
EU-IST Integrated Project (IP) IST-2003-506826 SEKT

SEKT: Semantically Enabled Knowledge Technologies

D2.2.1 Report: Controlled
Language IE Components version 1

Tamara Polajnar, Hamish Cunningham, Valentin Tablan,
Kalina Bontcheva

(University of Sheffield)

Abstract.
EU-IST Integrated Project (IP) IST-2003-506826 SEKT
Deliverable D2.2.1 (WP2.2)

This deliverable outlines an approach to automatic generation of metadata from natural language.
The emaphasis is on easy to use applications and controlled language interfaces.
In brief, Controlled Language Information Extraction (CLIE) aims to use natural language
processing technology and simple mark-up to enable users to create, administer and use knowl-
edge repositories stored in repositories like KAON and SESAME. For the application testing an
authoring environment is devised using the wiki technology invented by Ward Cunningham, and
Yet Another Mark-up (YAM), a mark-up language derived from Terrence’s Mark-up Language
(TML).

Keyword list: controlled language, information extraction, language processing

Copyright c© 2006 NLP Group, Departement of Computer Sceience, University of Sheffield

Document Id.
Project
Date
Distribution

SEKT/2005/D2.2.1/v1.0
SEKT EU-IST-2003-506826
January 17, 2006
public



SEKT Consortium

This document is part of a research project partially funded by the IST Programme of the Commission of the European
Communities as project number IST-2003-506826.

British Telecommunications plc.
Orion 5/12, Adastral Park
Ipswich IP5 3RE
UK
Tel: +44 1473 609583, Fax: +44 1473 609832
Contact person: John Davies
E-mail: john.nj.davies@bt.com

Empolis GmbH
Europaallee 10
67657 Kaiserslautern
Germany
Tel: +49 631 303 5540, Fax: +49 631 303 5507
Contact person: Ralph Traphöner
E-mail: ralph.traphoener@empolis.com

Jozef Stefan Institute
Jamova 39
1000 Ljubljana
Slovenia
Tel: +386 1 4773 778, Fax: +386 1 4251 038
Contact person: Marko Grobelnik
E-mail: marko.grobelnik@ijs.si

University of Karlsruhe, Institute AIFB
Englerstr. 28
D-76128 Karlsruhe
Germany
Tel: +49 721 608 6592, Fax: +49 721 608 6580
Contact person: York Sure
E-mail: sure@aifb.uni-karlsruhe.de

University of Sheffield
Department of Computer Science
Regent Court, 211 Portobello St.
Sheffield S1 4DP
UK
Tel: +44 114 222 1891, Fax: +44 114 222 1810
Contact person: Hamish Cunningham
E-mail: hamish@dcs.shef.ac.uk

University of Innsbruck
Institute of Computer Science
Technikerstraße 13
6020 Innsbruck
Austria
Tel: +43 512 507 6475, Fax: +43 512 507 9872
Contact person: Jos de Bruijn
E-mail: jos.de-bruijn@deri.ie

Intelligent Software Components S.A.
Pedro de Valdivia, 10
28006 Madrid
Spain
Tel: +34 913 349 797, Fax: +49 34 913 349 799
Contact person: Richard Benjamins
E-mail: rbenjamins@isoco.com

Kea-pro GmbH
Tal
6464 Springen
Switzerland
Tel: +41 41 879 00, Fax: 41 41 879 00 13
Contact person: Tom Bösser
E-mail: tb@keapro.net

Ontoprise GmbH
Amalienbadstr. 36
76227 Karlsruhe
Germany
Tel: +49 721 50980912, Fax: +49 721 50980911
Contact person: Hans-Peter Schnurr
E-mail: schnurr@ontoprise.de

Sirma AI EAD, Ontotext Lab
135 Tsarigradsko Shose
Sofia 1784
Bulgaria
Tel: +359 2 9768 303, Fax: +359 2 9768 311
Contact person: Atanas Kiryakov
E-mail: naso@sirma.bg

Vrije Universiteit Amsterdam (VUA)
Department of Computer Sciences
De Boelelaan 1081a
1081 HV Amsterdam
The Netherlands
Tel: +31 20 444 7731, Fax: +31 84 221 4294
Contact person: Frank van Harmelen
E-mail: frank.van.harmelen@cs.vu.nl

Universitat Autonoma de Barcelona
Edifici B, Campus de la UAB
08193 Bellaterra (Cerdanyola del Vallès)
Barcelona
Spain
Tel: +34 93 581 22 35, Fax: +34 93 581 29 88
Contact person: Pompeu Casanovas Romeu
E-mail: pompeu.casanovas@uab.es



Executive Summary

A controlled language is a subset of a natural language which is generally designed to be
less ambiguous than the complete language and to include only certain vocabulary terms
and grammar rules which are relevant for a specific task. Controlled languages have a
long history of use. Since the 1970s CLs have been used by large companies such as
Caterpillar, Boeing, and Perkins for generation of multilingual documentation.

Although most machine translation systems use some sort of intermediate representa-
tion for the information contained in the sentences which are being translated, the use of
CLs for knowledge management is a relatively new field with first applications appearing
in the mid 1990s. [Sow02] shows that all languages have the power to express first order
logic statements. The problem usually is that natural language is far more powerful than
first order logic. Beyond introducing shades of doubt or a range of logical values which
can be represented with fuzzy sets, it has the power to express emotions and allusions to
culture which are difficult if not impossible for a computer to comprehend. Constraining
the language to avoid grammatically, contextually, and logically ambiguous statements
leads to a great improvement in parsing and production of conceptual data. Though con-
trolled languages can restrict the colourfulness of expression, they can be used to effi-
ciently communicate concrete information. In most cases using a CL is an exercise in
expressing information more consistently and concisely.

Controlled Language Information Extraction (CLIE) aims to use CL technology and
simple mark-up to enable users to create, administer and use knowledge repositories
stored in repositories like KAON and SESAME. For the application testing an author-
ing environment is devised using the wiki technology invented by Ward Cunningham,
and Yet Another Mark-up (YAM), a mark-up language derived from Terrence’s Mark-up
Language (TML).



Contents

1 Introduction 3
1.1 Controlled Languages . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Overview 5
2.1 Controlled Languages (CLs) . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Experimental Apparatus . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 YAM 8
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.2 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

4 The Wiki 15
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.2 GATE Wiki . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.2.1 Wiki design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.3 On-line vs. off-line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

5 CLIE 19
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.2 Controlled Languages . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

5.2.1 CLs for Knowledge Engineering . . . . . . . . . . . . . . . . . . 20
5.2.2 Other CLs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5.3 CLIE language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.3.1 Description of the CL . . . . . . . . . . . . . . . . . . . . . . . . 22
5.3.2 How to use CLIE CL . . . . . . . . . . . . . . . . . . . . . . . . 25
5.3.3 How to use CLIE through GATE . . . . . . . . . . . . . . . . . . 27
5.3.4 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.4 Summary and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . 30

A Yam Syntax 32
A.1 Overview of JAPE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
A.2 Yam Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

A.2.1 Bold, italic and teletype . . . . . . . . . . . . . . . . . . . . . . 34
A.2.2 Horizontal lines . . . . . . . . . . . . . . . . . . . . . . . . . . 34

1



CONTENTS 2

A.2.3 Lists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
A.2.4 Verbatim output . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
A.2.5 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
A.2.6 Escapes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
A.2.7 Headings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
A.2.8 Links and anchors . . . . . . . . . . . . . . . . . . . . . . . . . 36
A.2.9 Quotations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
A.2.10 Line breaks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
A.2.11 Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

A.3 YAM syntax design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
A.3.1 Bugs: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
A.3.2 Wish list: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
A.3.3 WikiLinks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

A.4 CLIE implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
A.4.1 clie.jape . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
A.4.2 np.jape . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
A.4.3 quotes.jape . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63



Chapter 1

Introduction

People organise, compartmentalise, and order their environment. The world of computing
is rife with structured information. Object-oriented programs, databases and file-systems
are common examples of structured data. Controlled Language Information Extraction
(CLIE) is an application which will allow users to design, create, and manage informa-
tion spaces without knowledge of complicated standards such as XML or RDF. The CLIE
architecture is divided into two independent parts: the language interface and the applica-
tion.

The language interface builds on research from machine translation and elsewhere
in use of controlled natural languages for knowledge representation. The application
interface is based on common lightweight technologies which are familiar to web users.
With the growing interest in Semantic Web applications and need to port information into
a machine readable format there are many uses for this type of application.

1.1 Controlled Languages

Creating formal data is a high initial barrier to entry for small organisations and individu-
als wishing to create ontologies and thus benefit from semantic knowledge technologies.
Part of the answer is in ontology authoring tools such as Protege, which however tend
to require specialist knowledge about ontology engineering. Therefore, in the case of
naive users, the definition of a controlled language for formal data description will enable
them to author ontologies directly in natural language. Building on controlled language
MT work, IE for controlled language analysis may achieve the high levels of accuracy
necessary to make this viable.

The controlled language IE task has developed a simplified natural language processor
that, on the one hand, allows the specification of logical data for Semantic KT purposes in
normal language, while, on the other hand, attaining the high accuracy levels necessary for
high-reliability applications. The components are based on GATE’s existing FST cascade

3



CHAPTER 1. INTRODUCTION 4

IE [CMBT02]. CLIE is configured so that it either accepts input as valid (in which case
accuracy is in general 100%) or rejects it and warns the user of needed repairs to their
syntax. In certain cases the system will try a less strict analysis mode in order to suggest
how repair may be effected. Therefore, because the parsing process is deterministic,
accuracy is not really an issue.



Chapter 2

Overview

With the amount of information each person receives each day in various formats it is
becoming increasingly difficult to manage, store, and retrieve personal data. It is possible
to use the controlled language technologies to create an application which would allow
users to use the most intuitive interface, natural language, to process, tag, and sort their
data without the intimate knowledge of complex applications or knowledge representation
languages or tools.

2.1 Controlled Languages (CLs)

A controlled language is a subset of a natural language which is generally designed to be
less ambiguous than the complete language and to include only certain vocabulary terms
and grammar rules which are relevant for a specific task.

Early controlled languages can trace their roots to 1970’s Caterpillar Fundamental
English (CFE). Caterpillar Inc. is a worldwide producer of complex mechanics. As a
result it has a need to create documentation for the international market. The first ap-
proach to universal documentation representation lead to the creation of CFE, a subset of
English with a limited vocabulary of 850 terms. CFE was easier to understand around
world; however, for various practical reasons Caterpillar decided to produce multilin-
gual documentation. This gave rise to Caterpillar Technical English (CTE). CTE is much
more expressive than CFE. It has over 70,000 carefully chosen domain-specific terms.
CFE grammar limits ambiguity, and thus allows easier machine translation into multiple
languages. More recently, Caterpillar has begun merging with the KANTOO system de-
veloped at Carnegie Mellon University in order to improve grammar analysis and system
performance [KAMN98].

Since the advent of CFE there have been several derivatives including Smart’s Plain
English Program (PEP) and White’s International Language for Serving and Maintenance
(ILSAM). Many of the world’s largest companies including IBM, Rank Xerox, Boeing,

5



CHAPTER 2. OVERVIEW 6

Perkins Engines and Ericsson Telecommunications are involved in CL research [AS92].

An interest has also been expressed in using CLs in knowledge technologies. Com-
puter Processable English (CPE), developed at Cambridge Computer Laboratory, is an
attempt to devise a controlled language which could be easily translated into a knowledge
representation language. The project has been successful in easing the process of creating
domain specific knowledge bases [Pul96]. ClearTalk is a language used by a series of
knowledge engineering tools created at Ottawa University. The tools can extract knowl-
edge from ClearTalk automatically. In addition, tools to assist the production of ClearTalk
from unrestricted language also exist [Sku03], [Sow02]. The KANT system also has the
ability to produce conceptual graphs and OWL statements from its intermediate repre-
sentation [KAMN98]. [Sow02] also demonstrates that there is a mapping between the
database query language SQL and controlled languages.

Controlled languages are further discussed in Section 5.2.

CLIE CL, which is introduced in Section 5.3.1, is similar to the above controlled
languages in that it is limited. However, it is different than most of the above mentioned
languages in that it does not limit vocabulary and the rules in the same way. For example,
CTE strives to limit the term ambiguity in the lexicon, as well as sentence ambiguity in the
parser. CLIE CL instead allows a very small number of sentences which contain particular
key-phrases. This significantly reduces the number of grammatical constructions and
sentences a user has to learn.

CLIE CL is created for a very specific task of ontology generation. To ensure maxi-
mum accuracy only a few non-ambiguous sentence types are considered. Languages used
for generation, like CTE, need more expressibility as the text produced using these lan-
guages is for human consumption. CLIE CL is meant for human production, and for that
reason each sentence has an easily computable outcome in the ontology. The vocabulary
in CLIE CL is in unlimited when it comes to assigning names to classes, properties, and
other ontological elements; however, a user cannot use verbs which are outside of the
permitted range. CLIE CL differs from languages like CTE, ClearTalk, and KANT, but
is similar to languages which correspond to a limited symbolic language like first order
logic.

2.2 Experimental Apparatus

To experiment on CLIE we defined a system which combines information organisation
with CLs to create an application which is simple and accessible.

The application interface aims to be as user friendly as possible, while remaining
lightweight. We adapt wiki technologies for this purpose. Wikis are web-based, and
thus portable, user interfaces which have text based interfaces which require little or no
training to use.



CHAPTER 2. OVERVIEW 7

Figure 2.1: The CLIE test environment

The environment is modular and the CL interface can be accessed by other applica-
tions. Each of the parts: the Wiki, YAM, and CLIE are independent.



Chapter 3

YAM

3.1 Introduction

Yet Another Mark-up (YAM) is derived from Terrance’s Mark-up Language1. It embodies
the simplicity of wiki editing languages, but it is open to extension through the use of plug-
ins. See Table 3.1 for an example of YAM code. Similarly as TML it is implemented using
Antlr. Antlr2 (ANother Tool for Language Recognition) is a tool supporting the creation
of parsers, compilers, and generators for languages such as Java, C++, and YAM (in our
case).

The YAM translator is easily extended with new output languages. Currently it can
produce output in HTML and LaTeX and thence PDF. The UML description of the YAM
module (overall) is shown in Figure 3.1. The figures following Figure 3.1 are parts of it,
shown clearly, for better understanding. They are shown in order as Part 1 (Figure 3.2-Top
Left), Part 2 (Figure 3.3-Bottom Left), Part 3 (Figure 3.4-Top Right) and Part 4 (Figure
3.5-Bottom Right)

3.2 Features

Simple YAM is rich in features. From simple text processing features like bold, emphasis.
and teletype to tables, a title page, and a table of contents, there is a range of features
which can help create highly presentable documents in both LaTeX and HTML:

• Headings

• Text processing: bold, emphasis, teletype

1http://www.antlr.org/TML/index.tml
2http://www.antlr.org/

8



CHAPTER 3. YAM 9

Figure 3.1: YAM UML Description



CHAPTER 3. YAM 10

Figure 3.2: Part 1



CHAPTER 3. YAM 11

Figure 3.3: Part 2



CHAPTER 3. YAM 12

Figure 3.4: Part 3



CHAPTER 3. YAM 13

Figure 3.5: Part 4

• Line breaks

• Hrules

• Nested Lists

• Links and targets

• Tables

• Verbatim

• Quotations

• Plugins

Plug-ins in particular are very powerful and allow different extensions such as com-
ments, boxed text, date and time support, etc.



CHAPTER 3. YAM 14

Code:

Test _of_ - YAM

%contents

%1 Start with headings
%2 Two
%3 THREE
%4 four

Generates:

Code:

%1 Lists and line breaks

- list item one
\
plus new para within bullet.\
newline in para\
graph.

- list item two
that wraps and stuff

o nested item one

o nested
item two

- back

Generates :

Table 3.1: Example of YAM



Chapter 4

The Wiki

4.1 Introduction

The concept of the WikiWikiWeb was invented by Ward Cunningham in 19951. The name
wiki-wiki, which originally comes from Hawaiian, is a synonym for quick and has been
popularly shortened to wiki. The idea behind the wiki technology is perhaps best em-
bodied in Ward’s famous quote: “The simplest online database that could possibly work.”
Wikis are characterised by simple editing languages which are automatically translated
into HTML, thus speeding up page production. It is probably the quickest way to create a
web-site which is text centred. Wikis generally allow all users to freely edit pages which
has lead to very successful free-content systems and web-sites like Wikipedia2. Wikipedia
is one of the largest repositories of knowledge on the internet3. Anyone with internet ac-
cess can add new entries and amend information already posted. This has lead to access
to information not ordinarily available in traditional encyclopaedias, such as biographies
of popular icons. Wikipedia also actively appears in over 100 languages.

4.2 GATE Wiki

The simple nature of the wiki makes it perfect as a quick testing ground for CLIE. The
interface it provides is lightweight and portable. It is also very easy to use, so it will not
get in the way of testing or evaluation of the overall system.

The wiki is implemented in Java and JSP which also adds to portability. It stores its
pages in a CVS or SVN repository which allows version support and synchronisation for
off-line editing. The wiki itself does not depend on the input language and they function

1http://c2.com/cgi/wiki?WikiHistory
2http://en.wikipedia.org/wiki/Main Page
3http://en.wikipedia.org/wiki/Wikipedia

15



CHAPTER 4. THE WIKI 16

separately. The chosen input language is YAM.

Why another Wiki, instead of reusing an existing one? Various reasons are stated
below:

• The available implementations in languages that we know around here are either
large and complex, or undocumented, or both. Therefore the effort involved in their
reuse is liable to be as great or greater than reimplementation of a simple system.

• No available Wiki has good CVS support. Using CVS as a backend gives us:

– Off-line edit - simply checkout the pages and edit to your heart’s content while
off-line.

– Edit with other tools, not just the (horrible) web forms interface.

– Management of authorship-related metadata such as how many lines added,
difference between versions and so on.

– A stable and reliable versionning system that’s been proved in production use
by 000,000s of developers.

– Concurrent editing.

• Wikis are pretty simple, and their design well understood, so it is not too much
effort to reimplement.

• The majority of SEKT components are implemented in Java, especially the GATE
ones, so development in Java would be most suitable from integration perspective.

• JSPWiki comes close, but the input language is parsed in an ad-hoc manner which
makes it difficult to alter.

4.2.1 Wiki design

To design the wiki server we need to think about the lifecycle of the following model
components (the wiki as a whole has a Model-View-Component (MVC) architecture4):

• PageSets

• WikiPages

• WikiLinks

• Repositories

4For further details on MVC architectures see http://ootips.org/mvc-pattern.html

http://radeox.org/space/Wiki+Architecture


CHAPTER 4. THE WIKI 17

PageSets are implemented as file trees, i.e. top-level directories in the server’s wiki
filespaces. The location of these filespaces is a configuration option to the server (i.e.
the server maintains a list of directories to treat as wiki filespaces, where every top-level
directory represents a PageSet). PageSets are stored in a Repository; the copy that the
wiki server maintains is checked out from the Repository.

PageSets are the top-level entry points to the wiki (like TWiki’s “webs”) that will be
listed by the server’s top-level page.

WikiPages are stored as .yams that live in a PageSet. (Other files in the directory
tree are simply served as normal.) A request for a .html or .pdf that doesn’t exist
but shares the same name as the WikiPage returns a translation of the .yam. During
translation controlled language sections will trigger callouts to the CLIE interpreter.

WikiLinks are relative links within WikiPages that reference WikiPages. They differ
from normal links in that the target doesn’t necessarily exist. When a non-existent link
target is found during the translation of a .yam, a link to a “create me” page is inserted.
This means that the translator has to be given a list of all WikiPages in the current PageSet.

PageSets can be manipulated off-line by checking them out from the Repository and
then using a normal editor and the YAM compiler application. Changes are fed back to
the wiki server by way of the Repository when back on-line. Also, a wiki server can be
run locally when off-line.

The Repository backends use a copy/edit/merge protocol (i.e. there is no locking
during edit). This means that editors must resolve conflicts manually, and that the wiki
server must keep PageSets up-to-date. This can be done in either of two ways:

1. Repository roots are configured to notify the wiki server of checkin events. Such
events relating to .yam files trigger (re-)generation of the .html/.pdf outputs;
for other files they trigger updating of the checked-out copy.

2. A background process in the server periodically checks the repository for updates
and does translations as necessary.

Repositories are initialised relative to root descriptors, which are just normal
CVS/SVN root identifiers and may therefore be local or remote.

4.3 On-line vs. off-line

One of the advantages of the design is that most page requests (for HTML and PDF) can
be satisfied by the normal static page mechanism. The generated pages are kept up-to-date
when the server is on-line in response to callbacks from the version control subsystem.
When the server is off-line pages will go out of date; two things have to happen as a
response:



CHAPTER 4. THE WIKI 18

• when going on-line, the server should update and regenerate any changed pages;

• the server overrides the error page from the web server; when a request comes
for a translation that hasn’t been done, the server checks for a .yam and does the
translation, bringing it up-to-date



Chapter 5

CLIE

5.1 Introduction

CLIE stands for Controlled Language Information Extraction. CLIE aids in creation and
maintenance of metadata. Instead of extracting metadata from existing sources CLIE
would make it easier to create and maintain ontologies and other structured information
spaces.

Two of the possible uses for CLIE include creation of a structured repository (and its
maintenance) and populating an existing repository created by another application. CLIE
interacts with knowledge repositories such as Sesame or KAON. The input into CLIE
can be plain text or mark-up language such as YAM. The advantage of using something
like YAM is that a user can better indicate the structure of the information using lists and
tables.

Motivations for a CLIE OWL authoring facility:

1. The difficulty of writing OWL:
Sure and Volz report that of the OWL ontologies on the web in early 2004 the large
majority were in OWL Full (the most complex of the OWL variants, which has
rather high complexity and correspondingly poor tool support). However, it turned
out on further examination that around 70% of these were actually OWL DL or
OWL Lite ontologies which contained mistakes that made them into OWL Full.
They also report that 90% of OWL ontologies are relational or taxonomic.

2. The usual knowledge engineering bottlenecks:
Pulman 1996 cites acquisition, transparency and maintainability as areas in which
controlled language can help.

3. Others are now looking at programmable Wikis, e.g.
JotSpot from Excite’s founders:

19

http://www.internetnews.com/dev-news/article.php/3418451


CHAPTER 5. CLIE 20

“Simple Web applications are not simple to build,” Kraus said in a statement.
“We’ve taken the advantages of traditional document-based wikis — designing as
you go and the wiki conforming to a user’s unique work style rather than the other
way around... “We make wikis programmable, allowing you to layer structured
information on top of all the unstructured data.”

5.2 Controlled Languages

Other than for machine translation, CLs are used for enforcement of standards for tech-
nical documents. For example ASD Simplified English (formerly AECMA Simplified
English) is used by aerospace maintenance documentation, but is also used by other in-
dustries1. SMART Controlled English is used worldwide as a simplified form of English
which can be learned easier than full English2. SMART enforces lexical disambiguation
which makes it easily adaptable for machine translation. Many of the widely accepted CL
standards come with tools for authoring, vocabulary generation, spell checking, etc.

Although most CL-based machine translation systems use some sort of intermediate
representation for the information contained in the sentences which are being translated,
the use of CLs strictly for knowledge management is a relatively new field with first ap-
plications appearing in the mid 1990s. [Sow02] shows that all languages have the power
to express first order logic statements. The problem usually is that natural language is
far more powerful than first order logic. Beyond introducing shades of doubt or a range
of logical values which can be represented with fuzzy sets, it has the power to express
emotions and allusions to culture which are difficult if not impossible for a computer to
comprehend. Constraining the language to avoid grammatically, contextually, and log-
ically ambiguous statements leads to a great improvement in parsing and production of
conceptual graphs. Though controlled languages can restrict the colourfulness of expres-
sion, they can be used to efficiently communicate concrete information. In most cases
using a CL is an exercise in expressing information more consistently and concisely.

5.2.1 CLs for Knowledge Engineering

Three of the systems which are to various degrees able to represent knowledge are KANT,
ClearTalk, and Attempto Controlled English.

The Knowledge based Accurate Natural language Translation system or KANT is
a system developed at CMU and is used for machine translation and question answer-
ing. The system uses a set of lexicons, grammars and syntactic rules in order to perform
machine translation. The main application for KANT was for translation of highly tech-
nical documents. The newer versions of KANT have capabilities to convert controlled

1http://www.boeing.com/phantom/sechecker/se.html
2http://www.smartny.com/controlledEnglish.htm



CHAPTER 5. CLIE 21

language representations to concept graphs and OWL statements. They also provide an
interactive controlled language checker to help the user reformulate the sentences that do
not conform to the KANT rules [KAMN98].

ClearTalk3 is a constrained language which can be converted to any KR notation eas-
ily. ClearTalk is an expressive CL that looks quite close to natural English. The author
describes a system in which 25000 different facts from various domains are built into a
ClearText Knowledgebase. The CT documents themselves can be in the form of sim-
ple web pages and any search engine can be used to index these pages. Once the CT
knowledgebase is built, rather than using just simple keywords, we can query the system
for more semantic concepts. There is a set of about one hundred rules that need to be
understood in order to formulate CT documents [Sku03].

Attempto Controlled English (ACE) is designed for requirements specification and
knowledge representation. Attempto is a research project from the University of Zurich. It
is a restricted grammar written as a DCG in Prolog. The vocabulary consists of predefined
determiners and other function words, where the nouns, adjectives, verbs, and other open
word classes are domain specific, and specified by a user. Attempto is directly translatable
into first order logic [Sch00].

Other research projects looking into CLs and KR include 4:

• Common Logic Controlled English (CLCE)5 aims to come as close to English as
possible while being translatable to FOL.

• First Order English (FOE) 6 is an English representation of first order logic.

• Controlled English to Logic Translation (CELT is a small CL which takes present
indicative verbs and singular nouns into KIF ontologies) [PM03].

5.2.2 Other CLs

Other implementations of CLs which are used for document production and machine
translation (MT): Perkins Approved English (PACE), SMART, ASD Simplified English
(formerly AECMA Simplified English), IBM Easy English, Suns Controlled English,
and Avayas Controlled English. The advantage of using CLs for MT is that pre-editing
of the text in order to remove any lexical, syntactic or semantic ambiguities improves the
accuracy and speed of machine translation.

[AS92] have developed a CL grammar for NLP research called COGRAM that con-
sists of about 150 controlled English rules. A computer implementation of this grammar is

3http://www.factguru.com
4http://www.ics.mq.edu.au/ rolfs/controlled-natural-languages/
5http://www.jfsowa.com/clce/specs.htm
6http://www.clp.ox.ac.uk/people/staff/pulman/current projects.html



CHAPTER 5. CLIE 22

ALCOGRAM. ALCOGRAM was implemented for research purposes as a way to inves-
tigate NLP technologies, in particular grammar checking and computer aided language
learning. COGRAM consists of a basic word list containing 5000 words and an addi-
tional 1000 technical terms and a simple set of grammatical rules. There are three main
components of COGRAM, the lexical component, the syntactic component and the styl-
istic component. The ALCOGRAM version combines this component with algorithmic
grammars that are used for verifying and formulating the text in a controlled language.

Given the ubiquity of controlled languages it is interesting to note that most of the lan-
guages were developed in a different way. The approaches vary in size of the dictionary,
number of grammatical rules, and extensibility. [AS92] emphasises the lack of similar-
ity between ASD (AECMA), Ericsson and IBM grammars. The important factor for this
may be that CLs usually tend to be domain dependent and are also designed keeping the
application in mind and can hence be quite subjective.

Below is a summary of the various features of some CLs.

CL CFE SMART KANT COGRAM CT
Dictionary size 800 1200 ? 5000 ?
Total Rules ? ? - 150 100
Technical docu-
ments

Yes Yes Yes Yes Yes

Machine Transla-
tion

Some ? Yes Yes ?

KR support No ? OWL ? OWL/RDF/CG
Validator ? Yes Yes Yes ?

The CLIE language is implemented using GATE [CMBT02].

5.3 CLIE language

Our CL is a simple way to construct and maintain knowledge. It allows a user to type in
plain English sentences a description of a knowledge base and its contents.

5.3.1 Description of the CL

CLIE CL is modelled to allow maximum expressibility within the smallest set of syn-
tactic structures. The limited number of allowed syntactic sentence structures makes the
language easier to learn; CLIE is much easier to use than OWL, RDF, or SQL.

CLIE employs a deterministic approach to translation, so that if a sentence can be
parsed, it can be parsed in one way only. Allowed sentences are unambiguous, so
each sentence type is translated to one type of statement. If parsing fails it will re-
sult in a warning and no ontological output. A user can easily verify which sentences



CHAPTER 5. CLIE 23

have been translated and which have not by using GATE annotations. The annotation
CLIE-SentenceParsed marks all sentences which were successfully translated. In
this way, if a sentence conforms to the rules of the language it results in a predictable
and accurate output. In some cases if the structure of the sentence conforms to one of
the defined structures, but the ontological inputs such as class names or properties are not
recognised as valid noun phrases, the grammar will attempt less rigorous parsing. The
user will be warned if this is the case.

For example the text:

There are projects. There are workpackages, tasks, and
deliverables.

SEKT is a project. ’MUSING’, ’Knowledge Web’, and Presto Space
are projects.

Projects have workpackages.
Workpackages can have tasks.
WP1, WP2, WP3, WP4, WP5 and WP6 are workpackages.

SEKT has WP1.

’MUSING’ has WP2, WP3, and WP4.
’Knowledge Web’ has WP5 and WP6.

Generates:

And output:

<#Project> rdf:type owl:Class .
<#Project> rdf:subClassOf <#Thing> .



CHAPTER 5. CLIE 24

<#Task> rdf:type owl:Class .
<#Task> rdf:subClassOf <#Thing> .
<#Workpackage> rdf:type owl:Class .
<#Workpackage> rdf:subClassOf <#Thing> .
<#Deliverable> rdf:type owl:Class .
<#Deliverable> rdf:subClassOf <#Thing> .
<#Sekt> rdf:type <#Project> .
<#Presto_Space> rdf:type <#Project> .
<#MUSING> rdf:type <#Project> .
<#Knowledge Web> rdf:type <#Project> .
<#has_Workpackage> rdf:type owl:ObjectProperty ;

rdfs:domain <#Project> ;
rdfs:range <#Workpackage> .

<#has_Task> rdf:type owl:ObjectProperty ;
rdfs:domain <#Workpackage> ;
rdfs:range <#Task> .

<#WP_1> rdf:type <#Workpackage> .
<#WP_3> rdf:type <#Workpackage> .
<#WP_4> rdf:type <#Workpackage> .
<#WP_6> rdf:type <#Workpackage> .
<#WP_2> rdf:type <#Workpackage> .
<#WP_5> rdf:type <#Workpackage> .
<#Sekt> <#has_Workpackage> <#WP_1> .
<#MUSING> <#has_Workpackage> <#WP_4> .
<#MUSING> <#has_Workpackage> <#WP_3> .
<#MUSING> <#has_Workpackage> <#WP_2> .
<#Knowledge Web> <#has_Workpackage> <#WP_5> .
<#Knowledge Web> <#has_Workpackage> <#WP_6> .

CLIE is not limited to one kind of discourse, and can cover many themes. For example
text:

There are animals. There are limbs. Legs are a type of limb.
Paws are a type of leg.

Cats, birds, and fish are a type of animal.

Cats have paws, whiskers, and tails. Fish have fins and scales.
Birds can have wings, feathers, and talons.

Moka is a cat. Tweety is a bird. Fido is a fish.

Grey paw and black paw are paws.



CHAPTER 5. CLIE 25

Moka has grey paw, and black paw.

Generates:

5.3.2 How to use CLIE CL

CLIE CL can be considered a “fill in the blank” kind of controlled language. Certain
sentence types only are considered and each of the sentences generates a deterministic
result.

In the following example the input text is shown in GATE document editor. Once the
the application is run you can see the key phrases for each of the sentences. They are
highighted as GATE annotations

The following sentences can be used to generate triples:



CHAPTER 5. CLIE 26

Class existence
Sentence Generates triple Example
There are CLASS(es). CLASS SubclassOf

ROOT
There are projects.

There are CLASSs,
CLASS2s, ..., and CLASSns.

CLASS1 SubclassOf
Root, ... CLASSn
SubclassOf ROOT

There are deliverables, work
packages, and tasks.

Class hierarchy
SUBCLASS is a type of
CLASS.

SUBCLASS SubclassOf
CLASS

Cat is a type of animal.

SUBCLASS1, SUBCLASS2,
... and SUBCLASSn are a
type of CLASS.

SUBCLASS1 SubclassOf
CLASS, ..., SUBCLASSn
SubclassOf CLASS

Wolves and foxes are a type
of animal.

Instance of a Class
INSTANCE is a(n) CLASS. INSTANCE InstanceOf

CLASS
SEKT is a project.

INSTANCE1, INSTANCE2,
... and INSTANCEn are a(n)
CLASS

INSTANCE1 InstanceOf
CLASS, ..., INSTANCEn
InstanceOf CLASS

WP1, WP2, WP3, are work
packages.

Class and instance properties
CLASS (can) have PROP-
ERTY.

CLASS CanHave PROP-
ERTY

Projects can have work pack-
ages.

CLASS (can) have PROP-
ERTY1, ... and PROPER-
TYn.

CLASS CanHave PROP-
ERTY1, ..., CLASS
CanHave PROPERTYn

Work packages can have de-
liverables and tasks.

INSTANCE has PROPERTY. INSTANCE has PROP-
ERTY

SEKT has WP1.

INSTANCE has PROP-
ERTY1, ..., and PROPER-
TYn.

INSTANCE has PROP-
ERTY1, ..., INSTANCE has
PROPERTYn

SEKT has WP1, WP2 and
WP3.

Further points about CLIE:

• Classes, instances, properties, values and other targets are assigned a standard for-
mat by CLIE unless they are surrounded by quotes. The standard CLIE label format
is camel cased with underscores, i.e. CLIE label becomes:

Clie_Label

• Commas before and are optional, so both WP1, WP2, and WP3 and WP1, WP2 and
WP3 are valid lists.



CHAPTER 5. CLIE 27

• When talking about an object in general plural can be used. For example, instead of
saying There are project. or There is a project., when trying to express the existence
of projects in general, one can use the more natural form of There are projects..

• Single quotes are used for preserving label orthography. In the above example we
have ’MUSING’ in single quotes. This ensures that the word preserves its capitali-
sation and is not presented as a standard CLIE item name, in this case Musing.

• Double quotes are reserved for text descriptions.

5.3.3 How to use CLIE through GATE

One way of using CLIE is through the GATE platform. This approach offers many ad-
vantages including an Ontology viewer, which visually represents the generated ontology,
and annotations, which help guide the writing process.

1. You need to download GATE. GATE can be obtained from
http://gate.ac.uk/download. Make sure you download GATE version 3.1-beta1 at
least. The CLIE application will not work with GATE version 3.0 or earlier.

2. Refer to GATE documentation on the same site for instructions on how to run GATE
for your platform.

3. Download the CLIE application from http://gate.ac.uk/sale/gateplugins/clie/clie.zip
and unpack it to a directory on your computer. This will create a directory called
“clie” which contains the application file called “clie.xgapp” as well as all the extra
files required by the application.

4. Once GATE is downloaded and running go to the File menu and click
on Restore Application from File. Browse to the location of
clie.xgapp.

5. Load an existing corpus or create a new one.

(a) To load an existing corpus go to the File menu. Click on New language
resource and then Gate corpus.

(b) To create a new corpus go to the File menu. Click on New language
resource and then Gate document.

• If you are opening text from an existing file specify the sourceURL.
• Otherwise, change to stringContent and type in the data manually.

(c) The data can be changed and augmented during your GATE session, however
this will not affect the original file from which the data was imported.

http://gate.ac.uk/download
http://gate.ac.uk/sale/gateplugins/clie/clie.zip


CHAPTER 5. CLIE 28

1. Add the corpus to the application. You can do this in the CLIE view which you can
reach by double clicking on the CLIE application.

2. Run the application. You can either right click on the application in the left frame
or click the Run button on the CLIE view.

1. CLIE will now populate the ontology and generate the annotations on the docu-
ments.

2. To view the annotations double-click on the document. Click on the button marked
Annotation Sets, and expand the list which will show on the right. The CLIE
specific annotations are prefixed with CLIE. CLIE-SentenceParsed annota-
tion shows which sentences have been successfully translated into the ontology.
CLIE-SentenceChunked shows which sentences were parsed using less rigor-
ous parsing.



CHAPTER 5. CLIE 29

5.3.4 Design

The plain text input is processed using GATE [CMBT02]. The input is tokenised, tagged
and analysed using a morphological analyser. The resulting annotations are processed
with JAPE transducers and appropriate patterns are extracted.

The GATE architecture allows versatility, fast development, and direct interface with
the ontologies. Using GATE the input text is processed with a tokeniser, tagger, and a
morphological analyser. Nouns and specific noun phrases are identified using a JAPE
transducer. Then another transducer searches for patterns over annotations looking for
the types of sentences outlined above. In these sentences specific tokens and the marked
nouns are used to extract information. The sentences are fully parsed which guarantees
precision and no information loss.

The tokeniser separates input into tokens. It identifies words within a sentence and
separates them from punctuation. For example in the sentence:

There are deliverables.

The tokens are:

[There] [are] [deliverables] [.]

The tagger finds the parts of speech for each of the tokens. In other words it finds out
what kind of a word each of the tokens is; whether it is a noun, an adjective, a verb, etc.

[There]: existential quantifier
[are]: verb - 3rd person singular present
[deliverables]: noun - plural

The morphological analyser gives the roots of all the words.

[There]: root - there
[are]: root - be
[deliverables]: root - deliverable

The morphological analyser allows these general types of sentences which announce
existence of classes without the need for using artificial singular expressions, i.e. There is
deliverable.

The first JAPE transducer will take the above annotated sentence and look for and
mark noun patterns which are likely candidates for CLASS, INSTANCE, and other onto-
logical objects.

The second JAPE transducer, and the final step, is CLIE itself. It looks for specific
patterns outlined above to extract the information. For example:



CHAPTER 5. CLIE 30

There are ----.

It then calls Clie.java class function:

Clie.addTriple(Ontology, Subject, Object, Predicate)

The Clie class mediates between the textual input and the Ontology.

5.4 Summary and Future Work

The controlled language IE task has developed a simplified natural language processor
that, on the one hand, allows the specification of logical data for Semantic KT purposes
in normal language, while, on the other hand, attaining the high accuracy levels necessary
for high-reliability applications. Therefore, users now have alternative means for building
ontologies, other than the ‘traditional’ ontology editors such as Protege.

CLIE is based on GATE’s existing FST cascade IE [CMBT02]. CLIE is configured so
that it either accepts input as valid (in which case accuracy is in general 100%) or rejects
it and warns the user of needed repairs to their syntax. In certain cases the system will
try a less strict analysis mode in order to suggest how repair may be effected. Therefore,
because the parsing process is deterministic, accuracy is not really an issue.

In year 3 work will focus on evaluating CLIE and extending it to cover a richer set of
language constructs.



Bibliography

[AS92] G. Adriaens and D. Schreurs. From COGRAM to ALCOGRAM: Toward
a controlled English Grammar Checker. In Conference on Computational
Linguistics (COLING’92), pages 595–601, Nantes, France, 1992.

[CMBT02] H. Cunningham, D. Maynard, K. Bontcheva, and V. Tablan. GATE: A
Framework and Graphical Development Environment for Robust NLP Tools
and Applications. In Proceedings of the 40th Anniversary Meeting of the
Association for Computational Linguistics (ACL’02), 2002.

[KAMN98] C. Kamprath, E. Adolphson, T. Mitamura, and E. Nyberg. Controlled Lan-
guage for Multilingual Document Production: Experience with Caterpillar
Technical English. In Second International Workshop on Controlled Lan-
guage Applications (CLAW ’98), 1998.

[PM03] A. Pease and W. Murray. An english to logic traslator for ontology-based
knowledge representation languages. In In Proceedings of the 2003 IEEE
International Conference on Natural Language Processing and Knowledge
Engineering, pages 777–783, Beijing, China, 2003.

[Pul96] S. Pulman. Controlled Language for Knowledge Representation. In
CLAW96: Proceedings of the First International Workshop on Controlled
Language Applications, pages 233–242, Leuven, Belgium, 1996.

[Sch00] Uta Schwertel. Controlling plural ambiguities in Attempto Controlled Eng-
lish. In Proceedings of the 3rd International Workshop on Controlled Lan-
guage Applications, Seattle, Washington, 2000.

[Sku03] D. Skuce. A Controlled Language for Knowledge Formulation on the Se-
mantic Web. http://www.site.uottawa.ca:4321/factguru2.pdf, 2003.

[Sow02] J. Sowa. Architectures for intelligent systems. IBM Systems Journal, 41(3),
2002.

31



Appendix A

Yam Syntax

A.1 Overview of JAPE

This section describes briefly JAPE – a Java Annotation Patterns Engine1. JAPE provides
finite state transduction over annotations based on regular expressions. JAPE is a version
of CPSL – Common Pattern Specification Language2.

JAPE allows you to recognise regular expressions in annotations on documents. A
JAPE grammar consists of a set of phases, each of which consists of a set of pattern/action
rules. The phases run sequentially and constitute a cascade of finite state transducers over
annotations. The left-hand-side (LHS) of the rules consist of an annotation pattern that
may contain regular expression operators (e.g. *, ?, +). The right-hand-side (RHS)
consists of annotation manipulation statements. Annotations matched on the LHS of a
rule may be referred to on the RHS by means of labels that are attached to pattern ele-
ments.

At the beginning of each grammar, several options can be set:

• Control - this defines the method of rule matching

• Debug - this enables debugging of JAPE grammars - see
http://gate.ac.uk/sale/tao/index.html#chap:jape.

Input annotations must also be defined at the start of each grammar. If no annotations
are defined, the default will be Token, SpaceToken and Lookup (i.e. only these annota-
tions will be considered when attempting a match).

There are 3 main ways in which the pattern can be specified:
1For a complete introduction see http://gate.ac.uk/sale/tao/index.html#chap:jape.
2A good description of the original version of this language is in

http://www.ai.sri.com/˜appelt/TextProDoug Appelt’s TextPro manual. Doug was a
great help to us in implementing JAPE. Thanks Doug!

32



APPENDIX A. YAM SYNTAX 33

• specify a string of text, e.g. {Token.string == “of”}

• specify an annotation previously assigned from a gazetteer, tokeniser, or other mod-
ule, e.g. {Lookup}

• specify the attributes (and values) of an annotation), e.g. {Token.kind == number}

Macros can also be used in the LHS of rules. This means that instead of expressing the
information in the rule, it is specified in a macro, which can then be called in the rule. The
reason for this is simply to avoid having to repeat the same information in several rules.
Macros can themselves be used inside other macros.

The same operators can be used as for the tokeniser rules, i.e.

|

*
?
+

The pattern description is followed by a label for the annotation. A label is denoted
by a preceding semi-colon; in the example below, the label is :location.

The RHS of the rule contains information about the annotation. Information about the
annotation is transferred from the LHS of the rule using the label just described, and an-
notated with the entity type (which follows it). Finally, attributes and their corresponding
values are added to the annotation. Alternatively, the RHS of the rule can contain Java
code to create or manipulate annotations.

In the simple example below, the pattern described will be awarded an annotation of
type “Enamex” (because it is an entity name). This annotation will have the attribute
“kind”, with value “location”, and the attribute “rule”, with value “GazLocation”. (The
purpose of the “rule” attribute is simply to ease the process of manual rule validation).

Rule: GazLocation
(
{Lookup.majorType == location}
)
:location -->
:location.Enamex = {kind="location", rule=GazLocation}

It is also possible to have more than one pattern and corresponding action, as shown
in the rule below. On the LHS, each pattern is enclosed in a set of round brackets and
has a unique label; on the RHS, each lable is associated with an action. In this example,
the Lookup annotation is labelled “jobtitle” and is given the new annotation JobTitle; the
TempPerson annotation is labelled “person” and is given the new annotation “Person”.



APPENDIX A. YAM SYNTAX 34

Rule: PersonJobTitle
Priority: 20

(
{Lookup.majorType == jobtitle}

):jobtitle
(
{TempPerson}

):person
-->

:jobtitle.JobTitle = {rule = "PersonJobTitle"},
:person.Person = {kind = "personName", rule = "PersonJobTitle"}

Similarly, labelled patterns can be nested, as in the example below, where the whole
pattern is annnotated as Person, but within the pattern, the jobtitle is annotated as JobTitle.

Rule: PersonJobTitle2
Priority: 20

(
(
{Lookup.majorType == jobtitle}
):jobtitle
{TempPerson}
):person
-->

:jobtitle.JobTitle = {rule = "PersonJobTitle"},
:person.Person = {kind = "personName", rule = "PersonJobTitle"}

A.2 Yam Syntax

A.2.1 Bold, italic and teletype

Bold text is contained in stars: *this is bold* becomes this is bold.

Italic text is contained in underscores: this is italic becomes this is italic.

Fixed-width text is contained in equals signs: =this is teletype= becomes
this is teletype.

A.2.2 Horizontal lines

Horizontal lines are indicated by 2 or more For example:



APPENDIX A. YAM SYNTAX 35

%%

and

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

both result in:

A.2.3 Lists

Unordered lists are indicated by ’o’ at the start of a line, and ordered lists by ’-’. Nesting
is indicated by two spaces preceding the item indicator. For example:

- This is an undordered list
- Second item

o This is a nested...
o ...ordered list

- Back to the third item of the enclosing list

results in:

• This is an undordered list

• Second item

1. This is a nested...
2. ...ordered list

• Back to the third item of the enclosing list

A.2.4 Verbatim output

Verbatim output starts with ‘<<’ at the start of a line and ends with ‘>>’. For example:

<<
This *will not* get translated
>>

When the target language is HTML, for example, the output will contain

<pre>

tags. It is also possible to tell the translator to write output directly without any inter-
vention, using << >> :
<pre> This will not get translated either, but any markup in the target language will be
interpreted in that language. ) </pre>



APPENDIX A. YAM SYNTAX 36

A.2.5 Notes

Notes are like this:

%notes("This is a note")

The contents will be output to the translation file, but will be commented out in that
file. The quotation marks around the note are necessary; notes cannot contain quotation
marks (even if escaped).

A.2.6 Escapes

To stop a special character from being interpreted, use a ‘\’. For example,

\%%

will not generate a line.

Some syntax elements interact with each other and produce unexpected escaping be-
haviour. For example, in

‘=http://gate.ac.uk/=’

the equals signs are translated, but not the URL they contain (with the result
’http://gate.ac.uk/’).

A.2.7 Headings

Headings are lines starting with %1 (for first level), %2, %3 or %4. For example, the
heading for this section is

%1 Headings

A.2.8 Links and anchors

Links can be specified in four ways:

1. As plain text, e.g. ’http://gate.ac.uk/’ will become http://gate.ac.uk/

http://gate.ac.uk/


APPENDIX A. YAM SYNTAX 37

2. Using ’%(target)’, e.g. %(http://gate.ac.uk/) will become
http://gate.ac.uk/

3. Using ’%(target, label)’, e.g. %(http://gate.ac.uk/, GATE
home) will become GATE home

4. Using Wiki syntax

Anchors and labels are specified using ’#name’. For example,

%2 A Heading #label

will result in a heading followed by the anchor label.

A.2.9 Quotations

Quotations are enclosed in ‘"’ marks that are preceded by two spaces at the start of a line.
For example,

"This is a quote"

becomes:

This is a quote

A.2.10 Line breaks

Line breaks are indicated by a backslash at the end of a line. For example:

This line is broken\
in two.

becomes:
This line is broken
in two.

http://gate.ac.uk/
http://gate.ac.uk/


APPENDIX A. YAM SYNTAX 38

A.2.11 Tables

Tables use square brackets, bars and dashes. For example:

%[

*header col 1* | *header col 2*
----
row 1 col 1 | col 2
----
row 2 col 1 | col 2
%]

results in:
header col 1 header col 2
row 1 col 1 col 2
row 2 col 1 col 2

A.3 YAM syntax design

A.3.1 Bugs:

1. include plugin only works from command line, otherwise it looks for the file in
the plugins directory, and that’s no good. get resource doesn’t appear to work well
either in this case

2. the target in a url gets interpreted as an anchor when the protocol isn’t specified
(e.g. antlr.org/doc/lexer.html#unicode)

3. unclosed = causes open tt with no close

4. text at the end of a URL can get included in the URL, e.g.
http://antlr.org/doc/lexer.html#unicode: includes the ”:”

5. there’s no way to end an embedded list element except by another list element
(embedded or higher level)

Completed:

1. the citation plugin is HTML specific

2. the citation plugin closes any embedding lists; what is needed is to be able to tell
the context not to do further processing on the results of the plugin, instead of using
the output mechanism

http://antlr.org/doc/lexer.html#unicode:


APPENDIX A. YAM SYNTAX 39

3. an empty notes field results in null pointer exception

A.3.2 Wish list:

• anchors that are at the end of a heading line should be sent to the translator as a sep-
arate call, link(url, title, anchor), so that the translator can position
the anchor before or after the heading as appropriate

• allow to be escaped within an emphasised phrase

• allow a string of percents at the end of a line to be a comment

• section level one should translate to H1

• WikiLinks (see below)

• definition lists like twiki

• variables, e.g. like twiki’s null

• table summary attributes

• UTF-8

Completed:

• ”generated file” warning in the output file

• autogenerate anchor/label from normalised words of header + int?

1. this is only done when building the table of contents, but can be easily changed
to work otherwise too.

2. the anchors are the same as the number preceding the heading, e.g. ”1.1.”

• citation

• auto parsing all in-line links like http:, mailto:, ...

• ability to create mailto and ftp links with text - %(mailto:...) or %(mailto:..., ...)

1. anything that’s within %() is a link, regardless of it’s format

• auto-numbering of sections in the HTML translator

• images

• %contents with numbered links to sections



APPENDIX A. YAM SYNTAX 40

• double dashes: – makes a long dash

• get escaping of etc. to works except within the markup itself,i.e. I couldn’t escape
an underscore in this sentence

• allow - in title

• allow e.g. - in anchors

A.3.3 WikiLinks

WikiLinks are just links, created either like other links (%(...)), or by typing a Wiki-
Word. Some points:

• WikiSyntaxForLinks should include an optional relative path, e.g.
path/to/WikiWord

• when the target of a WikiLink exists, it is treated exactly like a normal link

• when the target doesn’t exist, the link is rendered specially, and clicking directs you
to a create page

• therefore, the renderer (yam2...) has to know whether a local link exists or not
in every case

A.4 CLIE implementation

Main translation and parsing is done through the JAPE files.

A.4.1 clie.jape

This file does main CLIE translation.

/*
* clie.jape

*
* Copyright (c) 1998-2005, The University of Sheffield.

*
*/



APPENDIX A. YAM SYNTAX 41

Phase: CLIE
Input: Token NP QS Split
Options: control = appelt

Macro:String
(

({Token.string=="""}({QS}):stringItem{Token.string=="""})
)

Macro:NP
(

({NP}):items|
({Token.string=="’"}({QS}):verbItem{Token.string=="’"})

)

Macro:ObjectNP
(

({NP}):object|
({Token.string=="’"}({QS}):verbObject{Token.string=="’"})

)
Macro:PropertyNP
(

({NP}):property|
({Token.string=="’"}({QS}):verbProperty{Token.string=="’"})

)
Macro:Chunk
(

(({Token.kind==word}|{Token.kind==number})+):items |
({Token.string=="’"}({QS}):verbItem{Token.string=="’"})

)

Macro:NPList
(

((NP){Token.string==","})*
(NP)
({Token.string==","})?

{Token.string=="and"}
(NP)

)
Macro:ChunkList
(

((Chunk){Token.string==","})*



APPENDIX A. YAM SYNTAX 42

(Chunk)
({Token.string==","})?

{Token.string=="and"}
(Chunk)

)

Rule: There_are_objects
((({Token.string == "there"}|{Token.string == "There"})

({Token.string == "are"}|{Token.string == "is"})):keyphrase
(NPList|NP)
{Split}

):parsed
-->
{

Annotation tokAnn;
Iterator objIter;
String object = "";

Annotation objAnn;
List tokens;

AnnotationSet objects = (AnnotationSet)bindings.get("items");
if(objects != null) {
objIter = objects.iterator();

while(objIter.hasNext()) {
object = "";
objAnn = (Annotation)objIter.next();
tokens = new ArrayList(inputAS.get("Token",

objAnn.getStartNode().getOffset(),
objAnn.getEndNode().getOffset()));

Collections.sort(tokens, new OffsetComparator());
for(int i = 0; i < tokens.size() -1; i++){
tokAnn = (Annotation)tokens.get(i);
object +=
sins.clie.Clie.camelCase((String)tokAnn.getFeatures().
get("string"))+ "_";

}
tokAnn = (Annotation)tokens.get(tokens.size() -1);
object +=
sins.clie.Clie.camelCase((String)tokAnn.getFeatures().
get("root"));



APPENDIX A. YAM SYNTAX 43

sins.clie.Clie.newClass(ontology, object, sins.clie.Clie.
TOP_CLASS_NAME);

}
}

objects = (AnnotationSet)bindings.get("verbItem");
if(objects != null) {

objIter = objects.iterator();

while(objIter.hasNext()) {
object = "";
objAnn = (Annotation)objIter.next();
object = (String)objAnn.getFeatures().get("string");
sins.clie.Clie.newClass(ontology, object, sins.clie.Clie.
TOP_CLASS_NAME);

}
}

AnnotationSet parsedAS = (AnnotationSet)bindings.get("parsed");
AnnotationSet keyPhraseAS = (AnnotationSet)bindings.
get("keyphrase");
FeatureMap features = Factory.newFeatureMap();
features.put("rule", "There_are_objects");
try {

outputAS.add(keyPhraseAS.firstNode().getOffset(),
keyPhraseAS.lastNode().getOffset(),
"CLIE-NewClass", features);

outputAS.add(parsedAS.firstNode().getOffset(),
parsedAS.lastNode().getOffset(),
"CLIE-SentenceParsed", Factory.newFeatureMap());

}catch(Exception ioe){
ioe.printStackTrace();

}
}

Rule: Thing_is_an_object

((NP|NPList)
( ({Token.string == "is"})

({Token.string == "a"} |{Token.string == "an"})
|
{Token.string == "are"}



APPENDIX A. YAM SYNTAX 44

):keyphrase
ObjectNP
{Split}

):parsed
-->
{

Annotation tokAnn;
Iterator thingIter;
List tokens;
String object = "";
String thing = "";
if(bindings.get("object") != null) {
Annotation objAnn =
(Annotation)((AnnotationSet)bindings.get("object")).
iterator().next();

//input annotations are in inputAS
tokens = new ArrayList(inputAS.get("Token",

objAnn.getStartNode().getOffset(),
objAnn.getEndNode().getOffset()));

Collections.sort(tokens, new OffsetComparator());

for(int i = 0; i < tokens.size() -1; i++){
tokAnn = (Annotation)tokens.get(i);
object +=
sins.clie.Clie.camelCase((String)tokAnn.getFeatures().
get("string")) + "_";

}
tokAnn = (Annotation)tokens.get(tokens.size() -1);
object +=
sins.clie.Clie.camelCase((String)tokAnn.getFeatures().
get("root"));

}
else if(bindings.get("verbObject") != null) {
Annotation objAnn =
(Annotation)((AnnotationSet)bindings.get("verbObject")).
iterator().next();

//input annotations are in inputAS

object += (String)objAnn.getFeatures().get("string");

}

AnnotationSet things = (AnnotationSet)bindings.get("items");



APPENDIX A. YAM SYNTAX 45

if( things != null) {

thingIter = things.iterator();

while(thingIter.hasNext()) {
thing = "";
Annotation thingAnn = (Annotation)thingIter.next();
tokens = new ArrayList(inputAS.get("Token",

thingAnn.getStartNode().getOffset(),
thingAnn.getEndNode().getOffset()));

Collections.sort(tokens, new OffsetComparator());
for(int i = 0; i < tokens.size() -1; i++){
tokAnn = (Annotation)tokens.get(i);
thing +=
sins.clie.Clie.camelCase((String)tokAnn.getFeatures().
get("string")) + "_";

}
tokAnn = (Annotation)tokens.get(tokens.size() -1);
thing +=
sins.clie.Clie.camelCase((String)tokAnn.getFeatures().
get("root"));

sins.clie.Clie.hasInstance(ontology, object, thing);
}

}
things = (AnnotationSet)bindings.get("verbItem");

if( things != null) {
thingIter = things.iterator();

while(thingIter.hasNext()) {
thing = "";
Annotation thingAnn = (Annotation)thingIter.next();
thing = (String)thingAnn.getFeatures().get("string");
sins.clie.Clie.hasInstance(ontology, object, thing);

}
}
AnnotationSet parsedAS = (AnnotationSet)bindings.get("parsed");
AnnotationSet keyPhraseAS = (AnnotationSet)bindings.
get("keyphrase");
FeatureMap features = Factory.newFeatureMap();
features.put("rule", "Thing_is_an_object");
try {



APPENDIX A. YAM SYNTAX 46

outputAS.add(keyPhraseAS.firstNode().getOffset(),
keyPhraseAS.lastNode().getOffset(),
"CLIE-InstanceOf", features);

outputAS.add(parsedAS.firstNode().getOffset(),
parsedAS.lastNode().getOffset(),
"CLIE-SentenceParsed", Factory.newFeatureMap());

}catch(Exception ioe){
ioe.printStackTrace();

}
}
Rule: Thing_is_a_type_of_object

(
(NP|NPList)
(

({Token.string == "is"}|{Token.string == "are"})
({Token.string == "a"})
{Token.string == "type"}
{Token.string == "of"}

):keyphrase
ObjectNP
{Split}

):parsed
-->
{

Annotation tokAnn;
Iterator thingIter;
List tokens;
String object = "";
String thing = "";

if(bindings.get("object") != null) {
Annotation objAnn =
(Annotation)((AnnotationSet)bindings.get("object")).
iterator().next();

//input annotations are in inputAS
tokens = new ArrayList(inputAS.get("Token",

objAnn.getStartNode().getOffset(),
objAnn.getEndNode().getOffset()));

Collections.sort(tokens, new OffsetComparator());

for(int i = 0; i < tokens.size() -1; i++){
tokAnn = (Annotation)tokens.get(i);



APPENDIX A. YAM SYNTAX 47

object +=
sins.clie.Clie.camelCase((String)tokAnn.getFeatures().
get("string")) + "_";

}
tokAnn = (Annotation)tokens.get(tokens.size() -1);
object +=
sins.clie.Clie.camelCase((String)tokAnn.getFeatures().
get("root"));

}
else if(bindings.get("verbObject") != null) {
Annotation objAnn =
(Annotation)((AnnotationSet)bindings.get("verbObject")).
iterator().next();

//input annotations are in inputAS

object += (String)objAnn.getFeatures().get("string");

}

if( bindings.get("items") != null) {
AnnotationSet things = (AnnotationSet)bindings.get("items");
thingIter = things.iterator();

while(thingIter.hasNext()) {
thing = "";
Annotation thingAnn = (Annotation)thingIter.next();
tokens = new ArrayList(inputAS.get("Token",

thingAnn.getStartNode().getOffset(),
thingAnn.getEndNode().getOffset()));

Collections.sort(tokens, new OffsetComparator());
for(int i = 0; i < tokens.size() -1; i++){
tokAnn = (Annotation)tokens.get(i);
thing +=
sins.clie.Clie.camelCase((String)tokAnn.getFeatures().
get("string")) + "_";

}
tokAnn = (Annotation)tokens.get(tokens.size() -1);
thing +=
sins.clie.Clie.camelCase((String)tokAnn.getFeatures().
get("root"));

sins.clie.Clie.newClass(ontology, thing, object);



APPENDIX A. YAM SYNTAX 48

}
}
if( bindings.get("verbItem") != null) {

AnnotationSet things = (AnnotationSet)bindings.get("verbItem");
thingIter = things.iterator();

while(thingIter.hasNext()) {
thing = "";
Annotation thingAnn = (Annotation)thingIter.next();
thing = (String)thingAnn.getFeatures().get("string");

sins.clie.Clie.newClass(ontology, thing, object);

}
}
AnnotationSet parsedAS = (AnnotationSet)bindings.get("parsed");
AnnotationSet keyPhraseAS = (AnnotationSet)bindings.
get("keyphrase");
FeatureMap features = Factory.newFeatureMap();
features.put("rule", "Thing_is_a_type_of_object");
try {

outputAS.add(keyPhraseAS.firstNode().getOffset(),
keyPhraseAS.lastNode().getOffset(),
"CLIE-Subclass", features);

outputAS.add(parsedAS.firstNode().getOffset(),
parsedAS.lastNode().getOffset(),
"CLIE-SentenceParsed", Factory.newFeatureMap());

}catch(Exception ioe){
ioe.printStackTrace();

}
}

Rule: Object_can_have_property

(
ObjectNP
(({Token.string == "can"})?

{Token.string == "have"}):keyphrase
(NPList|NP)
{Split}

):parsed



APPENDIX A. YAM SYNTAX 49

-->
{

Annotation tokAnn;
Iterator thingIter;
List tokens;
String object = "";
String property = "";
if(bindings.get("object") != null) {
Annotation objAnn =
(Annotation)((AnnotationSet)bindings.get("object")).
iterator().next();

//input annotations are in inputAS
tokens = new ArrayList(inputAS.get("Token",

objAnn.getStartNode().getOffset(),
objAnn.getEndNode().getOffset()));

Collections.sort(tokens, new OffsetComparator());

for(int i = 0; i < tokens.size() -1; i++){
tokAnn = (Annotation)tokens.get(i);
object +=
sins.clie.Clie.camelCase((String)tokAnn.getFeatures().
get("string")) + "_";

}
tokAnn = (Annotation)tokens.get(tokens.size() -1);
object +=
sins.clie.Clie.camelCase((String)tokAnn.getFeatures().
get("root"));

}
else if(bindings.get("verbObject") != null) {
Annotation objAnn =
(Annotation)((AnnotationSet)bindings.get("verbObject")).
iterator().next();

//input annotations are in inputAS

object += (String)objAnn.getFeatures().get("string");

}
if( bindings.get("items") != null) {

AnnotationSet things = (AnnotationSet)bindings.get("items");
thingIter = things.iterator();

while(thingIter.hasNext()) {



APPENDIX A. YAM SYNTAX 50

property = "";
Annotation thingAnn = (Annotation)thingIter.next();
tokens = new ArrayList(inputAS.get("Token",

thingAnn.getStartNode().getOffset(),
thingAnn.getEndNode().getOffset()));

Collections.sort(tokens, new OffsetComparator());
for(int i = 0; i < tokens.size() -1; i++){
tokAnn = (Annotation)tokens.get(i);
property +=
sins.clie.Clie.camelCase((String)tokAnn.getFeatures().
get("string")) + "_";

}
tokAnn = (Annotation)tokens.get(tokens.size() -1);
property +=
sins.clie.Clie.camelCase((String)tokAnn.getFeatures().
get("root"));

sins.clie.Clie.hasObjectProperty(ontology, object, "has_"+
property, property);

}
}
if( bindings.get("verbItem") != null) {

AnnotationSet things = (AnnotationSet)bindings.get("verbItem");
thingIter = things.iterator();

while(thingIter.hasNext()) {
property = "";
Annotation thingAnn = (Annotation)thingIter.next();
property = (String)thingAnn.getFeatures().get("string");

sins.clie.Clie.hasObjectProperty(ontology, object,
"has_"+property, property);

}
}
AnnotationSet parsedAS = (AnnotationSet)bindings.get("parsed");
AnnotationSet keyPhraseAS = (AnnotationSet)bindings.
get("keyphrase");
FeatureMap features = Factory.newFeatureMap();
features.put("rule", "Object_can_have_property");
try {

outputAS.add(keyPhraseAS.firstNode().getOffset(),
keyPhraseAS.lastNode().getOffset(),
"CLIE-NewProperty", features);



APPENDIX A. YAM SYNTAX 51

outputAS.add(parsedAS.firstNode().getOffset(),
parsedAS.lastNode().getOffset(), "CLIE-SentenceParsed",
Factory.newFeatureMap());

}catch(Exception ioe){
ioe.printStackTrace();

}
}

Rule: Object_has_property
(ObjectNP

({Token.string == "has"}):keyphrase
(NPList|NP)
{Split}

):parsed
-->
{

Annotation tokAnn;
Iterator thingIter;
List tokens;
String object = "";
String property = "";

if(bindings.get("object") != null) {
Annotation objAnn =
(Annotation)((AnnotationSet)bindings.get("object")).
iterator().next();

//input annotations are in inputAS
tokens = new ArrayList(inputAS.get("Token",

objAnn.getStartNode().getOffset(),
objAnn.getEndNode().getOffset()));

Collections.sort(tokens, new OffsetComparator());

for(int i = 0; i < tokens.size() -1; i++){
tokAnn = (Annotation)tokens.get(i);
object +=
sins.clie.Clie.camelCase((String)tokAnn.getFeatures().
get("string")) + "_";

}
tokAnn = (Annotation)tokens.get(tokens.size() -1);
object +=
sins.clie.Clie.camelCase((String)tokAnn.getFeatures().
get("root"));



APPENDIX A. YAM SYNTAX 52

}
else if(bindings.get("verbObject") != null) {
Annotation objAnn =
(Annotation)((AnnotationSet)bindings.get("verbObject")).
iterator().next();

//input annotations are in inputAS

object += (String)objAnn.getFeatures().get("string");

}
if( bindings.get("items") != null) {

AnnotationSet things = (AnnotationSet)bindings.get("items");
thingIter = things.iterator();

while(thingIter.hasNext()) {
property = "";
Annotation thingAnn = (Annotation)thingIter.next();
tokens = new ArrayList(inputAS.get("Token",

thingAnn.getStartNode().getOffset(),
thingAnn.getEndNode().getOffset()));

Collections.sort(tokens, new OffsetComparator());
for(int i = 0; i < tokens.size() -1; i++){
tokAnn = (Annotation)tokens.get(i);
property +=
sins.clie.Clie.camelCase((String)tokAnn.getFeatures().
get("string")) + "_";

}
tokAnn = (Annotation)tokens.get(tokens.size() -1);
property +=
sins.clie.Clie.camelCase((String)tokAnn.getFeatures().
get("root"));

sins.clie.Clie.hasPropertyValue(ontology, object, property);
}

}
if( bindings.get("verbItem") != null) {

AnnotationSet things = (AnnotationSet)bindings.get("verbItem");
thingIter = things.iterator();

while(thingIter.hasNext()) {
property = "";
Annotation thingAnn = (Annotation)thingIter.next();
property = (String)thingAnn.getFeatures().get("string");



APPENDIX A. YAM SYNTAX 53

sins.clie.Clie.hasPropertyValue(ontology, object, property);
}

}

AnnotationSet parsedAS = (AnnotationSet)bindings.get("parsed");
AnnotationSet keyPhraseAS = (AnnotationSet)bindings.
get("keyphrase");
FeatureMap features = Factory.newFeatureMap();
features.put("rule", "Object_has_property");
try {

outputAS.add(keyPhraseAS.firstNode().getOffset(),
keyPhraseAS.lastNode().getOffset(),
"CLIE-HasProperty", features);

outputAS.add(parsedAS.firstNode().getOffset(),
parsedAS.lastNode().getOffset(),
"CLIE-SentenceParsed",
Factory.newFeatureMap());

}catch(Exception ioe){
ioe.printStackTrace();

}

}

Rule: Object_has_property_with_value_value_NP
Priority:50
(

ObjectNP
({Token.string == "has"}|{Token.string == "have"})
PropertyNP
({Token.string == "with"}
{Token.string == "value"} |
{Token.string == "which"}
({Token.string == "is"}|{Token.string == "are"})):keyphrase
(NPList|NP|String)
{Split}

):parsed
-->
{

Annotation tokAnn;
Iterator thingIter;



APPENDIX A. YAM SYNTAX 54

List tokens;
String object = "";
String property = "";
String value = "";
if(bindings.get("object") != null) {
Annotation objAnn =
(Annotation)((AnnotationSet)bindings.get("object")).
iterator().next();

//input annotations are in inputAS
tokens = new ArrayList(inputAS.get("Token",

objAnn.getStartNode().getOffset(),
objAnn.getEndNode().getOffset()));

Collections.sort(tokens, new OffsetComparator());

for(int i = 0; i < tokens.size() -1; i++){
tokAnn = (Annotation)tokens.get(i);
object +=
sins.clie.Clie.camelCase((String)tokAnn.getFeatures().
get("string")) + "_";

}
tokAnn = (Annotation)tokens.get(tokens.size() -1);
object +=
sins.clie.Clie.camelCase((String)tokAnn.getFeatures().
get("root"));

}
else if(bindings.get("verbObject") != null) {
Annotation objAnn =
(Annotation)((AnnotationSet)bindings.get("verbObject")).
iterator().next();

//input annotations are in inputAS

object += (String)objAnn.getFeatures().get("string");

}
if( bindings.get("property") != null) {

Annotation thingAnn =
(Annotation)((AnnotationSet)bindings.get("property")).
iterator().next();

property = "";
//input annotations are in inputAS
tokens = new ArrayList(inputAS.get("Token",

thingAnn.getStartNode().getOffset(),



APPENDIX A. YAM SYNTAX 55

thingAnn.getEndNode().getOffset()));
Collections.sort(tokens, new OffsetComparator());
for(int i = 0; i < tokens.size() -1; i++){
tokAnn = (Annotation)tokens.get(i);
property +=
sins.clie.Clie.camelCase((String)tokAnn.getFeatures().
get("string")) + "_";

}
tokAnn = (Annotation)tokens.get(tokens.size() -1);
property +=
sins.clie.Clie.camelCase((String)tokAnn.getFeatures().
get("root"));

property = "has_" + property;
}
else if( bindings.get("verbProperty") != null) {

Annotation thingAnn =
(Annotation)((AnnotationSet)bindings.get("verbProperty")).
iterator().next();

property = (String)thingAnn.getFeatures().get("string");

property = "has_" + property;
}
if( bindings.get("items") != null) {

AnnotationSet things = (AnnotationSet)bindings.get("items");
thingIter = things.iterator();

while(thingIter.hasNext()) {
value = "";
Annotation thingAnn = (Annotation)thingIter.next();
tokens = new ArrayList(inputAS.get("Token",

thingAnn.getStartNode().getOffset(),
thingAnn.getEndNode().getOffset()));

Collections.sort(tokens, new OffsetComparator());
for(int i = 0; i < tokens.size() -1; i++){
tokAnn = (Annotation)tokens.get(i);
value +=
sins.clie.Clie.camelCase((String)tokAnn.getFeatures().
get("string")) + "_";

}
tokAnn = (Annotation)tokens.get(tokens.size() -1);
value +=
sins.clie.Clie.camelCase((String)tokAnn.getFeatures().



APPENDIX A. YAM SYNTAX 56

get("root"));
sins.clie.Clie.hasPropertyValue(ontology, object, property,
value);

}
}
if( bindings.get("verbItem") != null) {

AnnotationSet things = (AnnotationSet)bindings.get("verbItem");
thingIter = things.iterator();

while(thingIter.hasNext()) {
value = "";
Annotation thingAnn = (Annotation)thingIter.next();
value = (String)thingAnn.getFeatures().get("string");

sins.clie.Clie.hasPropertyValue(ontology, object, property,
value);

}

}
if( bindings.get("stringtem") != null) {

AnnotationSet things = (AnnotationSet)bindings.get("stringItem");
thingIter = things.iterator();

while(thingIter.hasNext()) {
value = "";
Annotation thingAnn = (Annotation)thingIter.next();
value = (String)thingAnn.getFeatures().get("string");

sins.clie.Clie.hasPropertyTextValue(ontology, object,
property, value);

}
}
AnnotationSet parsedAS = (AnnotationSet)bindings.get("parsed");
AnnotationSet keyPhraseAS = (AnnotationSet)bindings.
get("keyphrase");
FeatureMap features = Factory.newFeatureMap();
features.put("rule", "Object_has_property_with_value_value_NP");
try {

outputAS.add(keyPhraseAS.firstNode().getOffset(),
keyPhraseAS.lastNode().getOffset(),
"CLIE-PropertyValue", features);

outputAS.add(parsedAS.firstNode().getOffset(),
parsedAS.lastNode().getOffset(),



APPENDIX A. YAM SYNTAX 57

"CLIE-SentenceParsed",
Factory.newFeatureMap());

}catch(Exception ioe){
ioe.printStackTrace();

}

}
Rule: Object_has_property_with_value_value_CHUNK
Priority:5
(

ObjectNP
({Token.string == "has"}|{Token.string == "have"})
PropertyNP
({Token.string == "with"}
{Token.string == "value"} |
{Token.string == "which"}
({Token.string == "is"}|{Token.string == "are"})):keyphrase
(ChunkList|Chunk)
{Split}

):parsed
-->
{

Annotation tokAnn;
Iterator thingIter;
List tokens;
String object = "";
String property = "";
String value = "";
if(bindings.get("object") != null) {
Annotation objAnn =
(Annotation)((AnnotationSet)bindings.get("object")).
iterator().next();

//input annotations are in inputAS
tokens = new ArrayList(inputAS.get("Token",

objAnn.getStartNode().getOffset(),
objAnn.getEndNode().getOffset()));

Collections.sort(tokens, new OffsetComparator());

for(int i = 0; i < tokens.size() -1; i++){
tokAnn = (Annotation)tokens.get(i);
object +=
sins.clie.Clie.camelCase((String)tokAnn.getFeatures().
get("string")) + "_";



APPENDIX A. YAM SYNTAX 58

}
tokAnn = (Annotation)tokens.get(tokens.size() -1);
object +=
sins.clie.Clie.camelCase((String)tokAnn.getFeatures().
get("root"));

}
else if(bindings.get("verbObject") != null) {
Annotation objAnn =
(Annotation)((AnnotationSet)bindings.get("verbObject")).
iterator().next();

//input annotations are in inputAS

object += (String)objAnn.getFeatures().get("string");

}

if( bindings.get("property") != null) {
Annotation thingAnn =
(Annotation)((AnnotationSet)bindings.get("property")).
iterator().next();

property = "";
//input annotations are in inputAS
tokens = new ArrayList(inputAS.get("Token",

thingAnn.getStartNode().getOffset(),
thingAnn.getEndNode().getOffset()));

Collections.sort(tokens, new OffsetComparator());
for(int i = 0; i < tokens.size() -1; i++){
tokAnn = (Annotation)tokens.get(i);
property +=
sins.clie.Clie.camelCase((String)tokAnn.getFeatures().
get("string")) + "_";

}
tokAnn = (Annotation)tokens.get(tokens.size() -1);
property +=
sins.clie.Clie.camelCase((String)tokAnn.getFeatures().
get("root"));

property = "has_" + property;
}
else if( bindings.get("verbProperty") != null) {

Annotation thingAnn =
(Annotation)((AnnotationSet)bindings.get("verbProperty")).
iterator().next();



APPENDIX A. YAM SYNTAX 59

property = (String)thingAnn.getFeatures().get("string");

property = "has_" + property;
}
if( bindings.get("items") != null) {

AnnotationSet things = (AnnotationSet)bindings.get("items");
thingIter = things.iterator();

while(thingIter.hasNext()) {
value = "";
Annotation thingAnn = (Annotation)thingIter.next();
tokens = new ArrayList(inputAS.get("Token",

thingAnn.getStartNode().getOffset(),
thingAnn.getEndNode().getOffset()));

Collections.sort(tokens, new OffsetComparator());
for(int i = 0; i < tokens.size() -1; i++){
tokAnn = (Annotation)tokens.get(i);
value +=
sins.clie.Clie.camelCase((String)tokAnn.getFeatures().
get("string")) + "_";

}
tokAnn = (Annotation)tokens.get(tokens.size() -1);
value +=
sins.clie.Clie.camelCase((String)tokAnn.getFeatures().
get("root"));

sins.clie.Clie.hasPropertyValue(ontology, object, property,
value);

}
}
if( bindings.get("verbItem") != null) {

AnnotationSet things = (AnnotationSet)bindings.get("verbItem");
thingIter = things.iterator();

while(thingIter.hasNext()) {
value= "";
Annotation thingAnn = (Annotation)thingIter.next();
value = (String)thingAnn.getFeatures().get("string");
sins.clie.Clie.hasPropertyValue(ontology, object, property,
value);

}
}



APPENDIX A. YAM SYNTAX 60

if( bindings.get("stringtem") != null) {
AnnotationSet things = (AnnotationSet)bindings.get("stringItem");
thingIter = things.iterator();

while(thingIter.hasNext()) {
value = "";
Annotation thingAnn = (Annotation)thingIter.next();
value = (String)thingAnn.getFeatures().get("string");

sins.clie.Clie.hasPropertyTextValue(ontology, object, property,
value);

}
}
AnnotationSet parsedAS = (AnnotationSet)bindings.get("parsed");
AnnotationSet keyPhraseAS = (AnnotationSet)bindings.
get("keyphrase");
FeatureMap features = Factory.newFeatureMap();
features.put("rule", "Object_has_property_with_value_value_CHUNK");
try {

outputAS.add(keyPhraseAS.firstNode().getOffset(),
keyPhraseAS.lastNode().getOffset(),
"CLIE-PropertyValue", features);

outputAS.add(parsedAS.firstNode().getOffset(),
parsedAS.lastNode().getOffset(),
"CLIE-SentenceChunked", Factory.newFeatureMap());

}catch(Exception ioe){
ioe.printStackTrace();

}

}

A.4.2 np.jape

This file detects noun chunks as defined for CLIE.

/*
* np.jape

*
* Copyright (c) 1998-2005, The University of Sheffield.

*



APPENDIX A. YAM SYNTAX 61

*/

Phase: NP
Input: Token
Options: control = appelt

Macro: NP
(

({Token.category == CD})*
(({Token.category == RB}|{Token.category == VBG})*

({Token.category == JJ, Token.kind == word})*)*
({Token.category == NN, Token.kind == word}
|
{Token.category == NNS, Token.kind == word}
|
{Token.category == NNP, Token.kind == word}
|
{Token.category == NNPS, Token.kind == word}
|
{Token.category == VBG} |
(({Token.category == NNP}|{Token.category == NN})

{Token.kind == number}(({Token.string=="."})?
{Token.kind == number})*)

)
)

Macro: NPDouble
/* two nouns together - warning this may overgenerate! */

(
({Token.category == CD})*
(({Token.category == RB}|{Token.category == VBG})*

({Token.category == JJ, Token.kind == word})*)*

({Token.category == NN, Token.kind == word}
|
{Token.category == NNS, Token.kind == word}
|
{Token.category == NNP, Token.kind == word}
|



APPENDIX A. YAM SYNTAX 62

{Token.category == NNPS, Token.kind == word}
)

({Token.category == NN, Token.kind == word}
|
{Token.category == NNS, Token.kind == word}
|
{Token.category == NNP, Token.kind == word}
|
{Token.category == NNPS, Token.kind == word}
)

)

Macro: NPLONG
/* note to remove the

* doubleNPs being identified,

* just replace (NP | NPDouble) with (NP)

*/

(
(NP | NPDouble)

({Token.category == IN}
(NP | NPDouble)
)*

)

Rule: NP1
Priority: 50
(

(NP|NPDouble)+
):np
-->

:np.NP= {rule = "NP1"}



APPENDIX A. YAM SYNTAX 63

A.4.3 quotes.jape

This recognises quoted strings and generates the annotation QS.

/*
* np.jape

*
* Copyright (c) 1998-2005, The University of Sheffield.

*
*/

Phase: NP
Input: Token SpaceToken
Options: control = first

Rule: single_quote
({Token.string == "’"} (({Token}|{SpaceToken})+):quoted {Token.

string == "’"})
-->
{

String quoted = "";
AnnotationSet quotedAS = (AnnotationSet)bindings.get("quoted");
try {
quoted = doc.getContent().getContent(quotedAS.firstNode().
getOffset(),

quotedAS.lastNode().getOffset()).toString();
FeatureMap features = Factory.newFeatureMap();
features.put("string", quoted);
features.put("rule", "single_quote");
outputAS.add(quotedAS.firstNode().getOffset(),

quotedAS.lastNode().getOffset(),
"QS", features);

}
catch(Exception ioe){

ioe.printStackTrace();
}

}

Rule: double_quote
({Token.string == """} (({Token}|{SpaceToken})+):quoted {Token.

string == """})



APPENDIX A. YAM SYNTAX 64

-->
{

String quoted = "";
AnnotationSet quotedAS = (AnnotationSet)bindings.get("quoted");
try {
quoted = doc.getContent().getContent(quotedAS.firstNode().
getOffset(),

quotedAS.lastNode().getOffset()).toString();
FeatureMap features = Factory.newFeatureMap();
features.put("string", quoted);
features.put("rule", "double_quote");
outputAS.add(quotedAS.firstNode().getOffset(),

quotedAS.lastNode().getOffset(),
"QS", features);

}
catch(Exception ioe){

ioe.printStackTrace();
}

}


	Introduction
	Controlled Languages

	Overview
	Controlled Languages (CLs)
	Experimental Apparatus

	YAM
	Introduction
	Features

	The Wiki
	Introduction
	GATE Wiki
	Wiki design

	On-line vs. off-line

	CLIE
	Introduction
	Controlled Languages 
	CLs for Knowledge Engineering
	Other CLs

	CLIE language
	Description of the CL
	How to use CLIE CL
	How to use CLIE through GATE
	Design

	Summary and Future Work

	Yam Syntax
	Overview of JAPE
	Yam Syntax
	Bold, italic and teletype
	Horizontal lines 
	Lists 
	Verbatim output
	Notes 
	Escapes 
	Headings 
	Links and anchors 
	Quotations 
	Line breaks 
	Tables 

	YAM syntax design
	Bugs:
	Wish list:
	WikiLinks 

	CLIE implementation
	clie.jape
	np.jape
	quotes.jape



