kernel methods for relation extraction. 

Journal of Machine Learning Research (2003)1083-1106 

9. Culotta, A., Sorensen, J.: Dependency tree kernels for relation extraction. 

Proceedings of 42th
 

Annual Meeting of the Association for Computational 

Linguistics. 21-26 July Barcelona, Spain (2004) 

10.Zhou G., Su, J., Zhang, J., Zhang, M.: Combining Various Knowledge in Relation 

Extraction,  Proceedings of the 43th Annual Meeting of the Association for 

Computational Linguistics (2005) 

11.ACE. http://www.nist.gov/speech/tests/ace/ 

12.Annotation Guidelines for Entity Detection and Tracking (EDT) Version 4.2.6, 

http://www.ldc.upenn.edu/Projects/ACE/docs/EnglishEDTV4-2-6.PDF. (2004) 

13.Annotation Guidelines for Relation Detection and Characterization (RDC) Version 

4.3.2, http://www.ldc.upenn.edu/Projects/ACE/docs/EnglishRDCV4-3-2.PDF. 

(2004) 

14.Hsu, C.-W., Lin, C.-J.: A comparison of methods for multi-class support vector 

machines , IEEE Transactions on Neural Networks, 13(2). (2002) 415-425 

15.Miller, A., “WordNet: An On-line Lexical Resource”, Special issue of the Journal 

of Lexicography, vol. 3, no. 4 (1990) 

16.Gaizauskas, R., Hepple, M., Saggion, H., Greenwood, M.A., Humphreys, K.:  

SUPPLE: A Practical Parser for Natural Language Engineering Applications. 

Technical report CS--05--08, Department of Computer Science, University of 



D2.1.2 / Ontology-Based Information Extraction (OBIE) v.2 

 

 30 

Sheffield (2005) 

17.Cunningham, H., Maynard, D., Bontcheva, K., Tablan, V.: GATE: A Framework 

and Graphical Development Environment for Robust NLP Tools and Applications. 

Proceedings of the 40th Anniversary Meeting of the Association for Computational 

Linguistics. Philadelphia, July (2002) 

18.Lin, D.: Dependency-based Evaluation of MINIPAR. In Workshop on the 

Evaluation of Parsing Systems, Granada, Spain, May (1998) 

19. McCarthy, D., Koeling, R., Weeds, J. and Carroll, J. (2004) Finding predominant 

senses in untagged text. In Proceedings of the 42nd Annual Meeting of the 

Association for Computational Linguistics. Barcelona, Spain. pp 280-287. 

20. N. Chinchor. Muc-4 evaluation metrics. In Proceedings of the Fourth Message  

Understanding Conference, pages 22-29, 1992. 



D2.1.2 / Ontology-Based Information Extraction (OBIE) v.2 

 

 31 

Appendix I  

  Guide to Running Relation Extraction 

on ACE 2004 Training Data 
 

This guide is organized as follows:  

• Section 1) describes how to install the deliverable and gives an overview of its 

directories. 

• Section 2) introduces the simple command which runs the experiments for 

relation extraction task on the ACE 2004 training data. 

• Section 3) provides more information on the data directory which contains 

the original and the processed versions of the ACE 2004 training data. 

• Section 4) and section 5) give information on how to produce the ACE 2004 

training data. 

• Section 6) and section 7) provide information on how to prepare the training 

and the testing data files and how to use LIBSVM to train the SVM model and 

to apply it to classify the testing data.  

 

1) How to Install 
 

You should download the deliverable and unzip it into some directory. It has six sub 

directories:  

• app: It contains the GATE JAPE and the application files for converting the 

ACE 2004 training data from its original version to the GATE documents that 

contain all the ACE annotations plus all the NLP annotations. 

• bin: It contains the JAR for the relation extraction task, batch script for 

running experiment in command mode under the Windows. 

• data: This directory is created as a placeholder for the ACE2004 training 

data and its processed versions for the relation extraction task.  

• doc: It contains the deliverable document. 

• lib: It contains other required libraries.  Make sure they are on your 

CLASSPATH  

• src: It contains source code for the relation extraction task. 

Note: Since the ACE2004 training data is distributed as LDC2005T09 ACE 2004 

Multilingual Training Corpus, you need to obtain a license for it from LDC 

(http://www.ldc.upenn.edu/Catalog/CatalogEntry.jsp?catalogId=LDC2005T09).   

 

2) How to Run 
 

Before running the experiment, you should make sure that: 

• GATE has been installed and gate.jar is on the CLASSPATH.  

• WordNet 2.0 has been installed. file_properties.xml (under bin) should be 

modified to include the location of your local copy of the WordNet 2.0 index 

files, for example: 

<param name="dictionary_path" value="c:\program files\wordnet\2.0\dict"/>   

• All libraries under the lib directory and the re.jar from the bin directory 

appear on the CLASSPATH.  

 



D2.1.2 / Ontology-Based Information Extraction (OBIE) v.2 

 

 32 

Then change to the bin directory, execute the batch file run.bat to run the 

training and testing procedure and to get the result.   

 

Usage: 
run <data-url> <classification-level> <feature-set-file> <number-of-training-examples> <report-

file-name> 

 

- data-url: URL of the data directory that contains the ACE2004 training data 

and its processed versions for the relation extraction task 

- classification-level: classification level  

 0 -- relation level, i.e. relation detection  

 1 -- relation type level, i.e. classify relation type 

 2 -- relation subtype level, i.e. classify relation subtype 

- feature-set-file: features to be used in the SVM classifier 

- number-of-training-examples: number of examples used for training, 

maximum at 54457  

- report-file-name: file to be used for saving the classification results 

 

e.g. 
> run file://D:/RE/data 2 features.txt 5000 result.txt > log.txt 

 

3) data Directory  
 

The data directory should contain the original ACE2004 training data and the data 

processed by GATE for the relation extraction task: 

• BNEWS:  broadcast news from the TDT-4 Corpus 

• NWIRE: newswire data from the TDT-4 Corpus 

• ARABIC_TREEBANK: Arabic Treebank 1 Corpus - English translations from 

the MT-2003 translation data set 

• CHINESE_TREEBANK: Chinese Treebank Version 4 - English translations 

from the Chinese Treebank English Parallel Text Corpus 

• FISHER_TRANSCRIPTS: Fisher Telephone Speech collection 

 

Each of the above directories contains five subdirectories: 

• SGM: source text files from the ACE 2004 training data.  

• APF: AFP files from the ACE 2004 training data, providing the ACE 

annotations. 

• NewSGM: the modified SGM files 

• clean: all files under the NewSGM should be saved as GATE documents 

(using save to XML()) under this folder. 

• marked-all: the GATE XML documents containing all annotations from 

the APF files related to entity and relation. 

• Parsed-all/DataStore: All files under the marked-all directory 

should be saved under a serial datastore under this directory.  These files need 

to be processed with various NLP tools (using a GATE application).  



D2.1.2 / Ontology-Based Information Extraction (OBIE) v.2 

 

 33 

 

4) How to Convert Original ACE2004 Training Data to GATE 

Documents 
 

After the ACE2004 data files (from ACE2004\data\English directory) 

have been copied to some local directory (e.g. ACE2004), user should run the 

following batch file: 

 

Usage: 

bin\init-data.bat <the absolute  path of the ACE2004 directory> 

 

It performs the following actions: 

• creates all required directories under the data directory; 

• copies the source (ACE2004 training data) SGM text files into the 

corresponding SGM directory and the source APF files into the corresponding 

APF directory; 

• modifies the files in each SGM directories to replace all strings &AMP; with 

string ;AMP;  and & with &amp; .  All the processed files (including the 

unchanged files) are saved into the NewSGM directory.  

 

In order to convert the original ACE2004 Training Data into GATE Documents, the 

following actions should be taken for each of the five subdirectories (i.e. bnews, 
nwire, arabic_treebank, chinese_treebank and 

fisher_transcripts): 

• Populate corpus with files with extension “.sgm” from the directory NewSGM 

in GATE, and save them as XML into the clean directory. 

• Process each document with the apf-entity-all-to-gate.bjape and 

the apf-relation-to-gate.bjape (binary jape files) 

(distributed under the app directory):  

o Populate a corpus (e.g. cleanfiles) with “.xml” files from the clean 

directory.  

o Populate a corpus (e.g. apffiles) with “.xml” files from the APF 

directory.  

o Using the apf-entity-all-to-gate.bjape and the apf-

relation-to-gate.bjape (binary jape files) and setting their 

inputASName parameter to the “Original markups”, process the 

apffiles corpus. 

o Save the corpus cleanfiles in the GATE XML format under the 

marked-all directory. 

 

5) How to Process the GATE Documents with NLP Tools 
 

Make sure you have Minipar and Buchart installed on your system. (Note: Refer to 

the gate userguide at http://www.gate.ac.uk/sale/tao/index.html for the information on 

how to compile these resources.) For each of the five corpora (in bnews, nwire, 

arabic_treebank, chinese_treebank and fisher_transcripts), 



D2.1.2 / Ontology-Based Information Extraction (OBIE) v.2 

 

 34 

• load the documents from marked-all directory into a GATE corpora (e.g. 

marked) 

• copy the GATE application files NLPApp.gapp and NLPApp-single-

nl.gapp (distributed under the app directory) into the GATE root 

directory.  For the data under fisher_transcripts use the NLPApp-

single-nl.gapp.   

• restore the application file NLPApp.gapp (and NLPApp-single-

nl.gapp for the fisher_transcripts) in GATE. 

• Process the marked corpus. 

• Create a SerialDatastore under the Parsed-all/DataStore directory and 

save the corpus in it.  

 

The serial data stores are used to generate the training and the testing examples.  

 

6) How to Convert GATE Documents (ACE2004 Training Data) into 

the Training and the Testing Data Files for LIBSVM Classifier 
 

bin/run.bat should be executed in order to convert GATE documents into the 

Training and the Testing data files. It produces the training and testing data files for 

LIBSVM classifier.  bin/run.bat performs the following actions: 

 

• Generates nominal vector files from the GATE documents  

Batch file prepare-nominal-vectors.bat generates nominal vectors for 

each GATE XML document available under the data/XXX/Parsed-

all/DataStore (where XXX is one of the ARABIC_TREEBANK, BNEWS, 

CHINESE_TREEBANK, FISHER_TRANSCRIPTS and NWIRE).  It then 

splits these vectors into two files total-train.vct and total-test.vct 

which represent the training and the testing set for classification respectively.  The 

usage of the batch file is: 

 

Usage: 

 prepare-nominal-vectors.bat <data-url> <classification-level> 

- data-url: the url of the data directory which contains the ACE2004 training 

data and its versions processed for the relation extraction task 

- classification-level: classification level  

 0 -- on relation level, i.e. relation detection  

 1 -- on relation type level, i.e. classify the relation type 

 2 -- on relation subtype level, i.e. classify the relation subtype 

 

e.g.:  
>prepare-nominal-vectors.bat  file://D:/RE/data  2 

 

• Select training examples  

You can select how many examples from the total training data should be used for 

training.   

 

Usage: 



D2.1.2 / Ontology-Based Information Extraction (OBIE) v.2 

 

 35 

select-training-data.bat <total-training-file> <number-of-training-

examples-to-select> <result-file> 

- total-training-file: specifies which file to select the training examples from 

- number-of-training-examples-to-select: the number of examples used for 

training, maximum at 54457 

- result-file: specifies where to save the selected training examples 

 

e.g. 
>select-training-data.bat total-train.vct 30000 train.vct 

 

• Select features 

You can select what features to use for classifying for both the training and the 

testing data.  

 

Usage: 

select-features.bat <feature-set-file> <training-source-file> <training-

dest-file> <testing-source-file> <testing-dest-file> 

- feature-set-file: specifies the features to be used 

- training-source-file: specifies the file to select the training examples from 

- training-dest-file: specifies the destination file to save the training examples 

that contain features specified in  the feature-set-file 

- testing-source-file: specifies the file to select the testing examples from 

- testing-dest-file: specifies the destination file to save the testing examples  that 

contain features specified in  the feature-set-file 

e.g.  
>select-features.bat feature-set.txt train.vct train_f.vct total-test.vct test_f.vct 

 

• Nominal to Numeric examples 

As LIBSVM can only deal with numeric attributes, the nominal examples (for 

both training and testing data) need to be converted into the numeric examples.  

 

Batch file nominal-to-numeric.bat should be used to convert the nominal 

examples into the numeric ones: 

 

Usage: 

nominal-to-numeric.bat <training-nominal-file> <training-nominal-file> 

<testing-nominal-file> <testing-numeric-file> 

- training-nominal-file: the file containing the nominal training examples 

- training-numeric-file: the file to save the converted numeric training examples 

- testing-nominal-file: the file containing the nominal testing examples 

- testing-numeric-file: the file to save the converted numeric testing examples 

Note: this command produces a configuration file (named map.cfg) which 

contains the mapping information. 

 

e.g. 
> nominal-to-numeric.bat  train_f.vct train_f.bvt test_f.vct test_f.bvt 

 

7) How to Use LIBSVM to Classify Examples 
 

• Training 



D2.1.2 / Ontology-Based Information Extraction (OBIE) v.2 

 

 36 

 

Usage: 

svm-train -t 0 <training-numeric-file> <svm-model-file>  

- training-numeric-file: name of the file that contains numeric training examples 

- svm-model-file: name of the SVM model file  

- The option -t 0 is required in order to use the linear kernel. 

 

e.g.,  
>svm-train -t 0 training.bvt  ace.mdl 

 

There are two files, ace-subtype-all-features.mdl (a model) and ace-subtype-all-

features.cfg (a configuration file), which are provided under the bin directory.  The 

model is already trained on the total training set (total-train.vct) considering features 

from the features.txt.  One can use these files to classify relations at a sub-type level. 

 

• Testing 

 

Usage: 

svm-predict <testing-numeric-file> <svm-model-file> <output-file> 

- testing-numeric-file: name of the file that contains the numeric testing 

examples to be classified 

- svm-model-file: name of the SVM model file 

- output-file: name of the file used to store classification results 

 

e.g.,  
> svm-predict testing.bvt ace.mdl output.txt   

 

• Evaluation 

 

Usage: 

stat <testing-numeric-file> <output-file map-config-file> <report-file> 

- testing-numeric-file: name of the file that contains the numeric test example 

- map-config-file: mapping configuration file 

- resport-file: the text file to save the report 

 

e.g.  
> stat testing.bvt output.txt  map.cfg result.txt 


