EU-IST Integrated Project (IP) IST-2003-506826 SEKT

SEKT: Semantically Enabled Knowledge Technologies

sekt

D3.1.1 Ontology Management and
Evolution — Survey, Methods and
Prototypes

Peter Haase, York Sure and Denny Vrandéic
(Institute AIFB, University of Karlsruhe)

Abstract.

EU-IST Integrated Project (IP) IST-2003-506826 SEKT

Deliverable D3.1.1 (WP1.1)

We present a survey of related work on ontology management and evolution. We then describe
methods for evolution of OWL ontologies and their partial implementation in the prototypes
dipconvertandevOWLution The appendix contains a detailed user guide for various tools of the
KAON tool suite which forms a basic ontology management infrastructure.

Keyword list: ontology management, ontology evolution

Document Id. SEKT/2004/D3.1.1/v1.0
Project SEKT EU-IST-2003-506826
Date December 20, 2004

Distribution public

Copyright(©) 2004 Institute AIFB, University of Karlsruhe

SEKT Consortium

This document is part of a research project partially funded by the IST Programme of the Commission of the European
Communities as project number IST-2003-506826.

British Telecommunications plc.

Orion 5/12, Adastral Park

Ipswich IP5 3RE

UK

Tel: +44 1473 609583, Fax: +44 1473 609832
Contact person: John Davies

E-mail: john.nj.davies@bt.com

Jozef Stefan Institute

Jamova 39

1000 Ljubljana

Slovenia

Tel: +386 1 4773 778, Fax: +386 1 4251 038
Contact person: Marko Grobelnik

E-mail: marko.grobelnik@ijs.si

University of Sheffield

Department of Computer Science

Regent Court, 211 Portobello St.

Sheffield S1 4DP

UK

Tel: +44 114 222 1891, Fax: +44 114 222 1810
Contact person; Hamish Cunningham

E-mail: hamish@dcs.shef.ac.uk

Intelligent Software Components S.A.

Pedro de Valdivia, 10

28006 Madrid

Spain

Tel: +34 913 349 797, Fax: +49 34 913 349 799
Contact person: Richard Benjamins

E-mail: rbenjamins@isoco.com

Ontoprise GmbH

Amalienbadstr. 36

76227 Karlsruhe

Germany

Tel: +49 721 50980912, Fax: +49 721 50980911
Contact person: Hans-Peter Schnurr

E-mail: schnurr@ontoprise.de

Vrije Universiteit Amsterdam (VUA)
Department of Computer Sciences

De Boelelaan 1081a

1081 HV Amsterdam

The Netherlands

Tel: +31 20 444 7731, Fax: +31 84 221 4294
Contact person: Frank van Harmelen
E-mail: frank.van.harmelen@cs.vu.nl

Empolis GmbH

Europaallee 10

67657 Kaiserslautern

Germany

Tel: +49 631 303 5540, Fax: +49 631 303 5507
Contact person: Ralph Trapher

E-mail: ralph.traphoener@empolis.com

University of Karlsruhe, Institute AIFB
Englerstr. 28

D-76128 Karlsruhe

Germany

Tel: +49 721 608 6592, Fax: +49 721 608 6580
Contact person: York Sure

E-mail: sure@aifb.uni-karlsruhe.de

University of Innsbruck

Institute of Computer Science

TechikerstrafRe 13

6020 Innsbruck

Austria

Tel: +43 512 507 6475, Fax: +43 512 507 9872
Contact person: Jos de Bruijn

E-mail: jos.de-bruijn@deri.ie

Kea-pro GmbH

Tal

6464 Springen

Switzerland

Tel: +41 41 879 00, Fax: 41 41 879 00 13
Contact person: Tom@&sser

E-mail: tb@keapro.net

Sirma Al EAD, Ontotext Lab

135 Tsarigradsko Shose

Sofia 1784

Bulgaria

Tel: +359 2 9768 303, Fax: +359 2 9768 311
Contact person: Atanas Kiryakov

E-mail: naso@sirma.bg

Universitat Autonoma de Barcelona

Edifici B, Campus de la UAB

08193 Bellaterra (Cerdanyola del \&d))
Barcelona

Spain

Tel: +34 93 581 22 35, Fax: +34 93 581 29 88
Contact person: Pompeu Casanovas Romeu
E-mail: pompeu.casanovas@uab.es

Executive Summary

This deliverable provides a comprehensive state of the art survey of the tools, processes,
frameworks and methodologies available for Ontology Management and Ontology Evolu-
tion, also taking a look at related work in other fields of technology, especially databases
and software engineering. There we identified numerous open research questions that led
our way.

In the context of this project, the focus of the research is on developing a tool frame-
work and methods for the evolution of OWL-based ontologies and their application for
data integration scenarios in the presence of heterogeneous evolving data sources. We ex-
plored an approach to formalize the semantics of change for the OWL onology language
(in particular for OWL DL and its sublanguages), embedded in a generic process for on-
tology evolution. Our formalization of the semantics of change allows to define arbitrary
consistency conditions — grouped in structural, logical, and user-defined consistency —and
to define resolution strategies that assign resolution functions to ensure these consistency
conditions are satisfied as the ontology evolves. This flexibility allows to support various
fragments of the OWL-DL language.

This lead us to the development of a software prototype, evOWLution, based in the
KAON?2 infrastructure which is currently being developed in the EU IST 'Diject.
evOWLution implements the results of the described original research done in the SEKT
project on the methods for a consistent evolution of OWL ontologies.

A second prototype developed within the framework of this deliverable is dlpconvert.

It is a tool to convert an OWL encoded ontology, that lies within the DLP fragment, to an-
other syntactic representation. The DLP fragment has certain computational advantages
and actually covers by far most of the existing ontologies. This is a further step on realiz-
ing language independent modelling of knowledge bases, and thus increasing the number
of possible tools.

Using the research done on ontology evolution, especially on consistency conditions
and consistent evolution, we will gain a lot in developing and evolving ontologies that lie
within a certain well defined fragment like the DLP fragment.

In the appendix we describe the KAON framework in greater detail, in order to al-
low partners and interested readers to work with KAON, the KAON API and numerous
KAON-based tools and extension efficiently.

1seehttp://dip.semanticweb.org

Contents

1

Introduction 4
1.1 The SEKTBigPicture 4
1.2 Ontologies e e 4
1.3 Definition 5
1.4 QVEIVIEW e e e e 6
Ontology Evolution — Survey 7
2.1 Ontology Evolution Process and Frameworks 7
2.2 Ontology Versioning i 8
2.3 Evolution and Versioning in Database Systems 9
2.4 Evolution and Versioning for Other Paradigms 9
25 ExistingTools 9
2.5.1 Concurrent Version System—-CVS. 10
2.5.2 Ontology Editors 10
2.5.3 Ontology EvolutioninKAON 11
254 0OntoView 14
255 OntoManager e 15
256 TextToOnto i e 15
2.6 Pastandcurrentresearch, 17
2.6.1 Ontology Evolution Process and Frameworks 17
2.6.2 Ontology Versioning, 23
2.6.3 Evolution and Versioning in Database Systems 24
2.6.4 Evolution and Versioning for Other Paradigms 26
2.7 Conclusion and Recommendations 26
Methods for Evolution of OWL Ontologies 28
3.1 EVOIUtION ProCess o v v i 28
3.2 Ontology Model and Ontology Change Operations 30
3.21 OntologyModel 31
3.2.2 Ontology Change Operations.. 32
3.2.3 SemanticsofChange 32
3.3 Structural Consistency 33
3.3.1 Structural Consistency Conditions 34

CONTENTS 3

3.3.2 Resolving Structural Inconsistencies 35
3.4 Logical CoNnSIStenCy e 36
3.4.1 Definition of Logical Consistency 36
3.4.2 Resolving Logical Inconsistencies 37
3.5 User-definedConsistency 40
3.6 Conclusion 41
4 Prototypes 42
4.1 KAON . . . e 42
4.2 dipconvert 45
4.2.1 MotivationforDLP 45
4.2.2 dlpconvert e 47
423 Example e 47
424 Future Work 49
4.3 evOWLution — Evolution of OWL Ontologies 50
431 UsageExample 50
4.3.2 Future Work 51
5 Conclusion 52
A Ontology Management and Evolution in KAON 53
A.1 Ontology Editor OlI-Modeler 53
A.2 KAONAPIDescription e 69
A.3 KAON Engineering Server 78

A4

Download & Installation 82

Chapter 1

Introduction

1.1 The SEKT Big Picture

This report is part of the work performed in workpackage (WP) 3 on “Ontology and Meta-
data Management”. As shown in Figure 1.1 this work belongs to the central part of the
research and development WPs in SEKT. Quite naturally it is closely connected with On-
tology Generation and Metadata Generation, in particular we will integrate parts of their
technologies. We are focusing on how to manage ontologies (and related metadata) and
their evolution over time. As part of WP3.1, we will provide a basic infrastructure for
ontology management. We will extend this in WP3.2 and WP3.3 with functionalities for
data-driven change discovery and usage tracking, i.e. with means to adapt ontologies ac-
cording to underlying domain knowledge in form of documents on the one hand and the
usage of ontologies in applications by users on the other hand. As part of WP7 Method-
ology we will closely collaborate with the case study partners to apply our technologies
within the case studies (see e.g. [EGMb, EGH 04a, ST04] and following ones).

1.2 Ontologies

Initially introduced by Aristotle, ontologies recently have become a topic of interest in
computer science. Ontologies provide a shared understanding of a domain of interest to
support communication among human and computer agents, typically being represented
in a machine-processable representation language. Thus, ontologies are seen as key en-
ablers for the Semantic Web [BLHLO1]. Standards for ontology languages include the
layered W3C standards XML/S, RDF/S and OWL. There exist numerous scientific and
commercial tools for creating and maintaining ontologies (see Chapter 2.5), which have
been used to build applications based on ontologies, including the areas of knowledge
management, engineering disciplines, medicine or bio-informatics.

However, those pieces of knowledge so far have been treated mainly as being static.
In reality they evolve over time, sometimes they even have a highly dynamic nature (see
e.g. Peer-to-Peer scenarios such as Bibster [HEHS04]). Domain changes, adaptations to

CHAPTER 1. INTRODUCTION 5

Case Studies Research & Development
Business - oty =
Services 4 o =Z
el 2) g g A
= = = S,
g|& c@e =5 & | 2
Al E s g2)& | g
Jurisdiction w2 % Q (ee| = 05
o =] = = <] b]
g s e e [EX| & || »
o o g g o
g & =3 = 2 8 = <
) o =5 3] g
E. 1 =2 = g = w
Digital .
Bl : TI 13 ﬁ
Integration
II 1L

v Dissemination & Exploitation v

RTD Management

.’
e = === ===

|
|
‘ v Training v
|

Management

Figure 1.1: The SEKT Big Picture

different tasks, or changes in the conceptualization require modifications of the ontology.

1.3 Definition

We will now define some terms which are most relevant for this document.

According to [Sto04b], “Ontology Evolution is the timely adaptation of an ontology
to the arisen changes and the consistent propagation of these changes to dependent arte-
facts.” The author describes ontology evolution as a process, as changes in the ontology
can cause inconsistencies in other parts of the ontology, as well as in the dependent arte-
facts. The ontology evolution process encompasses the set of activities, both technical
and managerial, ensuring that the ontology continues to meet organizational objectives
and users needs in an efficient and effective way.

In [SMMSO02a] the authors identify a possible six-phase evolution process, the phases
being: (1) change capturing, (2) change representation, (3) semantics of change, (4)
change implementation, (5) change propagation, and (6) change validation. In the fol-
lowing, we will use this evolution process as the basis for an analysis of state-of-the-art
technology.

Further, it is important to distinguish between the management, modification, evo-

CHAPTER 1. INTRODUCTION 6

lution and versioning of ontologies. In this document we follow the terminology of
[Sto04b], which has been adapted from the terminology from the database community
[Rod95]:

e Ontology managementis the whole set of methods and techniques necessary to
efficiently use multiple variants of ontologies from possibly different sources for
different tasks. Therefore, an ontology management system should be a framework
for creating, modifying, versioning, querying, and storing ontologies. It should
allow an application to work with an ontology without worrying about how the
ontology is stored and accessed, how queries are processed, etc.;

e Ontology modification is accommodated when an ontology management system
allows changes to the ontology that is in use, without considering the consistency;

e Ontology evolution is accommodated when an ontology management system fa-
cilitates the modification of an ontology by preserving its consistency;

e Ontology versioningis accommodated when an ontology management system al-
lows handling of ontology changes by creating and managing different versions of
it.

1.4 Overview

This deliverable is organized as follows. We firstly present our results of a review of
related work in the area in Chapter 2. We have in particular analyzed the current state
of the art of ontology evolution on the research side on the one hand and existing tools
on the other hand. We have identified the work relevant for the SEKT project, which in
particular requires support for the evolution of OWL ontologies.

In Chapter 3 we present methods for the evolution of OWL ontologies that focus on
the semantics of change operations, allowing to maintain consistency as the ontologies
change.

We finally present three prototypes for ontology management and evolution: The
KAON tool suite for ontology management and evolution, dipconvert — a tool for convert-
ing OWL ontologies to Datalog, and OWL Evolution — a software component to support
the consistent evolution of OWL ontologies.

Chapter 2

Ontology Evolution — Survey

This chapter is structured as follows. First we will present an overview of the relevant
research area. In Section 2.5 the most relevant existing tools for ontology evolution and
versioning are being described. Section 2.6 presents related research according to the
evolution process described in Section 2.1, but also covers ontology versioning and evo-
lution/versioning in database systems. Finally, we conclude in Section 2.7.

2.1 Ontology Evolution Process and Frameworks

In [SMMSO02a] the authors identify a possible six-phase evolution process, the phases be-
ing: (1) change capturing, (2) change representation, (3) semantics of change, (4) change
implementation, (5) change propagation, and (6) change validation. In the following, we
will use this evolution process as the basis for an analysis of state-of-the-art technology.

Change Capturing The process of ontology evolution starts with capturing changes
either from explicit requirements or from the resultdiange discoverymethods, which

induce changes from existing data. Explicit requirements are generated, for example,
by ontology engineers who want to adapt the ontology to new requirements or by the
end-users who provide the explicit feedback about the usability of ontology entities. The
changes resulting from this kind of requirements are cdtbpddownchanges. Implicit
requirements leading to so-callbdttom-upchanges are reflected in the behaviour of the
system and can be discovered only through the analysis of this behaviour. [Sto04b] defines
three types of change discovery: structure-driven, usage-driven and data-driven. Whereas
structure-driven changes can be deduced from the ontology structure itself, usage-driven
changes result from the usage patterns created over a period time. Data-driven changes
are generated by modifications to the underlying dataset, such as text documents or a
database, representing the knowledge modelled by an ontology.

Change Representation To resolve changes, they have to be identified and represented
in a suitable format. That means, the change representation needs to be defined for a

CHAPTER 2. ONTOLOGY EVOLUTION - SURVEY 8

given ontology model. Changes can be represented on various levels of granularity, e.qg.
as elementary or complex changes. A common practice is to provide a taxonomy or
ontology of changes for a given ontology model.

Semantics of Change The semantics of change refers to the effects of the change on
the ontology itself, and, in particular the checking and maintenance of the ontology con-
sistency after the change application. The meaning of consistency depends heavily on the
underlying ontology model. It can for example be defined using a set of constraints, as in
the KAON ontology model, or it can be given a model-theoretic definition.

Change Propagation Ontologies often reuse and extend other ontologies. Therefore,

an ontology update might also corrupt ontologies depending on the modified ontology
(through inclusion, mapping integration, etc.) and consequently, all the artefacts based
on these ontologies. The task of the change propagation phase of the ontology evolu-
tion process is to ensure consistencylependent artefactsfter an ontology update has

been performed. These artefacts may include dependent ontologies, instances, as well as
application programs running against the ontology.

Change Implementation The role of the change implementation phase of the ontology
evolution process is (i) to inform an ontology engineer about all consequences of a change
request, (ii) to apply all the (required and derived) changes and (iii) to keep track about
performed changes.

Change Validation There are numerous circumstances where it may be desired to re-
verse the effects of the ontology evolution, to name just a few:

e The ontology engineer may fail to understand the actual effect of the change and
approve the change that should not be performed;

¢ It may be desired to change the ontology for experimental purposes;

e When working on an ontology collaboratively, different ontology engineers may
have different ideas about how the ontology should be changed.

It is the task of the change validation phase to recover from these situations. Change
validation enables justification of performed changes and undoing them at user’s request.
Consequently, the usability of the ontology evolution system is increased.

2.2 Ontology Versioning

Ontology versioning is a stronger variant of handling changes to ontologies: While on-
tology evolution is concerned about the ability to change an ontology without losing data
and by maintaining consistency, ontology versioning allows to access the data through

CHAPTER 2. ONTOLOGY EVOLUTION - SURVEY 9

different variants of the ontology. In addition to managing the individual variants of the
ontology themselves, it is also important to manage the derivation relations between the
variants. These derivation relations then allow to define the notions of compatibility be-
tween versions, mapping relations between versions, as well as transformations of data
corresponding to the various versions.

2.3 Evolution and Versioning in Database Systems

The problem of schema evolution has been extensively studied especially in the context
of object-oriented databases. Dynamic schema evolution in databases is defined as man-
aging schema changes in a timely manner without loss of existing data while the database
system continues to be operational and without significantly impacting day-to-day op-
erations of the database. Particular problems addressed are cascading changes (changes
required to other parts of the schema as a result of a change), ensuring consistency of the
schema, and propagation of the changes to the corresponding database.

Although there are significant differences between schema evolution and ontology
evolution [NKO3], many of the methods and technologies developed for schema evolution
can be applied or adapted to ontology evolution.

2.4 Evolution and Versioning for Other Paradigms

The problem of evolution and versioning is also present in other application areas of
information systems.

For example, Concurrent Versions Systems (CVS) allow the concurrent update to files
while maintaining the version history of those files as well as detecting and resolving
conflicts in updates to the files.

Another application are is the maintenance of knowledge-base systems and belief re-
vision, where a knowledge base (e.g. the believes of an agent) needs to be update to
incorporate new information while maintaining consistency of the knowledge base.

2.5 Existing Tools

There are only a few existing tools that support the complete ontology evolution process.
We therefore provide an overview of tools that only support specific aspects in the ontol-
ogy evolution process, too. Further, we also cover nhon-commercial tools, i.e. tools that
have come out of research projects. Before we illustrate the tools which already exist for
ontology evolution and versioning we begin with one of the most prominent systems for
versioning, the CVS, and discuss its drawbacks for the usage with ontologies.

CHAPTER 2. ONTOLOGY EVOLUTION - SURVEY 10

2.5.1 Concurrent Version System — CVS

The very popular concurrent version system (G)Vigitially was a collection of scripts
to simplify the handling of the revision control system (RCS). RCS operates in a file-
centric way by using a “lock-modify-unlock™process. CVS still relies on the RCS file
format for storing versioning information, but it extends RCS e.g. by supporting network
capabilities, by separating local copies and central repositories and by allowing parallel
access of multiple users. The CVS basic version control functionality maintains a history
of all changes made to directory trees, a hierarchy of file folders which might contain
arbitrary file formats (often text files). The complete functionalities are described in the
“official” manual for CVS [C03].

However, CVS works on the syntactical level, not on the conceplslit is not ca-
pable of versioning objects and in particular not capable of versioning ontological entities
and their complex structure. The underlyiddf operation is capable of showing the
syntactical differences between two files (based on the differences of text lines). There-
fore, it is suitable to act as a very primitive versioning system for RDF/S or OWL
files

In a nutshell, standardiff , and thus CVS, compares file versions at line-level or
at character-level, highlighting the lines that textually differ in two versions. Actually
needed is a comparison of ontologies at a structural level, showing which definitions of
ontological concepts or relationships have changed.

Nevertheless, CVS has already been used for inspiration for the ontology versioning
system OntoView (see [Kle04] and next Subsection 2.5.4).

2.5.2 Ontology Editors

Ontology editors are tools that allow users to visually manipulate ontologies. In this
subsection, we evaluate ontology editors in terms of the requirements for the ontology
evolution. We select three ontology editors that are most frequently used in the Semantic
Web community, a more complete overview can be found in [GPAFL.

e Proege® (cf. [NFMOO0]) is a graphical and interactive ontology-design and
knowledge-acquisition environment that is being developed by the Stanford Medi-
cal Informatics group (SMI) at Stanford University. Its knowledge model is compat-
ible with OKBC (cf. [CFF98]). Its component-based architecture enables system
builders to add new functionality by creating appropriate plug-ins. TheeBrot
OWL plug-in extends the Préetg platform into an ontology editor for the OWL,;

e OntoEdif (cf. [SAS03, SEA02]) is an ontology engineering environment sup-
porting the development and maintenance of ontologies by graphical means. On-
toEdit is built on top of a powerful internal ontology model. This paradigm sup-

LAvailable freely for download atttp://www.cvshome.org/
2http://protege.stanford.edu/
Shttp://www.ontoprise.de/com/co _produ _tool3.htm

CHAPTER 2. ONTOLOGY EVOLUTION - SURVEY 11

ports representation-language neutral modelling as much as possible for concepts,
relations and axioms. Several graphical views onto the structures contained in the
ontology support modelling the different phases of the ontology engineering cycle.
It has an interface to Ontobroker, an F-Logic Inference Engine;

e OIIED* (cf. [BHGSO01]) has been developed by the University of Manchester. It is
a simple freeware ontology editor, which allows the user to build ontologies using
OIL and OWL, and it is not intended as a full ontology development environment.
Consistency checking and automatic classification of the ontologies written with it
can be performed using the FaCT reasoner.

All editors allow modifications to ontologies in terms of elementary ontology changes.
Even though composite changes allow an ontology engineer to update an ontology with-
out having to find the right sequence of elementary modifications, most of the existing
ontology editors do not include composite changes. Only OntoEdit provides support for
some composite changes (e.g. copy).

Most of the existing systems for the ontology development provide only one possibil-
ity for realising a change, and this is usually the simplest one. For example, the deletion
of a concept always causes the deletion of all of its subconcepts. It means that users are
not able to control the way the changes are performed. Consequently, customisation is
not supported at all.

Moreover, the users do not obtain explanations why a particular change is necessary
(transparency). In OntoEdit, the user only obtains the information about numbers of in-
duced changes but without providing more details. None of the existing editors warns
ontology engineers about changes in the included ontologies.

Furthermore, there is no possibility to undo effects of changes (reversibility). Both,
Proege and OntoEdit, have an Edit menu with the Undo/Redo options. However, the
performed changes are kept in the memory so that they are lost when the ontology/editor
is closed.

Regarding auditing and the logging of changes, OIlEd provides an activity log. How-
ever, it records connections to the reasoner, not all ontology modification&gPraiso
has the command history option but in the version we were dealing with it was useless
since it was disabled.

2.5.3 Ontology Evolution in KAON

KAON is an open-source ontology management infrastructure targeted for semantics-
driven business applications. It provides a comprehensive implementation allowing easy
ontology management and application. Important focus of KAON is on integrating tra-
ditional technologies for ontology management and application with those used typically
in business applications. A more detailed technical description of the KAON components
can be found in [GSVO04].

“http://oiled.man.ac.uk

CHAPTER 2. ONTOLOGY EVOLUTION - SURVEY 12

Roughly, KAON components can be divided into three layers:

e the Applications and Services Layer realizes Ul applications and provides inter-
faces to non-human agents. Among many applications realized, OntoMat-SOEP
provides ontology and metadata engineering capabilities. It realizes many require-
ments related to ontology evolution and is described next in more detalil.

e KAON API as part of the Middleware Layer is the focal point of KAON archi-
tecture since it realizes the model6 of ontology based applications. The bulk of
requirements related to ontology evolution is realized in this layer and is described
in the next subsection.

e Data and Remote Services Layer provides data storage facilities. This layer also
realises concurrency and transactional atomicity of updates. Further elaboration of
this layer is out of scope for this deliverable.

The focal point of the KAON architecture is its ontology APl (KAON API), consisting
of a set of interfaces for access to ontology entities. For example, there are the interfaces
Concept, Property and Instance, which contain methods for accessing ontology concepts,
properties and instances, respectively.

The APl incorporates important elements required for ontology management and evo-
lution:

e Evolution logging is responsible for keeping track of the ontology changes in an
evolution log in order to be able to reverse them at the user s request. Further, the
evolution log is also used by the distributed ontology evolution;

e Change reversibility enables undoing and redoing changes made in an ontology.
Consequently, changes can be executed in reverse order thus forcing the ontology
to return to the conditions prior to the change execution;

e Evolution strategy is responsible for ensuring that all changes applied to the on-
tology leave the ontology in a consistent state and for preventing illegal changes.
Also, the evolution strategy allows the user to customise the evolution process;

e Evolution graph enables ontology engineers to enhance a set of changes with their
own changes and to resolve them;

e Ontology inclusion facilities, together with the dependent evolution, are responsible
for managing multiple ontologies within one node;

e Ontology replication facilities, together with the distributed evolution, are respon-
sible for enabling the reuse and the management of distributed ontologies;

e Change discovery includes the means for the discovery of problems in an ontology
and for making recommendation for their resolution;

e Usage logging is responsible for keeping track of the end-users interactions with
ontology-based applications in order to adapt ontologies to the users needs.

CHAPTER 2. ONTOLOGY EVOLUTION - SURVEY 13

Ontology Evolution in KAON API

Before the ontology evolution process is started, a particular evolution strategy must be
configured. Changes to the ontology are performed by assembling elementary and com-
posite changes into a sequence. However, before the ontology is actually updated, this
sequence is passed to the present evolution strategy in the semantics of change phase, re-
sulting in an extended sequence of changes. To ensure atomicity of updates, either all or
no change from the extended sequence of changes should succeed, so validity of change
sequence is checked before any updates are actually performed.

Transparency is realized by presenting the extended sequence of changed to the user
for approval. To further aid the understanding of why some changes are performed, the
evolution strategy may group related elementary actions and provide explanations why
particular change is necessary, thus greatly increasing the chances that all side-effects of
changes will be properly understood. After changes are reviewed by the user, they are
passed to the ontology and executed, performing steps from the change implementation
phase.

It is obvious that for each elementary change there is exactly one inverse change that,
when applied, reverses the effect of the original change. With such infrastructure in place,
it is not hard to realize the reversibility: to reverse the effect of some extended sequence
of changes, a new sequence of inverse changes in reverse order needs to be created and
applied. An evolution log associates additional information with each change. Effectively,
the log is treated as an instance of a special evolution ontology (cf. Subsection 2.6.1)
consisting of concepts for each change, making it is easy to add meta-information to
log entries. The structure of the log may be easily customized by editing the evolution
ontology. Further, available services for persisting ontology data may be used to persist
the log, removing the need to devise yet another type of persistent storage. Evolution
logging and reversibility services are provided as special services of the KAON API,
allowing different applications to reuse these powerful features. E.g., actions performed
in one application may be easily reverted in another.

Ontology Evolution in the Ol-modeller

As mentioned in the previous subsection, the ontology evolution is primarily realised
through the KAON API. However, Ul applications provide human-computer interaction
for the evolution, whose primary role is to present the change information in an orderly
way, allowing easy spotting of potential problems. Also, any application that changes the
ontology must realise the reversibility requirement in its user interface as well. Part of the
KAON framework is the Ol-modeller, an ontology and metadata engineering tool. Itis an
end-user application that realises a graph-based user interface for single, dependent and
distributed ontology development. Ol-modeller supports ontology evolution at the user
level.

Currently evolution requirements are realised within the Ol-modeller, as follows:

e An ontology engineer may set up the desired evolution strategy. It can be seen that

CHAPTER 2. ONTOLOGY EVOLUTION - SURVEY 14

an evolution strategy consisting of several resolution points. For each resolution
point the ontology engineer must choose appropriate elementary evolution strategy;

e Before changes are performed, the system computes the set of additional changes
that must be applied. The impact of a change is reported to the ontology engi-
neer. Presentation of changes follows the progressive disclosure principle: related
changes are grouped together and organised in a tree-like form. The ontology en-
gineer initially sees only the general description of changes. If she is interested in
details, she can expand the tree and view complete information. Only when the
ontology engineer agrees the changes will be applied to the ontology. The ontology
engineer may cancel the operation before it is actually performed.

¢ An unlimited undo-redo function is provided. Although this function is by large the
responsibility of the KAON API, the user interface is responsible for restoring the
visual context after an undo operation. For example, if a concept in hierarchy was
selected and then deleted, when an operation is undone, the same concept must be
selected. If the hierarchy was scrolled in the meanwhile, the original scroll position
must be restored. These features are necessary for the ontology engineer to quickly
recognise a familiar state and proceed with her work. If not done properly, although
an action is undone, the ontology engineer may not realise this and may mistakenly
request another undo operation.

A detailed description about the Ol-modeller and the KAON API including the sup-
port for evolution can be found in [GSV04].

2.5.4 OntoView

In [KFKOO02] the authors describe the design of a web-based system that helps users to
manage changes in ontologies. The system helps to keep different versions of web-based
ontologies interoperable, by maintaining not only the transformations between ontologies,
but also the conceptual relations between concepts in different versions. OntoView is
inspired by the Concurrent Versioning System CVS (see previous subsection), which is
used in software development to allow collaborative development of source code. The
first implementation is also based on CVS and its web-interface CVSWeb.
The versioning system of OntoView provides the following functionalities:

1. Reading changes and ontologies

2. Identification of ontologies

3. Comparing ontologies at a conceptual level

4. Analyzing effects of changes, e.g. by checking consistency

5. Exporting changes

CHAPTER 2. ONTOLOGY EVOLUTION - SURVEY 15

2.5.5 OntoManager

OntoManager[SHGO03] is a tool for guiding ontology managers through the modification
of an ontology with respect to users’ needs. It is based on the analysis of end-users’
interactions with the ontology-based applications, which are tracked in an usage-log.
OntoManager has been designed to provide the methods and tools that support the on-
tology managers in managing and optimising the ontology according to the users’ needs.
The system incorporates mechanisms that assess how the ontology (and by extension the
application) is performing based on different criteria, and then enable to take action to op-
timise it. One of the key tasks is to check how the ontology fulfils the perceived needs of
the users. In that way, an in-depth view of the users’ perspective on the ontology and the
ontology-based application is obtained, since on the top of this ontology the application is
going to be conducted. The technique that can be used to evaluate/estimate the user needs
depends on the information source. By tracking user interactions with the application in
a log file, it is possible to collect useful information that can be used to assess what the
main interests of the users are. In this way, it is avoided to ask the users explicitly, since
they tend to be reluctant to provide the feedback via filling questionnaires or forms.
Conceptually, the OntoManager consists of three modules:

e The Data Integration Module that aggregates, transforms and correlates the usage
data;

e The Visualisation Module that makes the integrated usage data more useful for
human beings by presenting the data in a comprehensible visual form;

e The Analysis Module that provides guidance for adapting and improving the ontol-
ogy with respect to the users’ needs.

With respect to ontology evolution, the “Analysis Module” is most important: In particu-
lar, there are two task of the Analysis module:

1. Ontology Evolution that provides guidance in the process of modifying the ontology
and ensure the consistency of the updated ontology. This module keeps track of the
changes and has the possibility to undo any action taken upon the ontology. The
OntoManager imports the functionalities related to the ontology evolution process
that are elaborated in [SMMSO02a].

2. Crawling that completes newly created concepts with the most promising instances
that can be found in an intranet or internet.

2.5.6 TextToOnto

TextToOnto [MVO01] is a tool suite built upon KAON [KKO04] in order to support the on-

tology engineering process by text mining techniques. Providing a collection of indepen-
dent tools for both automatic and semi-automatic ontology extraction, it assists the user in
creating and extending OlIModels. Moreover, efficient support for ontology maintenance

CHAPTER 2. ONTOLOGY EVOLUTION - SURVEY 16

is given by modules for ontology pruning and comparison. Further information can be
found, e.g., in [GSV04]. In a nutshell, the current distribution of TextToOnto comprises
the following tools:

TaxoBuilder constructs concept hierarchies by applying either FCA [CSTO03] or a
combination of Hearst-Patterns [Hea92], WordNet [Fel98] and various heuristics.

TermExtraction creates new concepts from possibly relevant terms included in the
corpus. The relevancy of a term is measured, for example, by means of its frequency
or its TFIDF value.

InstanceExtraction supports both semi-automatic and fully automatic learning of
instances by using a combination of various patterns from [Hea92] and [HS98].

RelationExtraction extracts conceptual relations in a semi-automatic way by ap-
plying one of two different approaches. While the first one is based on association
rules [MS00], the second one applies a set of text patterns very similar to those
defined by Hearst [Hea92].

RelationLearning, in contrast to RelationExtraction supports both autometid
semi-automatic relation learning. Moreover not only a domain and a range, but
also a name for each relation are extracted from the corpus. The approach being
applied by RelationLearning is based on shallow text parsing which is used in order
to detect typical co-occurrences of predicates and conceptual classes, derived from
the ontology.

OntologyComparison compares two ontologies with respect to lexical and con-
ceptual aspects [MSO02].

OntologyPruner can be used to adapt an ontology to a domain-specific corpus.
It prunes the ontology by suggesting concepts to be removed on the basis of their
frequency within a given corpus.

Since TextToOnto does not keep any references between the ontology and the text
documents it has been extracted from, it does not allow for mapping textual changes to
the ontology. Therefore data-driven change discovery is not (yet) supported by current
versions of TextToOnto. In the follow-up Text20Rt@ complete re-implementation and
the official successor of TextToOnto, we will focus on overcoming this deficiency. A
detailed requirements analysis, together with a first architecture proposal, will be released
as part of Task 3.3.

Shttp://ontoware.org/projects/text2onto/

CHAPTER 2. ONTOLOGY EVOLUTION - SURVEY 17

2.6 Past and current research

2.6.1 Ontology Evolution Process and Frameworks

We again use the evolution process presented in [SMMS02a] to structure this chapter.
However, we also would like to mention other approaches to the evolution process and
frameworks.

In [PK97] the authors define three major steps in the schema evolution process: 1)
request specification, 2) identification of changes, and 3) implementation. The change
capturing phase and the change validation phase are not covered. Regarding the core
evolution process dealing with the consistency of a schema and its dependent artefacts, it
does not treat the semantics of change problem and requires writing the transformations to
update data if they must not get lost. Regarding the implementation of changes it allows
to realise the evolution by view, by version or by the immediate update.

[KNO3] introduces a component-based framework for ontology evolution. It is based
on the different representations of ontology changes. The approach proposes a framework
that integrates these representations. It covers the following tasks: (i) data transformation;
(i) ontology update; (iii) consistent reasoning; (iv) verification and approval; and (v) data
access. The last task is related to ontology versioning.

Change Capturing

Please note that we will refine this subsection (including the following subsubsections) in
future as part of our work in tasks T3.2 and T3.3.

Usage Driven Change Discovery Once ontologies reach certain levels of size and com-
plexity, the decision about which parts are further relevant and which are outdated is a
huge task for ontology engineers. Usage patterns of ontologies and their metadata allow
for a detection of often or less often used parts, thus reflecting e.g. the interests of users
in parts of ontologies. They can be e.g. derived from tracking querying and browsing
behaviours of users during the application of ontologies.

Data Driven Change Discovery An ontology is often learnt or constructed in order

to reflect the knowledge more or less implicitly given by a number of documents or a

database. Therefore, any change to the underlying data set, such as a newly added docu-

ment or a changed database entry, might require an update of the ontology. Data-driven

Change Discovery can be defined as the task of deriving ontology changes from modifi-

cations to the knowledge representation it has been constructed from. Or, more formally:
Definition: Let D be a data set containing explicit or implicit knowledge, which is

modified by a sequendgl,...Cnof change operations. And let the knowledge in D be ex-

plicitly represented by an ontolody. Then Data-driven Change Discovery can be defined

as the task of adaptin@ in order to reflect the chang€xl,...Cn

CHAPTER 2. ONTOLOGY EVOLUTION - SURVEY 18

A slightly different definition is given by [Sto0O4b], who defines Data-driven Change
Discovery as the problem of deriving ontological changes from the ontology instances
by applying techniques such as data-mining, Formal Concept Analysis (FCA, [GW99])
or various heuristics. For example, one possible heuristic might be: If no instance of a
concept C uses any of the properties defined for C, but only properties inherited from
the parent concept, C is not necessary. An implementation of this notion of Data-driven
Change Discovery is included in the KAON tool suite [KK04, GSV04].

One very obvious difference between these two definitions is, that the latter always
assumes an existing ontology, while the former can be applied to an empty ontology
as well, but requires an evolving data set associated with this ontology. Moreover the
following prerequisites must be fulfilled:

1. Knowledge abougeneralrelationships between data and ontology is required,
since in case of newly added or modified data, additional knowledge has to be
extracted and represented by the ontology.

2. Knowledge aboutoncreterelationships between the data and ontology concepts,
instances and relations is needed, because deleting or modifying information in the
data set might have an impact on existing entities in the ontology.

If the ontology creation process is done manually, for example by a knowledge engi-
neer, then both kinds of knowledge are represented somewhere in the mind of this knowl-
edge engineer. In that case Data-driven Change Discovery also has to be done manually.
On the other hand, if the process of creating the ontology is done semi- or fully auto-
matically with the help of an ontology learning system such as TextToOnto [MV01], this
knowledge has to be represented explicitly by the system. Of course, the first kind of
knowledge is always given by the concrete implementation of ontology learning algo-
rithms which are used. Therefore, in order to enable an existing ontology learning system
to support Data-driven Change Discovery, it is necessary to make it store all available
knowledge about concrete relationships between ontology entities and the data set. A
more detailed requirements analysis will included in deliverable [HV04].

Change Representation

[Sto04b] derives a set of ontology changes for the KAON ontology model. The author
specifies fine-grained changes that can be performed in the course of the ontology evolu-
tion. They are called elementary changes, since they cannot be decomposed into simpler
changes. A taxonomy of elementary changes is derived as the cross product of the set of
entities of the ontology model and the meta-change transformadish@ndremove

The author also mentions that this level of change representation is not always appro-
priate and therefore introduces the notion of composite changes: A composite change is
an ontology change that modifies (creates, removes or changes) one and only one level
of neighbourhood of entities in the ontology. Examples for these composite changes

CHAPTER 2. ONTOLOGY EVOLUTION - SURVEY 19

would be: “Pull concept up”, “Concept Copy”, “Split Concept”, etc. Further, the au-
thor introduces complex changes: A complex change is an ontology change that can be
decomposed into any mix of at least two elementary and composite ontology changes.

In [KNO3] Klein and Noy also state that information about change can be represented
in many different ways. They describe different representations and propose a frame-
work that integrates them. They show how different representations in the framework
are related by describing some techniques and heuristics that supplement information in
one representation with information from other representations. They further present an
ontology of change operations, which is the kernel of the framework.

[Kle04] describes a set of changes for the OWL ontology language, based on an OWL
meta-model. Unlike the previously mentioned set of KAON ontology changes, the author
considers alsdlodify-operations in addition t®eleteand Add-operations. Further, the
taxonomy containSetandUnsetoperations for properties (e.g. to set transitivity). The
author introduces an extensive terminology of change operations along two dimensions:
atomicvs. compositeandsimplevs. rich:

| | simple | rich |

atomic basic complex

composite|| complex| complex
Atomic operationsre operations that cannot be subdivided into smaller operations,
whereaomposite operationgrovide a mechanism for grouping operations that consti-
tute a logical entity. Simple changesan be detected by analysing the structure of the
ontology only, whereasch changesncorporate information about the implication of the
operation on the logical model of the ontology, for their identification one thus needs to
query the logical theory of the ontology (e BlodifyDomainToSuperclagsThe authors
also proposes a method for finding complex ontology changes. It is based on a set of rules
and heuristics to generate a complex change from a set of basic changes.

As one can easily see, the terminology of [Kle04] is not consistent with the ter-
minology introduced in [Sto0O4b]. Simply speakingiementaryand complexchanges
in [Sto04b] correspond tatomic and compositechanges in [Kle04], respectively. In
[Sto04b], there is no explicit corresponding distinctiongonplevs. rich changes.

Both [Sto04b] and [Kle04] present an “ontology for ontology changes” for their re-
spective ontology language and identified change operations.

There exist models for change representations for other ontology languages: A formal
method for tracking changes in the RDF repository is proposed in [OK02]. The RDF
statements are pieces of knowledge they operate on. The authors argue that during the
ontology evolution, the RDF statements can be only deleted or added, but not changed.
Higher levels of abstraction of ontology changes such as composite and complex ontology
changes are not considered at all in that approach.

Semantics of Change

The semantics of change phase is the phase in the ontology evolution process that enables
the resolution of ontology changes in a systematic manner by ensuring the consistency of

CHAPTER 2. ONTOLOGY EVOLUTION - SURVEY 20

the ontology. In the following we provide an overview of various notions of consistency
and approaches for the realization of the changes.

Consistency The goal of the semantics of change phase is to ensure that the application
of ontology changes results in an ontology conforming to its consistency model. [Sto04b]
defines consistency as: “A single ontology Ol is defined to be consistent with the respect
to its model if and only if it preserves the constraints defined for underlying ontology
model.” For example, in the KAON ontology model, the consistency of an ontology is
defined using a set of constraints, called invariants. These invariants state for example
that the concept hierarchy has to be a directed acyclic graph.

The OWL ontology language also defines structural constraints on valid ontologies
for the various fragments. In particular, [BvHHdefines the following constraints for
OWL DL:

e OWL DL requires a pairwise separation between classes, datatypes, datatype prop-
erties, object properties, annotation properties, ontology properties (i.e., the import
and versioning stuff), individuals, data values and the built-in vocabulary. This
means that, for example, a class cannot be at the same time an individual.

e In OWL DL the set of object properties and datatype properties are disjoint. This
implies that the following four property characteristics: inverse of, inverse func-
tional, symmetric, and transitive can never be specified for datatype properties

e OWL DL requires that no cardinality constraints (local nor global) can be placed
on transitive properties or their inverses or any of their superproperties.

e Annotations are allowed only under certain conditions.

e Most RDF(S) vocabulary cannot be used within OWL DL. See the OWL Semantics
and Abstract Syntax document [PSHH] for detalils.

e All axioms must be well-formed, with no missing or extra components, and must
form a tree-like structure.

e Axioms (facts) about individual equality and difference must be about named indi-
viduals.

However, regarding the consistency of Description Logics, we can also provide a
model-theoretic definition. [PSHH] defines consistency as follows:

A collection of abstract OWL ontologies and axioms and facts is consistent
with respect to datatype map D iff there is some interpretation | with respect
to D such that | satisfies each ontology and axiom and fact in the collection.

CHAPTER 2. ONTOLOGY EVOLUTION - SURVEY 21

Please note, that with this model-theoretic definition, a DL-ontology can only become
inconsistent by adding axioms: If a set of axioms is satisfiable, it will still be satisfiable
when any axiom is deleted. Other approaches, e.g. adding constraints, would require
non-monotonic reasoning, which are beyond the scope of OWL ontologies.

We now provide a typical example of introducing model-theoretic inconsistencies in
the evolution of a DL ontology. Suppose, we start out with a very simple ontology about
animals:

bird C animal (All Birds are animals)

bird C fly (All birds can fly)

As the ontology evolves and more facts are added:

dove C bird (All doves are birds)

But as we add the following facts about penguins.

penguin C bird (All penguins are birds)

penguin C — fly (Penguins are not flying animals)

the ontology becomes inconsistent, as the concept penguin is unsatisfiable. Now, there
may be many ways how to resolve this inconsistency. One possibility would be to reject
either the changgenguin C bird or penguin C — fly from the set of changes. However,
both of these axioms are correct, and the user may not be happy with this decision. The
most intuitive one may be to retract the axiéimd C fly, but also this may not satisfy
the user.

[Sto04b] describes and compares two approaches to verify ontology consistency:

1. a posteriori verification, where first the changes are executed, and then the updated
ontology is checked whether it satisfies the consistency constraints

2. apriori verification, which defines a respective set of preconditions for each change.
It must be proven that, for each change, the consistency will be maintained if (1) an
ontology is consistent prior to an update and (2) the preconditions are satisfied.

Realization [SMMS02a] and [SMSSO03] describe two approaches for the realization of
the semantics of change, a procedural and a declarative one, respectively. In both these
approaches, the KAON ontology model is assumed. The two approaches were adopted
from the database community and followed to ensure the consistency in pursuing this
semantics of change problem [FGMOO]:

1. Procedural approach - this approach is based on the constraints, which define the
consistency of a schema, and definite rules, which must be followed to maintain
constraints satisfied after each change;

2. Declarative approach - this approach is based on the sound and complete set of
axioms (provided with an inference mechanism) that formalises the dynamics of
the evolution.

CHAPTER 2. ONTOLOGY EVOLUTION - SURVEY 22

In [SMMS02a] (procedural approach) the authors focus on providing the user with
capabilities to control and customize the realization of the semantics of change. They
introduce the concept of an evolution strategy encapsulating policy for evolution with
respect to user s requirements. To resolve a change, the evolution process needs to deter-
mine answers at mamgsolution points- branch points during change resolution where
taking a different path will produce different results. Each possible answer at each res-
olution point is anelementary evolution strategyA common policy consisting of a set
of elementary evolution strategies, each giving an answer for one resolution point, is an
evolution strategynd is used to customize the ontology evolution process. Thus, an evo-
lution strategy unambiguously defines the way how elementary changes will be resolved.
Typically a particular evolution strategy is chosen by the user at the start of the ontology
evolution process.

In [SMSSO03] (declarative approach) the authors present an approach to model on-
tology evolution as reconfiguration-design problem solving. The problem is reduced to a
graph search where the nodes are evolving ontologies and the edges represent the changes
that transform the source node into the target node. The search is guided by the constraints
provided partially by user and partially by a set of rules defining ontology consistency. In
this way they allow a user to specify an arbitrary request declaratively and ensure its
resolving.

Change Implementation

We analyse the different roles of the change implementation phase: (i) to inform an on-
tology engineer about all consequences of a change request, (ii) to apply all the (required
and derived) changes and (iii) to keep track about performed changes.

Change Notification In order to avoid performing undesired changes, a list of all im-
plications to the ontology and dependent artefacts should be generated and presented to
the ontology engineer, who should then be able to accept or abort these changes.

Change Application The application of a change should have transactional properties,
i.e. (A) Atomicity, (C) Consistency, (I) Isolation, and (D) Durability. The approach

of [Sto04Db] realizes this requirement by the strict separation between the request spec-
ification and the change implementation. This allows to easily treat the set of change
operations as one atomic transaction, as all the changes are applied at once.

Change Logging There are various ways to keep track of the performed changes.
[Sto04b] proposes aavolution logbased on arvolution ontologyfor the KAON on-

tology model. The evolution ontology covers the various types of changes, dependencies
between changes (causal dependencies as well as ordering), as well as the decision mak-
ing process.

CHAPTER 2. ONTOLOGY EVOLUTION - SURVEY 23

Change Propagation

[MMSO03a] presents an approach for evolution in the context of dependent and distributed

ontologies. The authors define the notiorD&fpendent Ontology Consistenéydepen-

dent ontology is consistent if the ontology itself and all its included ontologies, observed

alone and independently of the ontologies in which they are reused, are single ontology

consistentPush-base@ndPull-basedapproaches for the synchronization of dependent

ontologies are compared. The authors follow a push-based approach for dependent on-

tologies on one node and present an algorithm for dependent ontology evolution.
Further, for the case of multiple ontologies on multiple nodes, the authors &efpie

cation Ontology ConsistendAn ontology is replication consistent if it is equivalent to

its original and all its included ontologies (directly and indirectly) are replication consis-

tent.) and here, for the synchronization between originals and replicas, the authors follow

a pull-based approach.

Evolution in modular and distributed ontologies One particular challenge of change
propagation arises in the context of modularization. [SKO3] concentrates on the benefits
of modular ontologies with respect to local containment of terminological reasoning. The
authors define an architecture for modular ontologies that supports local reasoning by
compiling implied subsumption relations. They further address the problem of guarantee-
ing the integrity of a modular ontology in the presence of local changes. They propose a
strategy for analysing changes and guiding the process of updating compiled information.

The authors address the problem of guaranteeing the integrity of a modular ontology
in the presence of a local change. They propose a strategy for analysing changes and
guiding the process of updating compiled information. Ontology modules are connected
by conjunctive queries. In order to make local reasoning independent of other modules,
the authors use a knowledge compilation approach. The result of each mapping query is
computed off-line and added as an axiom to the ontology module using that result. Once
a query has been compiled, the correctness of reasoning can only be guaranteed as long
as the concept hierarchy of the queried ontology module does not change. The authors
propose a heuristic change detection mechanism that analyses changes with respect to
their impact on the concept hierarchy. The set of changes they consider is not complete,
as they focus only on changes regarding the concept hierarchy.

2.6.2 Ontology Versioning

In [HHOO] the authors discuss the problems associated with managing ontologies in dis-
tributed environments such as the Web. They present SHOE, a web-based knowledge
representation language that supports multiple versions of ontologies. SHOE is described
in the terms of a logic that separates data from ontologies and allows ontologies to provide
different perspectives on the data. The paper presents the features of SHOE that address
ontology versioning, the effects of ontology revision on SHOE web pages, and methods
for implementing ontology integration using SHOE's extension and version mechanisms.

CHAPTER 2. ONTOLOGY EVOLUTION - SURVEY 24

In [KFO1] the authors discuss the problem of ontology versioning based on work
done in database schema versioning and program interface versioning. They also pro-
pose building blocks for the two important aspects of a versioning mechanism: ontology
identification and change specification.

[KKOF02] discusses OntoView, a web-based change management system for ontolo-
gies. OntoView provides a transparent interface to different versions of ontologies, by
maintaining not only the transformations between them, but also the conceptual relation
between concepts in different versions. It uses several rules to find changes in ontologies
and it visualizes them — and some of their possible consequences — in the file represen-
tations. The user is able to specify the conceptual implication of the differences, which
allows the interoperability of data that is described by the ontologies. The paper describes
the system and presents the mechanism that we used to find and classify changes in RDFS
/ DAML ontologies. It also shows how users can specify the conceptual implication of
changes to help interoperability.

2.6.3 Evolution and Versioning in Database Systems
According to [SR03], schema evolution has three well-defined and inter-related activities:

1. Core schema evolution, which includes identifying and incorporating changes to the
schema while preserving the consistent state of the schema as well as propagating
the changes to the data associated with the schema,

2. Version management, which deals with the management of different versions of a
schema introduced by schema changes

3. Application management, which examines how applications dependent on the
schema may continue to work.

The consistent state of a schema is typically defined using a formal structure such as
a graph.

Whereas schema evolution in relational databases is only poorly supported, with the
appearance of object-oriented database systems, schema evolution became a research is-
sue. A very early prototype of an object-oriented system that provides support for schema
evolution is ORION[BKKK®87]. An important part of this work is the development of a
formal taxonomy of schema changes and a framework for managing schema changes in
object-oriented systems. The semantics of each schema change is examined and a set of
invariant properties of the schema is proposed which must be preserved across schema
changes.

Object-oriented schema evolution is more relevant for the ontology evolution due to
two reasons:

¢ the object-oriented database models provide a semantically richer model than the
relational database system and, therefore, can be considered as the extension of the
relation database evolution;

CHAPTER 2. ONTOLOGY EVOLUTION - SURVEY 25

¢ the object-oriented database models are more similar to the ontology models due to
the complex inheritance hierarchies.

In [NKO3] the authors compare the evolution of ontologies with the evolution of
database schemas. They state that the similarities between database-schema evolution
and ontology evolution allow to build on the extensive research in schema evolution.
They also identify important differences between database schemas and ontologies. The
differences stem from different usage paradigms, the presence of explicit semantics, and
different knowledge models. A lot of problems that existed only in theory in database
research come to the forefront as practical problems in ontology evolution. These differ-
ences have important implications for the development of ontology evolution frameworks:
The traditional distinction between versioning and evolution is not applicable to ontolo-
gies. There are several dimensions along which compatibility between versions must be
considered. The set of change operations for ontologies is different.

[AFMO3] presents two perspectives on modelling dynamic information using descrip-
tion logics: In a first part, the authors present a general temporally enhanced conceptual
data model able to represent time varying data. In a second part, they introduce an object-
oriented conceptual data model enriched with schema change operators, which are able
to represent the explicit temporal evolution of the schema while maintaining a consistent
view on the instantiated (static) data. Both conceptual data models and their inference
problems are encoded in Description Logics.

The problem of the schema evolution and of the schema versioning support has been
extensively studied in relational and database papers. [Rod95] provides an excellent sur-
vey of the main issues concerned. A semantic approach to the specification and manage-
ment of object-oriented databases with evolving schemata in introduced in [FGMOO]. The
authors formalize a generic object-oriented model for the schema versioning and evolu-
tion, define the semantics of schema changes and show how interesting reasoning tasks
can be supported. This approach is very similar to the declarative approach for the seman-
tics of change in [Sto04b] since both of them can deal with arbitrary complex changes and
allow the formal checking of the evolution. A sound and complete axiomatic model for
dynamic schema evolution in object-based systems is described in [Pz97]. This is the first
effort in developing a formal basis for the schema evolution research. The approach takes
into account the key features of types and inheritance. The model can infer all schema
relationships from two sets associated with each type.

Mapping Evolution

Mappings are an established paradigm to achieve interoperability in information systems
applications. Mappings allow to translate data from one representation to another. As in
dynamic environments data sources may change not only their data but also their schemas,
their semantics, and their query capabilities. Such changes must be reflected in the map-
pings. Mappings left inconsistent by a schema change have to be detected and updated.
Possible application scenarios for evolving mappings include, but are not limited to, data

CHAPTER 2. ONTOLOGY EVOLUTION - SURVEY 26

integration, model management, or local mappings between peers in Peer-to-Peer infor-
mation management systems. Related to schema versioning, it is also possible to treat the
new version of a schema as a “view” by providing the corresponding mapping.

[VMPO3] presents a framework and a tool (TOMAS) for automatically adapting map-
pings as schemas evolve. Our approach considers not only local changes to a schema, but
also changes that may affect and transform many components of a schema. The authors
consider a comprehensive class of mappings for relational and XML schemas with choice
types and (nested) constraints. Their algorithm detects mappings affected by a structural
or constraint change and generates all the rewritings that are consistent with the semantics
of the mapped schemas. The approach explicitly models mapping choices made by a user
and maintains these choices, whenever possible, as the schemas and mappings evolve.
The algorithms have been implemented in a mapping management and adaptation tool
ToMAS.

[MPO02] presents an approach to schema evolution, which combines the activities of
schema integration and schema evolution into one framework. It builds on previous work
on a general framework to support schema transformation and integration in heteroge-
neous database architectures, which relies on the hypergraph-based data model (HDM)
as a common data model. In this paper the authors show how this framework also sup-
ports evolution of source schemas, allowing the global schema and the query translation
pathways to be easily repaired, as opposed to having to be regenerated, after changes to
source schemas.

2.6.4 Evolution and Versioning for Other Paradigms
Maintenance of Knowledge-Base Systems

Research in the ontology evolution can also benefit from the many years of research in
knowledge-based system evolution [Men99]. There are a vast number of techniques (e.g.
knowledge refinement, theory revision, validation and verification, etc.) for assisting the
development of knowledge-based systems. They follow the paradigm of detecting prob-
lems in a knowledge-based system and suggesting repairs. Most of them attempt to cor-
rect errors when a knowledge-based system is being developed.

A common technique for the knowledge maintenance is to reflect over dependencies
between knowledge elements. The question is how to represent the dependencies between
them. There are three different approaches: (i) procedural approach, (ii) logical approach,
and (iii) network approach. All of them are based on the dependency graph analysis. The
differences between these approaches are discussed in [MDOO].

2.7 Conclusion and Recommendations

We have presented an overview of state of the art in ontology evolution. We have shown a
variety of approaches that concern the evolution process, frameworks, methods and tools.

CHAPTER 2. ONTOLOGY EVOLUTION - SURVEY 27

Many of these approaches build on top of or extend the work that has been done in the
database and related communities.
However, there are still many open research questions, among them:

Language-independent ontology evolution: The existing ontology evolution ap-
proaches heavily depend on the underlying ontology language. One way to address this
problem is to model all aspects of the ontology evolution declaratively. This abstraction
may assist in the design of a language independent ontology evolution system.

Request specification: A declarative language for the specification of a request for a
change would be desirable. It would allow expressing the ontology changes and con-
straints in a single framework, and, thus, would allow to reason about interactions be-
tween the two. This language would differ from the existing ontology query languages,
which are only used for the retrieval of the data from an ontology. It would extend these
languages by incorporating the modifications, as well.

Ontology dependency: Future research can be directed towards providing more ways
for working with multiple ontologies. There are various dependency forms, such as on-
tology mapping, ontology merging, ontology alignment and ontology integration. For
example, the ontology mapping relates similar (according to some metric) concepts and
relations from different sources to each other; the ontology merging creates a new ontol-
ogy from two or more existing ontologies with overlapping parts. Each of these depen-
dency forms puts different requirements on the evolution between dependent ontologies.
Some of them can be resolved by introducing a special meta-ontology that captures rela-
tionships between entities from different ontologies. For example, to set up the mapping
between ontologies, the mapping ontology might be defined. This ontology should con-
tain the equal property that can be used for establishing equivalence between concepts
from different ontologies. To support the evolution of the instantiation of this ontology,
the ontology evolution approach has to be extended in two ways. Firstly, the set of consis-
tency constraints has to be extended by taking into account the semantics of the mapping
ontology. Secondly, the set of changes has to be extended with the more complex changes
that can be applied to these mappings. Finally, the evolution support has to take into
account that concepts and properties from the ontologies between which the mapping is
established are considered as instances in the ontology that describes these mappings.

In the context of this project, the focus of the research will be on developing a frame-
work and methods for the evolution of OWL-based ontologies and their application for
data integration scenarios in the presence of heterogeneous evolving data sources.

Chapter 3

Methods for Evolution of OWL
Ontologies

The OWL ontology language is a standard for representing ontologies on the Web
[HPSVHO3], however, the semantics of change operations for OWL has not been con-
sidered so far. In this paper, we therefore focus on the evolution of OWL ontologies.
More precisely, we consider OWL-DL language, which includes arbitrary sublanguages
such as OWL-Lite.

The approach presented in this paper builds partly on our previous work in ontology
evolution [Sto04a], which we adapt it towards handling OWL ontologies. The differences
are mostly reflected in the ontology consistency definition. As we will show, it does not
suffice to define a fixed set of consistency conditions, due to the characteristics of the
various sublanguages and the varying usage contexts. Instead, we define the consistency
of OWL ontologies at three different levels.

We further define methods for detecting and resolving inconsistencies in an OWL
ontology after the application of a change. Finally, as for some changes there may be
several different consistent states of the ontology, we define resolution strategies allowing
the user to control the evolution.

We exemplarily present resolution strategies for various consistency conditions.

This chapter is organized as follows: We start with a description of the ontology
evolution process. We then define the notions of ontology, ontology change operations,
and the semantics of change for the ontology model. We further discuss how to detect
and resolve structural inconsistency, logical inconsistency and user-defined inconsistency,
respectively. The protypical implementation of the methods will be presented in Chapter
4.

3.1 Evolution process

Ontology evolution can be defined as the timely adaptation of an ontology and consistent
management of changes. The complexity of ontology evolution increases as ontologies

28

CHAPTER 3. METHODS FOR EVOLUTION OF OWL ONTOLOGIES 29

Change Resolution

Change

Application Inconsistency > Change
Detection Generation

v

Semantics of Change Phase
of the Ontology Evolution Process

Figure 3.1: A part of the Ontology Evolution Process

grow in size, so a structured ontology evolution process is required. We follow the pro-
cess described in [StoO4a]. The process startsaaiftturing changesither from explicit
requirements or from the result of change discovery methods. Next, chtree repre-
sentationphase changes are represented formally and expliitlg.semantics of change
phase prevents inconsistencies by computing additional changes that guarantee the transi-
tion of the ontology into a consistent state. In t@ange propagatiophase all dependent
artifacts (ontology instances on the Web, dependent ontologies and application programs
using the changed ontology) are updated. Duringdi@nge implementatiophase re-
quired and induced changes are applied to the ontology in a transactional manner. In the
change validatiorphase the user evaluates the results and restarts the cycle if necessary.

In this paper we focus on the semantics of change phase. Its role is to enable the
resolution of a given ontology change in a systematic manner by ensuring the consistency
of the whole ontology. It is realized through two tasks:

e Inconsistency Detectionlt is responsible for checking of the consistency of an
ontology with the respect to the ontology consistency definition. Its goal is to find
"parts” in the ontology that do not meet consistency conditions;

e Change Generatianit is responsible for ensuring the consistency of the ontology
by generating additional changes that resolve detected inconsistencies.

The semantics of change phase of the ontology evolution process is shown in Figure
3.1. Changes are applied to an ontology in a consistent state (c.f. Change Application
in Figure 3.1), and after all the changes are performed, the ontology must remain consis-
tent (c.f. Semantics of Change in Figure 3.1). This is done by finding inconsistencies in
the ontology and completing required changes with additional changes, which guarantee
the consistency. Indeed, the updated ontology is not defined directly by applying a re-
guested change. Instead, it is indirectly characterized as an ontology that satisfies a users
requirement for a change and it is at the same time a consistent ontology.

In this paper we specifically consider the semantics of change phase for OWL-DL
ontologies. Ontology consistency in general is defined as a set of conditions that must

CHAPTER 3. METHODS FOR EVOLUTION OF OWL ONTOLOGIES 30

hold for every ontology [StoO4a]. We define the consistency for an OWL-DL ontology at
three different levels:

e Structural ConsistencyStructural consistency makes a determination of the lan-
guage level of the ontology being examined. It considers only the requirements
defined by the ontology language and pays no regard to the internal semantics of an
ontology.

e Logical ConsistencyFrom the point of view of logic, consistency is an attribute
of a (logical) system that is so constituted that none of the facts deducible from
the model contradict one other. Therefore, checking the logical consistency of an
OWL-DL ontology means determining whether the ontology is consistent in the
model-theoretic sense, i.e. whether it is satisfiable.

e User-defined Consistericyhe user-defined consistency is a set conditions that can-
not be derived from the syntax nor semantics of the underlying ontology language.
The conditions are explicitly defined by the user and they must be met in order for
the ontology to be considered consistent.

We note that most of the existing evolution systems (including the schema evolution
systems as well) consider only the structural consistency. The role of an ontology evo-
lution system is not only to find inconsistencies in an ontology and to alert an ontology
engineer about them. This is pretty much the kind of support provided by conventional
compilers. However, helping ontology engineers notice the inconsistencies only partially
addresses the issue. Ideally, an ontology evolution system should be able to support on-
tology engineers in resolving problems at least by making suggestions how to do that.

Moreover, an inconsistency may be resolved in many ways. In order to help to user to
control and customize this process, we have introduced the so-called resolution strategies.
Resolution strategies are developed as a method of “finding” a consistent ontology that
meets the needs of the ontology engineer. An resolution strategy is the policy for evolution
with respect to the his/her requirements. It unambiguously defines the way in which a
change will be resolved, i.e. which additional changes will be generated.

In the rest of this paper we formally define different types of consistency and elaborate
on how corresponding inconsistency can be detected and resolved.

3.2 Ontology Model and Ontology Change Operations

The goal of ontology evolution is to guarantee the correct semantics of ontology changes,
i.e. ensuring that they produce an ontology conforming to a set of consistency conditions.
The set of elementary ontology change operations — and thus the consistency conditions
— depends heavily on the underlying ontology model. Most existing work on ontology
evolution builds on frame-like or object models, centered around classes, properties, etc.
However, as in this work we focus on the evolution of OWL-DL ontologies, we follow
the axiom-centered ontology model, heavily influenced by Description Logics. In this

CHAPTER 3. METHODS FOR EVOLUTION OF OWL ONTOLOGIES 31

section, we will first review the ontology model, define change operations for this model,
and describe the semantics of change.

3.2.1 Ontology Model

OWL DL is a syntactic variant of th6 HOZN (D) description logic[HPS04]. The cor-
respondence between the OWL DL abstract syntax@H@ZN (D) knowledge bases
as well as the reduction of OWL entailment$3OZN (D) satifiability has been pre-
sented in [HPSO04]. In the following we will adhere to the more compact, traditional
SHOIN (D) syntax, which we review in the following:

We use a set of concept nam¥g, sets of abstract and concrete individudlg and
Ny, respectively, and sets of abstract and concrete role naAipeandNy_, respectively.
An abstract roleis an abstract role name or the inverse of an abstract role namg
(concrete roles do not have inverses). In the following, we assum®tlssan admissible
concrete domain.

An RBoxR consists of a finite set of transitivity axionisans(R), and role inclusion
axioms of the formR C S andT C U, whereR and .S are abstract roles, arid and
U are concrete roles. The reflexive-transitive closure of the role inclusion relationship is
denoted with=*. A role not having transitive subroles (w.rtt.*, for a full definition see
[HSTOQ]) is called assimplerole.

The set ofSHOZN (D) conceptss defined by the following syntactic rules, whete
is an atomic concept is an abstract role$' is an abstract simple rolé,;, are concrete
roles,d is a concrete domain predicate,andc; are abstract and concrete individuals,
respectively, and is a non-negative integer:

cC — A|ﬂC\Cll_ng\Cll_lCﬂElRC\VRCW2n5’\§n5|{a1,,an}]
|>nT|<nT|3N,...,T,.D|VT\,...,T,.D
D — d|{ci,...,cn}

A TBox7 consists of a finite set of concept inclusion axiofhs— D, whereC and
D are concepts; aABox.A consists of a finite set of concept and role assertions and
individual (in)equalities”(a), R(a,b), a ~ b, anda % b, respectively.

We denote the set of all possible ontologies withA SHOZN (D) knowledge base
(7, R, A) consists of a TBoxZ, an RBoxR, and an ABoxA. For the direct model-
theoretic semantics a$HOZN (D) we refer the reader to [HST00]. For most of the
paper, we do not need to distinguish betweénR and7 and will therefore call an
ontologyO the set of axioms i7, R, andA4,i.e. O = AURUT € 9.

Example 1As a running example, we will consider a simple ontology modelling a small
research domain, consisting of the following axioms:

Researcher C Person, Student = Person (Students and researchers are persons),
Article © Publication (articles are publications),T T Vauthor.Person the range of
author are persons] C Yauthor~.Publication (the domain of author are publications),

CHAPTER 3. METHODS FOR EVOLUTION OF OWL ONTOLOGIES 32

Article(anArticle) (anArticle is an article),Researcher(pha), Researcher(lst) (pha
and Ist are researchersyuthor(anArticle, pha), author(anArticle,lst) (pha and Ist
are authors of anAtrticle).

3.2.2 Ontology Change Operations

Based on the ontology model, we can now define ontology change operations.
Definition 1 Anontology change operatiato e OCO is a function oco O — ©.

For the above defined ontology model$fOZN (D), we allow the atomic change op-
erations of adding and removing axioms, which we denote witlanda—, respectively.
Obviously, representing changes at the level of axioms is very fine-grained. However,
based on this minimal set of atomic change operations, it is possible to define more com-
plex, higher-level descriptions of ontology changes. Composite ontology change oper-
ations can be expressed as a sequence of atomic ontology change operations. The se-
mantics of the sequence is the chaining of the corresponding functions: For some atomic
change operations oo.., 0co, we can define 0Gg,,positc () = 0CO, o ... 0 0CO(T) =
ocq,(...(ocq)))(x).

For example, the complex change of removing a concept can be expressed using a
composite ontology change operation that removes all axioms which reference this con-
cept.

3.2.3 Semantics of Change

The semantics of change refers to the effect of the ontology change operations and the
consistent management of these changes. The consistency of an ontology is defined in
terms of consistency conditions, or invariants that must be satisfied by the ontology. We
then define rules for maintaining these consistency conditions by generating additional
changes.

Definition 2 (Consistency of an Ontology)We call an ontology® consistentwith re-
spect to a set of consistency conditid@sff for all « € K, O satisfies the consistency
conditionx(O).

The consistency conditions may be expressed for example as logical formulas or func-
tions. At this point, we do not make any restriction with respect to the representation of
the consistency conditions.

In the following, we will further distinguish between structural, logical and user-
defined consistency conditionkis, K, andKy, respectively. We will call an ontology
structurally consistentiogically consistenanduser-defined consisterit the respective
consistency conditions hold for the ontology.

CHAPTER 3. METHODS FOR EVOLUTION OF OWL ONTOLOGIES 33

Change Generation If we have discovered that an ontology is inconsistent, i.e. some
consistency condition is violated, we need to resolve these inconsistencies by generating
additional changes that lead to a consistent state.

Definition 3 A resolution functiorp € P is a functionp : © x OCO — OCO, which
returns for a given ontology and an ontology change operation an additional change
operation (which may be composite).

A trivial resolution function would be a function which for a given ontology and change
operation simply returns the inverse operation, which effectively means a rejection of the
change. Obviously, for a consistent input ontology, applying a change followed by the
inverse change will result in a consistent ontology.

In general, there may be many different ways to resolve a particular inconsistency,
i.e. different resolution functions may exist. We can imagine a resolution function that
initially generates a set of alternative potential change operations, which may be presented
to the user who decides for one of the alternatives. Such a resolution function that depends
on some external input is compatible with our definition of a resolution function.

We can now define the notion of an resolution strategy:

Definition 4 (Resolution Strategy) A resolution strategyksS is a total functionRS :

K — P that maps each consistency condition to a resolution function. Further we require
that for all possible ontologie® € © and for all ocoe OCO and allx € I, the assigned
resolution functiorp = RS(k) generates changes dce o(O, oco), which — applied to

the ontology oc@Q) result in an ontology that satisfies the consistency condition

The resolution strategy is applied for each ontology change operation in straight-
forward manner: As long as there are inconsistencies with respect to a consistency condi-
tion, we apply the corresponding resolution function.

Please note that a resolution function may generate changes that violate other con-
sistency conditions (resulting in further changes, that in turn may violate the previous
consistency condition). When defining a resolution strategy, one therefore has to make
sure that the application of the resolution strategy terminates, either by prohibiting that
a resolution function introduces inconsistencies with respect to any defined consistency
condition, or by other means, such as cycle detection.

In the following chapters we will introduce various evolution strategies to maintain
structural, logical and user-defined consistency of an ontology.

3.3 Structural Consistency

Structural consistency considers constraints that are defined for the ontology model with
respect to the constructs that are allowed to form the elements of the ontology (in our
case the axioms). However, in the context of OWL ontologies, there exist various sub-
languages (sometimes also called species), such as OWL-DL, OWL-Lite, OWL-DLP

[VolO4a). These sublanguages differ with respect to the constructs that are allowed and

CHAPTER 3. METHODS FOR EVOLUTION OF OWL ONTOLOGIES 34

can be defined in terms of constraints on the available constructs. The role of these sublan-
guages is to be able to define ontologies that are “easier to handle”, either on a syntactic
level to for example allow easier parsing, or on a semantic level to trade some of the
expressivity for decreased reasoning complexity. It is thus important that the ontology
evolution process provides support for dealing with defined language sublanguage: When
an ontology evolves, we need to make sure that an ontology does “not leave its sublan-
guage”.

Because of the variety of the sublanguages, it is not possible to operate with a prede-
fined and fixed set of structural consistency conditions. Instead, we allow allow to define
sublanguages in terms of arbitrary structural consistency conditions along with the corre-
sponding reolution functions that ensure that an ontology change operation does not lead
out of the defined sublanguage.

3.3.1 Structural Consistency Conditions

We will in the following define what it means for an ontology to be structurally consistent
with respect to a certain ontology sublanguage. A sublanguage is defined by a set of con-
straints on the axioms. Typically, these constraints disallow the use of certain constructs
or the way these constructs are used.

Some constraints can be defined on a “per-axiom-basis”, i.e. they can be validated
for the axioms individually. Other constraints restrict the way that axioms are used in
combination.

Consistency Condition for the OWL-Lite sublanguage We now consider OWL Lite
as a sublanguage of OWL-DL show how it can be defined in terms of a set of structural
consistency conditions *:

¢ kg disallows the use of disjunctiafi U D,
e kg disallows the use of negatiofC,

e kg3 restricts the use of the concept1 D such thatC and D be concept names or
restrictions,

e kg4 restricts the use of the restriction constructefaC', VR.C' such thatC' must
be a concept name,

e 1g; limits the values of stated cardinalities to 0 or 1, inec {0, 1} for all restric-
tions>n R, <nR,

e 1g¢ disallows the usage of the oneOf construdter, . . ., a, }.

1Please note that the constraints for the OWL-DL language are already directly incorporated into the
ontology model itself.

CHAPTER 3. METHODS FOR EVOLUTION OF OWL ONTOLOGIES 35

Other examples for useful structural constraints are for example : (1) Horness, a prop-
erty which requires that an axiom can be translated into a Horn formula, and thus e.g.
restricts disjunction on the right side of the inclusion axiom, (2) disallowing the use of
existential qualifiers, which allows us to introduce unnamed objects, or (3) disallow the
use of equality.

3.3.2 Resolving Structural Inconsistencies

Once we have discovered inconsistencies with respect to the defined sublanguage, we
have to resolve them. An extreme solution would be to simply remove the axioms that
violate the constraints of the sublanguage. This would certainly not meet the expected
requirements. A more advanced option is to try to express the invalid axiom(s) in a way
that is compatible with the defined sublanguage. In some cases, it may be possible to
retain the semantics of the original axioms.

Resolution Strategies for OWL Lite In the following we will present a possible res-
olution strategy for the OWL Lite sublanguage by defining one resolution function for
each of the above consistency conditions. Although OWL Lite poses many syntactic con-
straints on the syntax of OWL DL, it is still possible to express complex descriptions
using syntactic workarounds, e.g. introducing new class names and exploiting the im-
plicit negation introduced by disjointness axioms. In fact, using these techniques, OWL
Lite can fully capture OWL DL descriptions, except for those containing individual names
and cardinality descriptions greater than 1 [HPSvHO03].

e 0,1 replaces all references to a concépt) D with references to a new concept
nameCor D, and adds the following axionCorD = —(—=C M D),

e 0 replaces all references to a concefit in an added axiom with references to
a new concept nam&otC, and adds the following two axiomg? = JR.T and
NotC =VR.1,whereR is a newly introduced role name,

e 0,3 replaces all references to a concépfor D), whereC' (or D) is not a concept
name, in concept§' M D with references to a new concept nanteé (or a D), and
adds the following axiomaC' = C' (oraD = D),

e 0,4 replaces all references to a concéptiwhereC' is not a concept name) in
restrictions3R.C' or YR.C' with references to a new concept nan®, and adds
the following axiom:aC = C.

While these first four resolution functions simply apply syntactic tricks while preserving
the semantics, there exist semantics-preserving resolution functions for the consistency
conditionskg s andkgg.

However, we can either try to approximate the axioms, or in the worst case, simply
remove them to ensure structural consistency. We can thus define:

CHAPTER 3. METHODS FOR EVOLUTION OF OWL ONTOLOGIES 36

e 0.5 Which replaces all cardinality restrictions n R with restrictions> 1 R and
removes all axioms containing cardinality restrictichs: R,

e 0. Which replaces all references to the concept .. ., a,, } with T.

Example 2Suppose we wanted to add to the ontology from Example 1 the axiom
Publication T Jauthor.~Student, i.e. stating that for all publications must have an
author who is not a student. As this axiom violates consistency condijigresolution
function g, » would generate a composite change that adds the following semantically
equivalent axioms insteadPublication T Jauthor.NotStudent, Student = 3R. T,
NotStudent = VR._L, resulting in a structurally consistent ontology.

3.4 Logical Consistency

While the structural consistency is only concerned about whether the ontology conforms
to certain syntactic constraints, the logical consistency addresses the question whether the
ontology is “semantically correct”.

3.4.1 Definition of Logical Consistency

The semantics of th6 HOZN (D) description logic is defined via a model-theoretic se-
mantics, which explicates the relationship between the language syntax and the model
of a domain: model-theoretic semantics. An interpretation (A, 1) consists of a
domain set\’, disjoint from the datatype domaifil,, and an interpretation functiofh,
which maps from individuals, classes and roles to elements of the domain, subsets of the
domain and binary relations on the domain, respective®n interpretationZ satisfies
an ontologyQ, if it satisfies each axiom i¥. Axioms thus result in semantic condi-
tions on the interpretations. Consequently, contradicting axioms will allow no possible
interpretations.

We can thus define a consistency conditionlégfical consistency:;, that is satisfied
for an ontologyQ if O is satisfiable, i.e. i© has a model. Please note, that because of the
monotonicity of the logic, an ontology can only become inconsistent by adding axioms:
If a set of axioms is satisfiable, it will still be satisfiable when any axiom is deleted.
Therefore, we only need to check the consistency for ontology change operations that add
axioms to the ontology.

Example 3Suppose, we start out with the ontology from our Example 3.3.2, i.e. the initial
example extended with the axidftudent C —Researcher (Students and Researchers
are disjoint). This ontology is logically consistent.

Suppose we now wanted to add the axi®tdent(pha), stating that the individual
pha is a student. Obviously, this ontology change operation would result in an incon-
sistent ontology, as we have stated that students and researchers are disjoint on the one
hand, and thapha is a student and a researcher on the other hand.

2For a complete definition of the interpretation, we refer the reader to [HPS04].

CHAPTER 3. METHODS FOR EVOLUTION OF OWL ONTOLOGIES 37

Now, there may be many ways how to resolve this inconsistency. One possibility
would be to reject the chang&tudent(pha). Alternatively, we could also remove the
assertionResearcher(pha). However, if both of these assertions are correct, the user
may not be happy with either decision. The most intuitive one may be to retract the axiom
Student C = Researcher, but also this may not satisfy the user. A further, more complex
change, would be to introduce a new cld3sdStudent, which need not be disjoint with
researchers.

3.4.2 Resolving Logical Inconsistencies

In the following, we will present resolution functions that will allow us to define resolu-
tion strategies to ensure logical consistency. The goal of these resolution functions is to
determine a set of axioms to remove to obtain a logically consistent ontology with “min-
imal impact” on the existing ontology. Obviously, the definition of minimal impact may
be depend on the particular user requirements. A very simple definition could be that the
number of axioms to be removed should be minimized. More advanced definitions could
include a notion of confidence or relevance of the axioms. Based on this notion of “mini-
mal impact” we can define an algorithm that generates a minimal number of changes that
result in a maximal consistent subontology.

However, in many cases it will not be feasible to resolve logical inconsistencies in a
fully automated manner. We therefore also present a second, alternative approach for re-
solving inconsistencies that allows the interaction of the user to determine which changes
should be generated. Unlike the first approach, this approach tries to localize the incon-
sistencies by determining a minimal inconsistent subontology.

Alternative 1: Finding a consistent subontology

In our model we assume that the ontology change operations should lead from one consis-
tent ontology to another consistent ontology. If an ontology change operation (adding an
axiom,a™) would lead to an inconsistent ontology, we need to resolve the inconsistency
by finding an appropriate subontolo@y C O (with « € ') that is consistent.

Definition 5 (Maximal consistent subontology) An ontology®’ is a maximal consis-
tent subontologyof O, if O C O and @' is logically consistent and ever§®” with
O C O" C O s logically inconsistent.

Intuitively, this definition states that no axiom fraghcan be added t®’ without losing
consistency. In general, there may be many maximal consistent subontal¥gidiss
up to the resolution strategy and the user to determine the appropriate subontology to be
chosen.

The main idea is that we start out with the inconsistent ontol@gy {«} and iter-
atively remove axioms until we obtain a consistent ontology. Here, it is important how
we determine which axioms should be removed. This can be realized usilgaion
function The quality of the selection function is critical for two reasons: First, as we

CHAPTER 3. METHODS FOR EVOLUTION OF OWL ONTOLOGIES 38

have to search the power set of axiomgiiior the maximal consistent ontology and thus
need to find thatelevantaxioms that cause the inconsistency. Second, we need to make
sure that we only remowdispensablexioms. (Please note that a more advanced strategy
could consider to only remove parts of the axiom.)

The first problem of finding the axioms that cause the inconsistency can be addressed
e.g. using a notion of syntactic relevance by analyzing how the axioms are structurally
connected:

We can realize a selection functions basedactural connectedness

Definition 6 (Connectedness)Given a set of axiom@, two axiomsy and 5 are directly
connected- denoted with connectéd, 5) —, if there exists an ontology entitye No U
N, UN;, UNg, U Npg, that occurs in botlw and 5.

The second problem of only removing dispensable axioms requires more semantic se-
lection functions. These semantic selection functions can for example exploit information
about the confidence in the axioms that allows us to remove less probable axioms. Such
information is for example available in probabilistic ontology models, such as [DP04],
but will not be considered in this paper.

In the following, we present an algorithm (c.f. Algorithm 1) for finding (at least)
one maximal consistent subontology using the definition of structural connectedness (c.f.
Definition 6): We maintain a set of possible candidate subontoldgjeshich initially

Algorithm 1 Determine consistent subontology for adding axieto ontology©Q

Q:={0uU{a}}
while there exists n@’ € 2 such thatD’ is consistentio

Q=0

forall O’ € Q2 do

forall 8, € O\ {a} do
if there is a3, € ({a} U (O '\ O)) such that connect¢d,, 52) then
0= {0\ {1}
Q=

contains onlyO U {a}. In every iteration, we generate a new set of candidate ontologies
by removing one axionw; from each candidate ontology that is structurally connected
with « or an already removed axiom ({®\ O’), until at least one of the candidate ontolo-

gies is a consistent subontology. The termination is guaranteed based on the fact that once
we have removed all axioms fromU {«a} that are transitively connected with the on-

tology again must be consistent (provided thatself is consistent an@ was consistent
before addingy). As we remove exactly one axiom from each candidate ontology in one
iteration, the resulting ontology will not only be maximal with respect to the above defini-
tion, but also maximal with respect to cardinality. The corresponding resolution function
or1 thus generates changes that remove the minimal set of axioms to ensure consistency:
O\ O, where(' is the maximal consistent ontology.

CHAPTER 3. METHODS FOR EVOLUTION OF OWL ONTOLOGIES 39

Alternative 2: Localizing the inconsistency

In the second alternative, we do not try to find a consistent ontology, instead we try to
find a minimal inconsistent ontology, i.e. a minimal set of contradicting axiom. We call
this procesd.ocalizing the inconsistencyOnce we have localized this minimal set, we
present it to the user. Typically, this set is considerably smaller than the entire ontology,
such that it will be easier for the user to decide how to resolve the inconsistency.

Definition 7 (Minimal inconsistent subontology) An ontology®’ is a minimal incon-
sistent subontologyf O, if @ C O and O’ is inconsistent and for all®” with
0" c O CO,0"is consistent.

Intuitively, this definition states that the removal of any axiom fr6twill result in a
consistent ontology.

Again using the definition of connectedness, we can realize an algorithm (c.f. Algo-
rithm 2) that is guaranteed to find a minimal inconsistent ontology: We maintain(a set
with candidate ontologies, which initially only consist of the added axjarh As long as
we have not found an inconsistent subontology, we add one structurally connected axiom
to each candidate ontology.

Algorithm 2 Localize inconsistency introduced by adding axiarto ontology©O

Q:={{a}}
while there exists n@’ € 2 such that?’ is inconsistento
Q=0

forall O’ € Q2 do
forall 5, € O do
if there is &3, € O’ such thatonnected(3, 32) then
O =QU{O0U{s}}
Q=

Because of the minimality of the obtained inconsistent ontology, it is sufficient to
remove one of the axioms to resolve the inconsistency. The minimal inconsistent ontology
can be presented to the user, who can select the appropriate axiom to remove. It may be
possible that one added axiom introduced multiple inconsistencies. For this case, the
above algorithm has to be applied iteratively.

Example 4We will now show how Algorithm 2 can be used to localize the inconsis-
tency in our running example, which has been introduced by adding the axiom
Student(pha). Applying the algorithm, we start out with the candidate ontologies
Q= {{Student(pha)}}. Adding the structurally connected axioms, we obtain:

QO := {{Student(pha), Researcher(pha)},{Student(pha), Student T Person},
{Student(pha), Student T —Researcher}, {Student(pha), Student(lst)},

{Student(pha), author(anArticle,pha)}}. All of these candidate ontologies are still
consistent. In the next iteration, adding the structurally connected axiom

CHAPTER 3. METHODS FOR EVOLUTION OF OWL ONTOLOGIES 40

Student C = Researcher to the candidate ontologyStudent(pha), Researcher(pha)}
will result in the minimal inconsistent subontology
{Student(pha), Researcher(pha), Student C —Researcher}.

3.5 User-defined Consistency

The user-defined consistency takes into account particular user requirements that need to
be expressed “outside” of the ontology language itself. That means, the semantics of the
consistency conditions cannot be described directly in terms of the syntax or semantics
of the OWL ontology model: While an ontology may be structurally consistent (e.g. be

a syntactically correct ontology according to a particular OWL sublanguage) and may be
logically consistent, it may still violate some user requirements.

We can identify two types of the user-defined consistency conditionge(igric con-
ditionsthat are applicable across domains and for example represent best design practice
or modeling quality criteria, andomain dependent conditiotisat take into account the
semantics of a particluar formalism of the domain. One such example are consistency
conditions for the OWL-S process model [SASS04] to verify web service descriptions.

In the following we exemplarily show how user-defined consistency condition sand
corresponding resolutions function can be described to emsadeling quality condi-
tions Such modeling quality conditions cover redundancy, misplaced properties, missing
properties, etc. We refer the reader to [Sto04a] for a complete reference.

One example of redundancy @ncept hierarchy redundancylf a direct super-
concept of a concept can be reached through a non-direct path, then the direct link is
redundant. We can thus define a consistency condition that disallows concept hierrachy
redundancyxy ; is satisfied if for all axiomg™; T C,, in O there exist no axioms i)
with CiC 0y, ...,.Ch1 CC,.

We can further define a corresponding resolution functien that ensures this con-
sistency condition, which generates a change operation that removes the redundant axiom
Cy C Cs.

Example 5Suppose, we start out with the ontology from our Example 3.3.2, i.e. the initial
example extended with the axidtrofessor © Person (a professor is a person). This
ontology is consistent with respect to the consistency definitign

Suppose we now want to add the axiéwv fessor C Researcher, stating that the
a professor is a researcher. Obviously, this ontology change operation would result in
an ontology that is inconsistent with respect«g; since there is an alternative path
(through the concepkesearcher) between the conceptrofessor and its direct super-
conceptPerson. The resolution functiop;; would generate a change operation that
removes the axiomf*rofessor C Person.

CHAPTER 3. METHODS FOR EVOLUTION OF OWL ONTOLOGIES 41

3.6 Conclusion

In this chapter we have presented an approach to formalize the semantics of change for
the OWL onology language (for OWL-DL and sublanguages in particular), embedded in
a generic process for ontology evolution. Our formalization of the semantics of change
allows to define arbitrary consistency condititions — grouped in structural, logical, and
user-defined consistency — and to define resolution strategies that assign resolution func-
tions to that ensure these consistency conditions are satisfied as the ontology evolves.
We have shown examplarily, how such resolution strategies can be realize for various
purposes.

Chapter 4

Prototypes

In this chapter we will present three prototypes for ontology management and evolution:

e The KAON tool suite comprises tools for the engineering, management, and evolu-
tion of ontologies. Although not primarily developed in the SEKT project, it does
have a special role in the project and is therefore included in this chapter: 1) It is
used by the project partners for the engineering and management of their ontolo-
gies, and 2) it serves as the basis for further developments of ontology management
and evolution prototypes in the project.

¢ dlponvertis a tool that aims at closing the gap between the Description Logics based
ontology languages and logic programming languages. It allows the conversion of
a subset of OWL to Datalog and thus serves as the basis for efficient reasoning with
OWL ontologies.

e evOWLutionis a software component that builds on KAON® support the con-
sistent evolution of OWL ontologies using the methods described in chapter 3.

4.1 KAON

KAON consists of a number of different modules providing a broad bandwidth of func-
tionalities centered arouncteation, storage, retrieval, maintenance and application

of ontologies It was and currently is being further developed in a joint effort mainly by
members of the Institute AIFB at University of Karlsruhe and the FZI — Research Center
for Information Technologies, Karlsruhe.

Before presenting an outline of this document we will clarify in the next section the
overall picture on what kind of KAON components exist currently. If you are not yet
confused by the plethora of tools or if you have only an interest in a special tool you can
leave out the next section.

Ihttp://kaon2.semanticweb.org/

42

CHAPTER 4. PROTOTYPES 43

In this chapter we will only provide an overview of the KAON tool suite. In Appendix
A we will present detailed information about download, and usage of KAON.

Note: Please be aware that we here present a snapshot of currently available versions.
Future versions of the tools might have additional and/or different functionalities etc.
In appendix A.4 we will provide detailed information about download and installation
including a table describing the version numbers of the here described tools.

The KArlsruhe ONtology and Semantic Web tool suitk.a. KAON ToolSuite is,
as mentioned before, an Open Source ontology management infrastructure. However,
there exists also external components which support functionalities such as e.g. ontology
learning from texts. An overview of the KAON ToolSuite and its main components -
KAON andKAON Extensions

KAON ToolSuite

|
l i l

KAON KAON Extensions TextToOnto
— l [l
Frontend Core DLP RO KAONTtoEdit
Server

— 1
KAON KAON
Workbench Portal

APls Implementations

] 1

Ol-Modeler KAON API || RDF API E”ggﬁ/:‘“g RDF Server || APIonRDF

Open Registry

Figure 4.1: KAON Tool Overview

e KAON consisting olKAON FrontendandKAON Coreincludes a variety of differ-
ent modules for ontology creation and management.

The Frontend is represented by two applications developed in order to be used
particularly by human users:

— KAON Workbench provides a graphical environment for ontology-based ap-
plications. Itincludes th®I-Modeler (cf. chapter A.1) - a graphical ontology
editor - and theODpen Registry (a.k.a. Ontology Registry which provides
mechanisms for registering and searching ontologies in a distributed context.

— KAON Portal is a simple tool for multi-lingual, ontology-based Web portals.

CHAPTER 4. PROTOTYPES 44

The Core of KAON supports programmatic access to ontologies by including both
APlsandimplementation$or managing local and remote ontology repositories:

— An abstract interface for accessing various types of ontologies independently
of the regarding storage mechanisms is provided byKih®N API and the
RDF API (cf. chapter A.2).

— Currently three differenimplementations of the KAON API and the RDF
API are available: Whereas ttigngineering Server(cf. chapter A.3) is an
ontology server using a scalable database representation of ontologies, the
RDF Server can be used for storing and accessing RDF modddonRDF
(cf. chapter A.2) is a main-memory implementation of the KAON API on the
RDF API.

e The KAON Extensionsare a collection of optional components not included in the
standard distribution of KAON.

— DLP (Description Logic Programssupports efficient ontology reasoning by
mapping Description Logic into Logic Programs.

— KAON Server can be considered as Application Server for the Semantic Web,
which provides a generic infrastructure to facilitate plug’n’play engineering of
ontology-based applications.

— KAONtoEdit is a plug-in for OntoEdit [0G03], which allows to work di-
rectly on implementations of the KAON API in order to load, modify and
store KAON ontology models.

e TextToOnto is a KAON-based tool suite supporting the ontology engineering pro-
cess by providing a collection of independent tools for ontology learning and main-
tenance.

KAON Architecture While we have so far provided an overview on the components
and tools that are part of or related to KAON, we now want to focus on the rather technical
interplay of some of those components, i.e. we intend to give a coarse outline of KAON'’s
functional architecture distinguishing between APIs, implementations of those APIs and
data sources to be accessed.

Figure 4.2 illustrates some of the interactions between KAON’s APIs and reference
implementations and highlights the central role of the KAON API. Each client, e.g.
KAON's ontology editor Ol-Modeler, accesses KAON ontologies and instances indepen-
dently of the storage mechanism via KAON API. In so doing, the Ol-Modeler for example
employs KAON's ontology evolution facilities integrated into KAON API.

As already mentioned, APIonRDF represents an in-memory implementation of the
KAON API to access RDF-based data sources via the RDF API. For the RDF APl in turn

CHAPTER 4. PROTOTYPES 45

 ac bench * ’ !

« Transactions « Evolution « Lexica
* Modularisatiuon « Metamodelling * KAONQuery KAON API

RDF AP - networ

AP
el | -
i
XML/RDFI RDBS Data

Source

client-side

| __

Figure 4.2: KAON Architecture Overview

exist two reference implementations: On the one hand, a simple main memory implemen-
tation including RDF parser and serializer. On the other hand, the RDF Server which im-
plements the RDF API remotely and allows for persistently storing RDF ontology models
in relational databases and hence enables transactional ontology modification.

Sketched on the right-hand side, the API Proxy depicts an implementation of the
KAON API that acts as a client-side proxy for various types of the KAON Engineer-
ing Server (cf. Chapter A.3). That Engineering Server, being accessed remotely via an
API Proxy, features mechanisms to store KAON ontologies in relational databases, to
distribute change notifications (thus allowing for multi-user ontology engineering), and
to bulk-load ontology elements.

For a more thorough and detailed depiction of KAON’s architecture the interested
reader is referred to [Vol04b, MMV02].

4.2 dlpconvert

4.2.1 Motivation for DLP

In the past few years, the W3C concentrated (and still works) on defining the main build-
ing blocks of the Semantic Web. With RDF [MMO04] they provided a common data model
and afterwards they defined different ontology definition languages, RDFS [BG04] (of-
fering only basic semantics) and the Web Ontology Language OWL [SWMO04].

But all of these standards are still very new, and thus only very limited support of
tools for inferencing and querying exists. But this capabilities will proof crucial for the

CHAPTER 4. PROTOTYPES 46

/_#_‘__\-‘\
// ™
e
yo First-Order N\
Uy
(N
AN
\
\
Description Logic
Logic Programs
Programs
\ (Negation As //
A Failure)
\\ (Procedural //

S Attachments) ///

Figure 4.3: Expressive Overlap of DL with LP [Vol04b]

development of semantically enabled technologies.

Regarding RDFS or the OWL fragment OWL Full, both are undecidable. But also
OWL DL and even OWL Lite yield a very high computational complexity, and thus ef-
ficient reasoners able to deal with these fragments in a sufficient scalable way may take
some time to come along.

But in SEKT we want to work with real life systems, and we want to do it now.
Embracing the idea of “small can be beautiful’ [Rou04], we can, with a little limitation,
which in practise will only very rarely limit the actual modelling possibilities, gain access
to a strong and almost immediate tool support.

In order to tame the computational complexity, it was already decided within the con-
sortium to remain in OWL Lite if possible. But by choosing Di,Rve gain even better
computational characteristics - and more important, we gain access to various already im-
plemented tools. The DLP fragment and its computational implications are described in
much more detail in [Vol04b].

DLP is the intersection of the sets of semantic expressible axioms in description logic
and logic programming. It imposes further constraints on OWL DL, in order to guarantee
that all axioms stated in DLP will be automatically transformable in an efficient way to
logic programming rules and facts. This logic programs may then be evaluated efficiently
with systems like XSB or Ontobroker. These systems are already implemented and can
be used out of the box.

As [Vol04b] analysed, 99% of the axioms in the ontologies taken from the daml.org
repository of ontologies were within the DLP fragment. Especially simple taxonomical
descriptions usually made when using OWL Lite anyway, are within DLP. Light weight
ontologies like the SEKT upper level ontology PROTON [TKMO04] will hardly ever leave
the DLP fragment. Only some complex class constructors like arbitrary cardinality con-

2http://logic.aifb.uni-karlsruhe.de

CHAPTER 4. PROTOTYPES 47

straints are not expressible, but most of them are not part of OWL DL anyway.

A second major advantage of DLP, besides its computational features, is its future
stability. Currently there exist two major trends for ontology representation, description
logic — with OWL being the most visible one — and logic programming, particularly F-
Logic. Both have benefits and drawbacks and allow for different usage scenarios.

Even though the W3C can generate big impact, due to its role in the standardisation
of web technologies, we can’t know how OWL will develop in future years.

DLP on the other hand provides maximal flexibility, as it can easily be translated from
one paradigm to the other. We can even decide to use the best fitting approach based on
the task at hand. It remains fully reusable, as DLP is a proper subset of the W3C standard
OWL.

4.2.2 dlpconvert

In order to facilitate the the use of DLP, and to show its full potential right
away, dipconvert is provided. It may be found ofnttp://logic.aifb.
uni-karlsruhe.de/dIpconvert/ , and allows to convert OWL DL encoded DLP
fragments into logic programming syntaxes.

dipconvert is based on the algorithms for reducing description logics to data-
log implemented in KAON2 and described in [HMS04b] and, in greater length, in
[HMSO04a]. It reads an OWL ontology, reduces it to disjunctive Datalog and finally seri-
alises it into a logical program, which can be used for easier reading and thus understand-
ing by people with an appropriate logic background or as input for logic interpreters like
XSB.

dlpconvert is provided in two ways: as a command line tool with numerous
switches, providing different ways of name transformations and serialisation options. It
can be used to convert an OWL DL file directly into a Prolog program file, that can be
consumed by a Prolog interpreter as it is.

Besides the command line tool, on the website there is an online conversion available.
You may choose to either supply an URL for an ontology, upload a file from your local
hard disk or even write (or copy and paste) an ontology directly onto the website. Your
ontology will be converted and the result shown to you as a HTML page.

4.2.3 Example

Let's take an example to see the advantagefipfonvert . In philosophy, the proba-
bly most classical example for inferencing is the following syllogism:

All humans are mortal.

Socrates is a human.

Therefore Socrates is mortal.

This syllogism, along with another fact surrounding Socrates’ - that the author of the
Politeiais actually Plato, and not Socrates, is formalized in the following OWL file:

3http://kaon2.semanticweb.org

CHAPTER 4. PROTOTYPES 48

<?xml version="1.0" encoding="ISO-8859-1"?>

<IDOCTYPE Ontology [

<IENTITY ex
"http://logic.uni-karlsruhe.de/dlpconvert/example1#">
>

<owlx:Ontology owlx:name="&ex;"
xmins:owlIx="http://www.w3.0rg/2003/05/owl-xml#">

<owlx:Class owlx:name="#human" owlx:complete="false">
<owlx:Class owlx:name="#mortal"/>
</owlx:Class>

<owlx:Individual owlx:name="#Socrates">
<owlx:type owlx:name="#human" />
</owlx:Individual>

<owlx:ObjectProperty owlx:name="#isauthor">
<owlx:domain owlx:class="#human"/>
<owlx:range owlx:class="#book"/>

</owlx:ObjectProperty>

<owlx:Individual owlx:name="#Plato">
<owlx:ObjectPropertyValue owlx:property="#isauthor">
<owlx:Individual owlx:name="#Politeia" />
</owlx:ObjectPropertyValue>
</owlx:Individual>

</owlx:Ontology>

If you go to the websitehttp://logic.aifb.uni-karlsruhe.de/
dipconvert/ , the example ontology, that is referenced in the URL line, actually is
this one described here. So you may just go to the website, and click on the first submit
button, in order to see the following result.

mortal(X) :- human(X).
book(Y) :- isauthor(X, Y).
human(X) :- isauthor(X, Y_O).
isauthor(plato, politeia).
human(socrates).

Both representations actually have the same meaning. The second is undoubtedly
shorter, and for many readers the syntax is much more reader-friendly, and for every

CHAPTER 4. PROTOTYPES 49

person with a background in logic programming the second representation is immediately
understandable.

We can directly feed this result to a prolog engine, like XSB praldthis way, the
XSB system understands the semantics of the original OWL file and we can ask questions
about the given ontology.

?- mortal(socrates).
yes

The system dutifully gives us the correct answer: Socrates is a mortal. And if we ask
XSB about the author of thBoliteia, it will answer correctly. Better yet, it knows that
Plato too is a human, because the domain ofghathorrelationship ishuman(we never
stated explicitly, that Plato is a human).

?- isauthor(X, politeia).
X = plato
yes

?- human(plato).
yes

This can be used in several way, for example for questioning knowledge bases (as we
did) or for checking the consistency of an ontology.

4.2.4 Future Work

dlpconvert is just a prototype right now. Quite a number of features are waiting to be
implemented:

e better error support. Right now it is not implemented, the user almost does not get
any information on what went wrong, if something went wrong

¢ the website version does not offer any switches yet, but they should be available
from the web, too

e an FLogic serialization will provide the conversion of OWL DL encoded DLP
knowledge bases to FLogic syntax. This way, tools like OntoBroker will be able to
deal with OWL DL effectively

e names. The heuristics to generate names should be more flexible than itis right now.
This way we can provide better names, especially from automatically generated
ontologies that usually have insignificant names for concepts and instances. Also,
namespaces should be considered in order to avoid clashes.

e tests.dlpconvert has not yet been properly tested.

“http://xsb.sourceforge.net

CHAPTER 4. PROTOTYPES 50

4.3 evOWLution — Evolution of OWL Ontologies

evOWLution is a software component that supports the methods for the consistent evolu-
tion of OWL ontologies using the methods described in Chapter 3. It builds on top of the

KAON2 ontology management infrastructure which is currently being developed as part
of the EU IST project DIP.

The implementation includes evolution strategies for various fragments of ontology
languages, including OWL-DL, OWL-Lite and OWL-DLP, as well evolution strategies
for logical consistency. Additionally it allows to plug-in further evolution strategies for
structural consistency (to support additional sublanguages), logical consistency, and user-
defined consistency.

The prototype can be downloaded frdvtp://www.aifb.uni-karlsruhe.
de/WBS/pha/owlevolution . It contains the source code, binaries, and the exam-
ples from Chapter 3.

4.3.1 Usage Example

The software is not intended to be a standalone tool, it rather is a component to be in-
tegrated in an ontology-based application to support the consistent evolution of the of
ontologies using the particular resolution strategies required in the application.

The prototype includes an example of such an application and can be used as a refer-
ence for development.

We will now show some small code fragments of this sample application (cf. class
evolution/Evolution.java) to explain the usage: A resolution strategy is created
by instantiating the clasResolutionStrategy , We can then register consistency
conditions and the corresponding resolution functions:

ResolutionStrategy resolutionStrategy = new ResolutionStrategy();
resolutionStrategy.registerElementaryResolutionsStrategy(new

LogicalConsistencyChecker(),

new LogicalResolutionStrategy());
resolutionStrategy.registerElementaryResolutionsStrategy(

new OWLLiteConsistencyChecker(),

new OWLLiteResolutionStrategy());

Suppose we now load an ontology

Ontology ontology = connection.openOntology(
"http://www.aifb.uni-karlsruhe.de/WBS/pha/owlevolution/sample",
new HashMap<String, Object>());

consisting of the following axioms:

Sseehttp://dip.semanticweb.org/

CHAPTER 4. PROTOTYPES 51

[classMember Researcher pha]
[classMember Researcher Ist]
[subClassOf Student Person]
[subClassOf Article Publication]
[subClassOf Researcher Person]

We then try to add the axiom:

[subClassOf Student [not Researcher]]

This will violate the consistency condition defined in
OWLLiteConsistencyChecker , therefore the resolution function in
OWLLIiteResolutionStrategy will be called to resolve the inconsistency.

This is done by transforming the axiom containing the negation into semantically
equivalent statements without explicit negation.
We then try to add the axiom

[classMember Student pha]

which will result in an ontology that violates the consistency condition
of LogicalConsistencyChecker , therefore the resolution function in
LogicalResolutionStrategy will be called to resolve the inconsistency.
This is done by identifying the minimal inconsistent subontology, which is then presented
to the user:

[classMember Student pha]

[classMember Researcher pha]

[equivalent notResearcher [all R_Researcher owl:Nothing]]
[equivalent Researcher [some R_Researcher owl:Thing]]
[subClassOf Student notResearcher]

The user can decide to remove any of the axioms, resulting in a consistent ontology.

4.3.2 Future Work

We plan to collaborate closely with our project partner Vrije Universiteit Amsterdam to
come up with a joint framework which combines ontology evolution and inconsistency
reasoning. We believe that a generic framework targets well the problems we want to
solve. The future development of our prototypes depends on the results of our collabora-
tion, i.e. on how the framework actually will look like.

Chapter 5

Conclusion

Ontologies play a central role in the research and development of the SEKT project. In the
dynamic business environments that we address in this project, ontologies quite naturally
change over time. We thus need methods and tools to cope with the the evolution of
ontologies.

In this document we have presented a survey on existing work on ontology evolution.
This existing work for example includes the evolution infrastructure in the KAON on-
tology management system based on the KAON ontology model (presented in detail in
the appendix of this document). However, in the scope of the SEKT project, we want to
move towards using richer, standards-based ontology languages. Therefore, OWL is the
language of choice. As OWL is a fairly new ontology language, the semantics of change
for OWL ontology has so far been considered only to a limited extent.

Our developmemt of methods and tools therefore has focused on the management and
evolution of OWL ontologies. In this document, we have presented a first approach for
the consistent evolution of OWL ontologies. We have also presented a first prototype
implementing these methods. In the future we will extend these presented methods and
tools and integrate them in the KAON2 ontology management infrastructure.

We have further presented a tool that plays an important role for the efficient reasoning
with OWL ontologies: dlpconvert is a tool that enables the conversion of a large
subset of OWL (the DLP fragment) to Datalog, which allows to rely on well-established,
efficient logic programming engines for the reasoning with ontologies.

52

Appendix A

Ontology Management and Evolution in
KAON

A.1 Ontology Editor Ol-Modeler

Ol-Modeler is KAON's tool for ontology creation and ontology maintendncgne Ol-
Modeler’'s main goal is to allow scalability for editing large ontologies and to incorporate
some basic usability issues related to ontology management and evolution.

The goal of this chapter is to introduce the reader to the Ol-Modeler’s main features.
For that purpose we use a running example about the construction of a tiny ontology,
presenting Ol-Modeler’s basic functionalities. For further details on how to work with
the Ol-Modeler we refer to “Ol-Modeler User’s Guide” [Kar02].

This chapter is mainly for end-users of the Ol-Modeler. Programmers may want to
proceed to the following Chapter A.2 which describes the KAON API and how to access
it.

Create New OIl-Model

After having launched the KAON Workbench (by invokikgongui.bat , cf. Section

A.4) the user may work with the Ol-Modeler, KAON'’s ontology editor. To work with an
OI-Model, you can create a new ontology or open an existing one. When choosing “Create
new Ol-Model” from the “File” menu, a dialog box appears asking for the specifics of the
ontology instance to be created (see Figure A.1).

When speaking about working with an Ol-Model, it is important to emphasize that
the ontology may be stored in different ways depending on the intended application or
usage scenario. If @ally voluminous ontology with lots of concepts and instances shall
be created, the usage of the Engineering Server is advisable, since it employs a relational
database system to store all entities involved (see Chapter A.3). In general, however, it is

1The “OI” here refers to “Ontology Instance”. Hence, in the following we refer by the term “Ol-Model”
to an instance of an ontology.

53

APPENDIX A. ONTOLOGY MANAGEMENT AND EVOLUTION IN KAON 54

fully sufficient to store the Ol-Model in main memory, in particular when intending to get
started with the Ol-Modeler. Here, tab “RDF Models” has to be chosen from the dialog
shown in Figure A.1 and so the resulting ontology will be stored locally on the user’s hard
disc drive.

- [#]X]

File Edit Procedures

£ New Ol-model

| RDF Models | Engineering Server || Direct Eginegering Server | Other |

Physical Ol-model URE | file: Do Tempiny TestOntology kaon |

Loglesl Ohmodsl RS - ipiwvew durnmyurl deftestOntoiogy |

1Creates & ey Cl-odel wwith given URI

Figure A.1: Creation of a new Ol-Model

For our running example, however, we do not want to employ the Engineering Server,
instead our ontology shall be stored in main memory. For that reason, we only have to
provide a physical as well as a logi¢&lRI for our ontology.

As illustrated in Figure A.2, the Ol-Modeler provides different views on the Ontology
and allows to inspect its components (concepts, instances, properties and lexicon).

Graph The graph in the upper section of the window shows the ontology entities and the
connections between them. The graph layout algorithms in Ol-Modeler are based
on an open-source TouchGrapitrary.

Each graph node features up to six little arrows (see Figure A.3). By clicking on
those arrows related entities can be expanded, so that the user can successively

2Each Ol-Model has two URIs that uniquely identify it. TpieysicalURI is the URI used to access the
model. For example, if the model is located in e\ Temp\myRunningExampleOntology.kaon ,
then the physical URI of the model will béle:/D:/Temp/myRunningExampleOntology.
kaon . Each Ol-Model also has a logical URI, which is independent from the physical one. E.g., a model
may have the logical URhttp://kaon.semanticweb.org/myModel.kaon , although it is not
loaded from the web. A model’s logical URI should be globally unique, whereas its physical URI typically
is not globally unique, and is often relative to the system which processes the model.
3http://www.touchgraph.com

APPENDIX A. ONTOLOGY MANAGEMENT AND EVOLUTION IN KAON 55

. Included Ol-models
File Edit Wew Procedures
Ko @
£ Dl-modeler - file:/D:/Temp/myTestOntology.kaon

iEoom [< | | | Included Cl-models
! Http: Skann. setmatticywwel
L] =
[& Search
ErcoueKaONguery v [Qe
z &
|
~Bupetconcepts — Subconcepts | 7 Lexicon 1 I
! i |
hitp: ikaon. semarnticweb.orod20 © hittp: ikaon.semanticweh.org | | Type Langu... | Yalug b
@ @ hitp: ikaon semarticwek| | | | Mlarme ,
® @ hittp: fkaon zemanticwel —g
| i | ¥ | & | 2 |
Properties From Concept - rProperties To Concept - riConcept Instances - =
Prope... Minim.., Maxi... Propetty Mame Entity Mame Valle 1
__: |nttp: tcaon semanticwe... || | @ @‘rﬂp! | | Cllpboard
. 1
[Cliphoard l
Creates a nevy Ql-model with given LRI

Figure A.2: Main Window of the Ol-Modeler

browse through the ontology. For example, for a concept the user may expand that
concept’s sub- and super-concepts, properties to and from this concept, the con-
cept’s instances as well as its spanning instances. Regarding the notion of spanning
instances please refer to [MMVO02].

Expand Expand Expand
Subconcepts Superconcepts Spanning

\ l 4/ln/s.tance
/

Expand Expand Expand
Properties to Properties from Instances
this Concept this Concept of this Concept

Figure A.3: Characteristics of Nodes in Ol-Modeler’s Graph Visualization

Inspector In the inspector you can find all information about the ontology entity that
is currently selected in the graph. Thus, the inspector’s appearance adapts to the
type of entity (concept, property, or instance) currently selected. If, for example, a
concept is selected information about that concepts and its super- and subconcepts
are displayed, also the properties to and from the concept and the concept instances.

APPENDIX A. ONTOLOGY MANAGEMENT AND EVOLUTION IN KAON 56

Furthermore, the inspector may be used to directly create new (sub-)concepts (see
below).

Included OI-Models The OIl-Modeler allows for including ontologies. This means that
the user is able to combine two (or more) ontologies to one ontology. An Ol-
Model always consists of two basic or system ontologies: Kdmn-root and
thekaon-lexical . To include an OI-Model one can choose “Open and include
OI-Model” in the “Edit” menu. Then, a new window opens and the source of the
Ol-Model to be included can be selected. Please refer to Section A.1.

Search and Query With the search function, one can easily find different named nodes.
It is possible to search for concepts, instances, and properties and to perform a
keyword-based search for any matching item.

Furthermore, KAON provides a query language KAON Query suited for posing
queries to the ontology.

The search and query facilities integrated into Ol-Modeler are described in more
detail in Section A.1.

Clipboard The Clipboard is for copy and paste use. It allows to copy entities to the
clipboard, store them there, and later use them by pasting into the ontology. Please
refer to Section A.1 for further details.

Add New Concept

Ol-Modeler provides three ways to create a concept. You can add new concepts by
1. using the “Edit” menu and choosing “New Concept...”,

2. opening the context-menu (right mouse-button) in the graph window and choosing
“New Concept...",

3. using the Inspector and opening the context-menu there.

Figure A.4 illustrates the first of the three above-mentioned ways.

Sub-concepts are thematic refinements of concepts. When intending to add a sub-
concepic, to an existing concept, first concept has to be selected — as a consequence,
details regarding that concept are displayed in the Inspector. Now, the sub-concept can be
added ta- with one of the three possible ways mentioned before. In Figure A.5 the third
alternative (using the context menu in the Inspector) is shown.

Add New Property

The procedure to add a property to an ontology model is almost the same as creating
a concept, i.e. the user can choose between three ways just as in the case of adding

APPENDIX A. ONTOLOGY MANAGEMENT AND EVOLUTION IN KAON 57

£ KAON Workbench

< New Concept

File Qa8 View Procedures

Mewy concept narme:
s}
Person|
i tontﬂlﬂgykaﬂn e —
Copy Selected URIs Strg+C # Add Label

)(_ Delete Concept @ Generate URI from lakel

&dd To Clipboard () Auto-generate Unigue LRI
Remove From Clipboard

Mew Property...

Mew Inskance...
Delete OI-madel
Cpen & Include OI-model

Figure A.4: Adding a Single Conceptrson

Superconcepts Lexicon

e e Langua Walue
hittp: ifaon semanticweh.orgr2001 £ Delete Concept
| English Person
prm—— rgisn_person_|

T new subconcept
of Person

om Clipboard

< >

Mews Inskance.. .

Properties From Concept Propertie lcept Instances

Proper... Minimu... Maxim... Property Name Ertity Name Value

ittpe ko semarticweb.o

Figure A.5: Adding Sub-Conceesearcher to ConcepfPerson

concepts as described in Section A.1. However, the Ol-Modeler differs between two
kinds of properties: properties from and to a concept.

Furthermore, when speaking about Ol-Modeler’s facilities to gaipertieswe ought
to clarify what we mean with that term and with terms often used additionally or synony-
mously such as attribute and relation.

Relation/Relationship is used as a generic term to refer to any kind of property that
interlinks concepts.

Propertiesfrom a Concept are relations to other concepts (instances). In the graph view
they are displayed in the same wayadsibutesof a concept.

Propertiesto a Concept are relations from other concepts to the concept under consid-
eration.

Attributes do not connect two or more concepts, but they are rather used to express a
certain characteristic of a concept, e.g. a description, long name, or URL. Attributes
are often typed as XML Schema data types.

APPENDIX A. ONTOLOGY MANAGEMENT AND EVOLUTION IN KAON 58

We will use mainly the terms property and attribute. Please note that both are inherited
equally from super-concepts to sub-concepts.

In Figure A.6 a later development stage of the ontology is shown. There, you can see
what is meant by those different types of properties, how they relate to concepts, and how
they are displayed in Ol-Modeler’s graph view. In the meantime additional concepts (e.g.
Paper andResearcher) have been added. Moreover, there are also two new properties:
First, there is thetaAsWRITTEN property which, on the one hand, represents a property
from concepResearcher and, on the other hand, a property to condeggber.

Properties to
and ,Researcher* Concept ,Paper*

Figure A.6: Properties from and to a Concept

Then, there is thace property from concepResearcher. This property represents
an attribute of conceResearcher. Note, that when selecting a specific property in the
graph view, the Inspector displays the characteristics of that property. Among those, there
are also checkboxes that may be used to declare that property to be

e an attribute
e a symmetric property

e atransitive property

So, for theace property, the attribute flag has been set.

Moreover, it is possible to specify an inverse property to another one. For example,
the inverse property fonaAsWRITTEN may be calledHAsAuTHOR being a propertyrom
conceptPaper to conceptResearcher.

Just as sub-concepts are thematic refinements of concepts, sub-properties represent
thematic refinements of properties. Ol-Modeler also support the refining of properties by
creating sub-properties, whose creation we do not describe in more detail here.

Add New Instance

Just as in the case of concepts and properties, users can add a new instance by three
different ways. In each case, however, you first have to choose the concept you want to
add the instance to. Then, you may

APPENDIX A. ONTOLOGY MANAGEMENT AND EVOLUTION IN KAON 59

1. use the “Edit” menu’s entry “New Instance...”
2. use a concept’s context menu (right mouse button) and choosing “New Instance...”

3. use the Inspector’s table “Concept Instances” in the right by making a right-click
on the respective concept name to which an instance shall be added and choosing
“New Instance...” from the context menu opened.

In any way a new window appears asking the user to provide a name for the instance:
Figure A.4 illustrates the third way to create an instance and shows the mentioned window
asking for the name. The resulting ontology, after having added two further instance, is
sketched in the right part of that figure.

Concept Instances
Eritity Mame Value

Delete Concept
Add To Clipboard
Remove From Clipboard

Hew Concept...

Mew Property...

< New Instance

e instance name:

[H1
Erwin Skela| > .w@a & -
- o
Add Lakel pap
o (mgerci]
[«H}
(%) Generate UR| from lakel ald i

O futo-generate Urigue URI

Figure A.7: Creation of a New Instance

Instantiate Properties

The properties between the instances are the relations between these instances.

First, we want to add an attribute instancge to the instanc&rwin Skela . To do
so, there are the three usual ways (via “Edit” menu, via context menu for that instance’s
graph node, and via context menu for that instance in the inspector). In any way, the
menu item “Add Attribute Instance...” has to be chosen. Ol-Modeler then present a sub-
menu containing all attributes that are defined for the instance’s corresponding concept.
In our case (cf. Figure A.8) there is of course only the attriluate listed. After having
performed that step, an attribute instance is created which initially does not contain a
concrete value yet.

To assign a specific value (bottom-right part of Figure A.8) you may edit the input
field in the Inspector corresponding to that newly created attribute instance.

APPENDIX A. ONTOLOGY MANAGEMENT AND EVOLUTION IN KAON 60

w iew Procedures

= 7 Undo Strg+z
E = tOntology.kaon
Copy Selected URIs Strg+C
00 X Delete Instance e

»
Add Attribute Instance age > (hew valus]

Add Ta Clipboard
Remaove From Clipboard

Mew Concept...
Mew Property .. Property Instances

Eritity Mame.

@Erwin Skela

Delete OL-model Walue

Open & Include OI-model

Figure A.8: Instantiating an Attribute

Next, we want to connect to instances using the propextyWVrRITTEN. To be exact, we
want to link the instancBavid Montero with instancepaperXYZ via theHASWRITTEN
property.

There are two different ways to connect instances through a property:

1. Use the graph view and select the (source) instance you want to connect. Then
do a right-click on the instance that ought to be connected (target instance). From
the opening menu choose “Connect Instances Using”, and from its sub-menu the
respective property (hereASWRITTEN).

2. Itis also possible to press and hold the left mouse button (on the source instance)
and then to drag the cursor to the (target) instance you want to connect. A line
appears, as shown in the picture and if you disengage the mouse button, a menu
appears and you can choose the property (hexeWRITTEN).

Both options are visualized in Figure A.9.

[H]
1 . paperiCyZ 2)
[=H=
Fin Down Node
]

Hide Mode

Mew Concept,.,.
L} [2H]

t Paper Mew Property. ., umert

Delete Instance

Add To Clipboard

Remove From Clipboard

Conneck Instances Using ¥

Ll
Researcher

N,
earcher

[}
David Montero
(=] g

(RO H
David Mortera
(=] g

l
Figure A.9: Instantiating a Property

APPENDIX A. ONTOLOGY MANAGEMENT AND EVOLUTION IN KAON 61

Delete Concept

To remove a concept you can use one of the three following options. First, select the
concept to be deleted, then

1. do aright-click on it and choose “Delete Concept” from the context menu opening,

2. select the concept’s name in the Inspector, do a right-click on it and choose “Delete
Concept” from the context menu opening.

Deleting of properties and instances works similar to the here described deletion of
concepts.

While adding new elements to an ontology in general does not induce needed follow-
on operations, the removal of an entity from the ontology may easily do so. For example,
when deleting a certain concept, one upcoming question is how to handle the concept’s
instances. As questions like that are of high importance for ontology evolution, the fol-
lowing section is devoted to KAON's current features concerning ontology evolution.

Evolution Features

Industrial and academic environments are very dynamic, inducing changes to application
requirements. Using an ontology-based system, often the underlying ontology must be
evolved in order to adapt to those changes. As ontologies grow in size, the complex-
ity of change management increases, thus requiring a well-structured ontology evolution
process.

In KAON the user is provided with capabilities to customize and control the process
of ontology evolution. It employs so-called evolution strategies that encapsulate certain
policies for evolution with respect to the user's demands (see [SMMS02b] and [SSHO0Z2]).
As those evolution features are an integrated element of KAON, their usage fully available
from within the OI-Modeler.

Note, that evolution reversibility services are provided as special service of KAON
API, allowing different applications to reuse these powerful features.

Using Evolution Features

Potentially, an ontology change might corrupt the instances, dependent ontologies as well
as application programs running against the ontology and/or the data base. With option
“Set-up Evolution Parameters” from the “Procedures” menu the user is allowed to define
the strategy how the Ol-Modeler handles changes in the ontology, e.g. the deletion of
concepts.

The window shown in Figure A.10 shows the parameters by which users of the OlI-
Modeler may decide for a specific ontology evolution strategy. So, for example, problems
are addressed like the handling of orphaned concepts that come into existence after a
(parent) concept has been deleted, or the handling of properties that do not have a domain
concept any more. The evolution strategies shown are rather self-explanatory.

APPENDIX A. ONTOLOGY MANAGEMENT AND EVOLUTION IN KAON 62

% Eyplution Parameters Set-up

Orphaned concepts will be... ~Orphaned properies should be..
() . deleted.
t::- ..reconnected to ontalogy roat: CJ ..reconnected to superproperties.
(_?) . reconnected to superconcepts . G:J left as they are.
: Wahen concept's parent is removed : Dotnaindrange of & propery. .
@ ..properties will not be propagated. @J .may contain subconcepts of other domainirange concepts.
c_'} < allinkherited properiz will be added to the concegt. -:::l .y hot contain subconcepts of other domainirandge cohcepts.
Ci' L.anly parert's properteis will be added to the concept.
- Properties without any domain concepts .. .- Properties without any range concepts..
() ey exist in the Ol-tnodel. () . may exist inthe Ol-model.
E? ..should be deleted fromthe Cl-madel. C'} zhould be deleted from the Ol-model.
‘Instance consistency... ; ‘Whenh creating a hierarchy path which already exists..
@ ..zhould be enforced. @ ...hothing special should be done.
t::- coshould not he enforced. 1:} ..the shorter path should be removed.
CJ arerror should be raised.

Figure A.10: Setting Up Parameters for Ontology Evolution Strategies

Changes to the ontology are performed by assembling elementary and composite
changes into a sequence which is based upon the respective evolution strategy. To en-
sure atomicity of updates to the ontology (and thus to allow for do/undo functionality),
either no or all changes from that sequence have to be processed.

In the “Procedures” menu you find the option “Show Evolution Details”. If that option
is not checked, changes (e.g. concept deletion) are performed immediately. By checking
that option the mentioned extended sequence of changes is presented to the user for ap-
proval.

From our current version of the ontology (compare Figures A.7 and A.9) we now
intend to delete conceptaper. Then, the dialog shown in Figure A.11 appears and dis-
plays the sequence of all (atomic) changes that have to be performed in accordance to the
evolution strategy chosen. Obviously, the removal of con&gper induces the dele-
tion of propertyHAsWRITTEN and hence of its property instantiatiobDayiid Montero
HASWRITTEN paperXYZ), the deletion of instancgaperXYzZ and of course the desired
deletion of concepPaper.

To further aid the understanding why certain changes have to be performed, related
elementary change actions are grouped together in a tree-like structure increasing the
understandability of why some changes/side effects have to be executed. After those
changes have been reviewed and approved by the user, they are passed to the ontology
and performed.

APPENDIX A. ONTOLOGY MANAGEMENT AND EVOLUTION IN KAON 63

£ Eyplution Details

All Changes

=l Delete concept Paper.
+ Remowve value Paper of property kaonireferences for instance o:i-1079535655453-1816859493
= Remowve concept Paper from the range of property hasWritten.
Retmove value paperXYZ of property hasWritten for instance David Montero.
= Delete property hasWritten.
+ Remove value hagWritten of property kaonzreferences for instance oi-1079535670926-141158212
Remove concept Researcher from the dommain of property hasWritten.
Remove concept Paper from subconcept= of Document.
=l Delete instance paperXYZ.
+ Remove value paperXYZ of property kaon:references for instance o:i-1079535775556-581856074.
Remove instance paperXYZ from concept Paper.

< >

[Zpply Changes H Cancel l

Figure A.11: Presenting Evolution Details to the User for Approval

Undo / Redo Functionality

There are various circumstances under which it may be desirable to reverse the effects of
ontology evolution, e.g.

e The ontology engineer may fail to understand the actual effects of his/her changes
and may approve a change that actually should not have been performed.

e Sometimes it is helpful to change the ontology for experimental purposes.

¢ When working collaboratively on an ontology, several ontology engineers may have
different ideas on how the ontology ought to evolve.

It is obvious that for each elementary change there is exactly one inverse change that,
when applied, reverses the effect of the original change. Based on the infrastructure
described in the previous section, it is not hard to realize the requirement for reversibility
of ontology engineering actions and to provide an appropriate undo/redo functionality:
To reverse the effect of some extended sequence of changes, a new sequence of inverse
changes in reverse order needs to be created and applied.

In other words, reversibility means undoiadj effects of some change, which is in
general not the same as requesting an inverse change manually. For example, if a concept

APPENDIX A. ONTOLOGY MANAGEMENT AND EVOLUTION IN KAON 64

is deleted from a concept hierarchy, its subconcepts will need to be deleted as well, at-
tached to the root concept, or attached to a parent of the deleted concept. Reversing such a
change is of course not equal to recreating the deleted concept — one needs, also to revert
the concept hierarchy into its original state.

File: N8 Wiew Procedures

. Unda Strg+2
0 4 Redo Skrg+y
Copy Selected URIs Skrg+C

. Delete Concept

&dd To Clipboard
Remove From Clipboard

Mew Concept...
Mew Property...
Mewr Instance. ..
Delete O-rodel
Cpen & Include OI-madel

Figure A.12: Undoing and Redoing Changes

In Ol-Modeler the undo and redo features are provided via the “Edit” menu as shown
in Figure A.12.

Ontology Evolution Log File The problem of reversibility is typically solved by cre-
ating evolution logs. An evolution log stores information about each change in the sys-
tem, allowing to reconstruct the sequence of changes. With each change applied to the
ontology the evolution log additionally associates further information [MSSV02], like
meta-information such as change description, cost of change, time required to perform
the change, cause of the change, or identity of the change’s author.

The following excerpt from a log file illustrates some of the information put into that
tracking facility. It refers to adding of conceptanual as sub-concept dbocument to
the ontology.

<a:AddEntity rdf:ID="i-1079545047999-1104860243"
a:inOIModel="http://www.dummyurl.de/testOntology"
aversion="85" >
<a:has_previousChange rdf:resource="#i-1079545047999-24213731"/>
<a:has_previousHistoryChange rdf:resource="#i-1079545047999-24213731"/>
<a:has_referencelnstance>

http://www.dummyurl.de/testOntology#i-1079545046317-1018711561

</a:has_referencelnstance>

</a:AddEntity>

<a:AddEntity rdf:ID="i-1079545047999-1343051864"
a:firstChangelnAGroup="true"
a:has_referencelnstance="http://www.dummyurl.de/testOntology#Manual"
a:inOIModel="http://mwww.dummyurl.de/testOntology"
a:version="85">
<a:has_previousChange rdf:resource="#i-1079545041129-1524299176"/>
<a:has_previousHistoryChange rdf:resource="#i-1079545041129-1524299176"/>

</a:AddEntity>

[-]

APPENDIX A. ONTOLOGY MANAGEMENT AND EVOLUTION IN KAON 65

<a:AddInstanceOf rdf:ID="i-1079545047999-24213731"
a:has_referenceConcept="http://www.dummyurl.de/testOntology#Document”
a:has_referencelnstance="http://www.dummyurl.de/testOntology#Manual"
a:inOIModel="http://www.dummyurl.de/testOntology"
a:version="85">
<a:has_previousChange rdf:resource="#i-1079545047999-1343051864"/>
<a:has_previousHistoryChange rdf:resource="#i-1079545047999-1343051864"/>
</a:AddInstanceOf>
<a:AddPropertylnstance rdf:ID="i-1079545047999-345568492"
a:has_referenceProperty=
"http://kaon.semanticweb.org/2001/11/kaon-lexical#references"”
a:has_referenceTargetinstance="http://www.dummyurl.de/testOntology#Manual"
a:inOIModel="http://www.dummyurl.de/testOntology"
a:version="85">
<a:has_previousChange rdf:resource="#i-1079545047999-2048209500"/>
<a:has_previousHistoryChange rdf:resource="#i-1079545047999-2048209500"/>
<a:has_referenceSourcelnstance>
http://www.dummyurl.de/testOntology#i-1079545046317-1018711561
</a:has_referenceSourcelnstance>
</a:AddPropertyInstance>
<a:AddPropertylnstance rdf:ID="i-1079545047999-359720445"
a:has_referenceProperty="http://kaon.semanticweb.org/2001/11/kaon-lexical#value"
a:has_referenceTargetObject="Manual"
a:inOIModel="http://www.dummyurl.de/testOntology"
a:version="85">
<a:has_previousChange rdf:resource="#i-1079545047999-345568492"/>
<a:has_previousHistoryChange rdf:resource="#i-1079545047999-345568492"/>
<a:has_referenceSourcelnstance>
http://www.dummyurl.de/testOntology#i-1079545046317-1018711561
</a:has_referenceSourcelnstance>
</a:AddPropertylnstance>

Inclusion of other Ol-Models

As mentioned before Ol-Modeler is capable of including managing several ontologies in
parallel an of including entire ontologies into another one. The semantics of the inclusion
are described in detail in [MMS)3b].

As depicted in Figure A.2 Ol-Modeler’s main window. Each OI-Model consists per
default of two so-called system ontologiéson-lexical andkaon-root . Note,
that it is possible to mask these system ontologies (in the graph view) by deselecting the
option “System Objects” from the “View” menu.

To include an OlI-Model choose “Open and Include OI-Model” in the “Edit” menu. A
new window opens and you can select the source of the Ol-Model you want to include
(see Figure A.13).

Querying and Searching

Queries in KAON (and thus in the Ol-Modeler) are an experimental feature that from the
perspective of the KAON development team is far from being finished. The primary role
of the current support for querying in KAON is to gather feedback in order to improve

these features in next versions of KAON. Itis quite likely that the query syntax and/or the
API will change significantly in the future.

APPENDIX A. ONTOLOGY MANAGEMENT AND EVOLUTION IN KAON 66

W U FesEnes < Open Ol-model For Inclusion |
4 &7 Undo Strg+Z
o Phrysical Ol-model URL | file DuTemprielearn kaon w
= ; ¥
Copy Selected URIs Strg+C Logical Ol-model URI r
Zoc X Delate Concept
Add To Clipboard m

Remove From Clipboard
Mew Concept...
Mew Property. ..
Mew Instance. ..
Delete OL-rodel

Open & Include OI-model

kg ikaon . semanticvwek.orgi2001 4 1 kaon-lexical
Http: dkaon. semanticweb.orgf2001.4 1 kaon-root

Figure A.13: Inclusion of other Ol-Models

KAON provides an experimental conceptual query language (KAON Query) that al-
lows easy and efficient locating of elements in KAON OI-Models. However, as already
mentioned queries in KAON are under development, so the interested reader is referred

to [KKO4].

Keyword-Based Searching With the search function, the user can easily find different
named nodes. Itis possible to search for

e anything: Every matching entity in the ontology will be displayed.
e concepts: Matching concepts will be displayed.

e instances: Matching instances will be displayed.

e properties: Matching properties will be displayed.

Figure A.14 shows how to search for the keyw®erson in our running example
— that search returns two results: The condegtson as well as a spanning instance
Person . For the notion of a spanning instance please refer to [MMVO02].

The results are presented as a list matching the search string. In particular, the user
can also paste selected results into the “Graph window” via drag & drop.

Using the Clipboard

The clipboard is a convenient way to employ copy & paste functionality when working
with an ontology. By opening an entity’s context menu via right-clicking on it (e.g. in the
graph view or in the Inspector) and choosing “Add to Clipboard”, or by choosing “Add
to Clipboard” from the “Edit” menu, the respective entity is copied to the clipboard (see
Figure A.15).

APPENDIX A. ONTOLOGY MANAGEMENT AND EVOLUTION IN KAON 67

2 Search l % Search

Keyweord-gearch for anything hd R start Keyweord-gearch for anyvthing b

Execute KAON quer

. R ’ 25 Person| -~

Keywiord-search for anything >

Keyword-search for concepts

Keyword-zearch for properties s

Feywvord-search for instances Mame
@lPerson |
@lPerson |

Figure A.14: Ol-Modeler’s Searching Facility

Pin Down Node
Hide Mode
Mew Concept...

Mew Properky. ..

Mew Instance. .. H koo l

Delete Concept Maime

Add Ta Clipboard —— () Researcher |

Remowve From Clipboard

Figure A.15: Ol-Modeler’s Clipboard

After having been added to the clipboard, the respective entity may be used via drag
& drop and can that way be integrated into the graph view or into the Inspector.

For example, the copied concedpésearcher may be dragged onto another concept
Scientific Staff and would thus be made a sub-concept of that concept.

Other Features

In this section we give a very brief overview of some of Ol-Modeler’s other features.

Loading/Saving the Workspace The entries “Load Workspace” and “Save Workspace”
from the “File” menu allow the user to load/save a workspace containing all win-
dows of the previous/current work session.

Open/Save Ol-Model In analogy to creating a new OI-Model (cf. Section A.1) it is

possible to load a previously saved Ol-Model by choosing the corresponding entry
from the “File” menu.

Duplicate Ol-Model This option from the “File” saves the current Ol-Model under an-
other name and hence duplicated it.

Copy to new OI-Model With this option from the “File” menu you can copy an existing
Ol-Model into a new one. This replica has the reference to the original Ol-Model.

APPENDIX A. ONTOLOGY MANAGEMENT AND EVOLUTION IN KAON 68

If you choose this function, the same window as in the function “Open OI-Model”
appears, and you can choose where to save the backup.

View Specifics The view onto the user interface can be customized (via the “View”
menu) to, e.g.

e refresh the graph representation (shortcut F5),
e show only selected nodes (shortcut F4),

e use an “Incremental Search Graph”: With that function you can search the
graph for e.g. a keyword incrementally,

e show/hide the entire graph view, Inspector, and clipboard,

e hide system objects: An OlI-Model consists of three objects:
kaon-lexical#Root , kaon-lexical#language , and
kaon-lexical#LexicalEntry . By switching of the “System
Objects” you only visualize thkaon-root and so the ontology gets more
clear because less concepts and instances are shown in the graph and the
inspector.

Language ParametersLanguage parameters are to be found in the “View” menu. The
user can choose between English, German, French, Spanish, Arabic, and Chinese.

Context Menus As mentioned most entities in Ol-Modeler feature context menus whose
appearance varies from entity to entity. For a detailed description of context menus
we refer to [Kar02].

Entity Icons To easily distinguish concepts, properties, and instances in the Inspector
Ol-Modeler utilizes several specific icons as shown in Figure A.16.

© ® ® @
concept property inherited instance
property

Figure A.16: Ol-Modeler’s Icons for Entities

Lexical Layer All ontological entities are considered as language neutral in KAON. On
the lexical layer, lexical descriptions referring to different entities in the KAON rep-
resentation vocabulary may be defined. The lexicon is always accessible within the
Inspector. A lexical entry is a lexicalization of a concept, attribute, relation, and in-
stance. Several types of lexical entries are defined. The standard lexical description
are multilingual labels that may be used for the user’s interface. A label is a specific
kind of a lexical entry, describing a primary descriptor of an ontological or knowl-
edge base entity. Another kind of lexical entries are morphologically reduced word

APPENDIX A. ONTOLOGY MANAGEMENT AND EVOLUTION IN KAON 69

stems that may be used by a natural language processing system. shows lexical
elements available in Ol-Model.

A synonym is a specific kind of a lexical entry, describing synonymous words for
an ontological or knowledge base entity. The documentation allows you to enter a
text description of the ontological entity. The lexical layer also allows you to create

Lexicon

Type Language “alue |

Label German alter

Label English EIEE]

Lakel L

Crocumentation

Synonym

Stem
Lakel

Figure A.17: Ol-Modeler’s Lexicon

multilingual ontologies. As shown in the picture it is possible to label a concept (in
this case the propertyGe) in different languages.

A.2 KAON API Description

Overview

The KAON API is a set of interfaces developed in order to offer programmatic access to
KAON ontologies by providing classes such@sncept , Property andlnstance

Because the API does not make any assumptions about the underlying ontology persis-
tence mechanisms it totally decouples the user from all details of ontology access and
storage. It is the concrete implementation of the API, which determines, for example,
whether an ontology created with the KAON API will be stored in an RDF file or a local

or remote database (cf. subsection A.2). Currently three different implementations of the
KAON API are available:

Engineering Server The engineering server (cf. section A.3) is an ontology server using
a scalable database representation for storing KAON ontologies. It is optimized for
ontology engineering by offering scalable, transactional and concurrent access to
ontology information.

RDF Server The RDF server uses the RDF API for storing and accessing RDF models.
Although quite similar to the engineering server supporting transactions and multi-
user operations, it does not provide any functionalities for conflict detection or bulk-
loading.

APPENDIX A. ONTOLOGY MANAGEMENT AND EVOLUTION IN KAON 70

APIonRDF Implementation The main memory implementation of the KAON API on
the RDF API provides in-memory model manipulation for KAON. When you
download the standard KAON distribution (cf. Appendix A.4) this is the default
setting.

Since the main memory implementation can be considered as the standard implemen-
tation of the KAON API this chapter will focus on APIonRDF.

Important Features

Meta Modeling Meta Modeling means that a concept or a property may be considered
as an instance of a meta-concept. Such an instance is then callegatteing-
instanceof the regarding concept or property. It can be retrieved by using the
getSpanninglnstance() method, which is defined in tHentity interface.

Evolution Strategies Since each change to an ontology might leave the model in an in-
consistent state, the KAON API supports the use of evolution strategies (cf. subsec-
tion A.2) for computing sequences of additional changes, which are necessary for
safely performing the requested change.

Change Notifications Implementing the Observable design pattern the Ol-Model inter-
face allows listeners to receive notifications about model updates.

Lexical Layer Lexical information such as labels or documentation can be added to an
OI-Model by assignind.exicalEntry objects to the instance interpretation of
concepts, properties or instances.

Modularization KAON as well as the KAON API support building ontologies modularly
by means of ontology inclusion. Each Ol-Model may include other Ol-Models pro-
vided that those are of the same type (e.g. RDF-based or server-based). Because
the inclusion is implemented as a link, not as a copy, all changes to the included
OI-Model will immediately affect the including Ol-Model.

Examples

This section gives a brief introduction on using the KAON API on the basis of a small
sample ontology which is also used in chapter A.1.

Select Implementation

The KAONConnection interface is provided by the KAON API in order to separate clients
from different APl implementations. Each of these implementations must include at least
one implementation of KAONConnection, which can be used by clients in order to access
the regarding Ol-Model implementation.

APPENDIX A. ONTOLOGY MANAGEMENT AND EVOLUTION IN KAON 71

As long as a user is working with only one implementation of the KAON API in-
stances of KAONConnection may be created directly by using the appropriate construc-
tor (e.g.new KAONConnectionimpl()). If an application should work with any or
with more than one implementation the KAONManager class has to be used to obtain a
KAONConnection object. The following listing A.1 demonstrates how to get a KAON-
Connection object for APIonRDF.

HashMap parameters = new HashMap();

parameters.put(KAONManager.KAON_CONNECTION,
"edu.unika.aifb.kaon.apionrdf. KAONConnectionimpl");

KAONConnection connection =
KAONManager.getKAONConnection(parameters);

Listing A.1: KAONConnection (APIonRDF)

Each set of parameters passedkitONManager.getKAONConnection must
contain aKAONCONNECTIONparameter which determines the type of connection,
which is returned. A direct connection to an Engineering Server, for instance, would
require the followingKAONCONNECTIONarameter:

parameters.put(KAONManager.KAON _CONNECTION,
"edu.unika.aifb.kaon.engineeringserver.client.

DirectKAONConnection™)

In addition toKAONCONNECTIONurther parameters, like user name or password
might be necessary depending on the implementation and the type of connection to be
used.

Create New OIl-Model

Once a KAONConnection object has been obtained it can be used to create a new Ol-
Model (cf. listing A.2).

String m_sPhysicalURI = "file:/f:/temp/myTestOntology.kaon";

String m_sLogicalURI = "http://www.dummyurl.de/testOntology";

OIModel oimodel = connection.createOIModel(m_sPhysicalURI,
m_sLogicalURI);

Listing A.2: Create new Ol-Model

Each OI-Model is uniquely identified by two URIs - a physical and a logical one,
which are totally independent from each other.

Physical URI The structure of the physical URI, which is used to access the Ol-Model,
depends on the KAON API implementation used. If an Ol-Model is locally stored
in f: \temp \myTestOntology.kaon , for instance, its physical URI would be
file:/f:/temp/myTestOntology.kaon

Logical URI A logical URI can be chosen freely, but in contrast to the physical URI it
has to be globally unique. For example, the above mentioned Ol-Model could have

APPENDIX A. ONTOLOGY MANAGEMENT AND EVOLUTION IN KAON 72

the logical URIhttp://www.dummyurl.de/testOntology , although this
URI does not really exist on the web.

Open OI-Model

An existing Ol-Model can be opened lepnnection.openOIModelPhysical(
msPhysicalURI)

The methodconnection.openOlModelLogical only works for some well-
known models (e.g. the lexical model) pre-registered with KAONConnection and for
OlI-Models, which are known to KAONConnection, because they have been previously
opened by their physical URIs.

Add New Concepts

The following code fragment (cf. listing A.3) creates two new concepé&sonand
Document

Concept person =

oimodel.getConcept(m_sLogicalURI +"#Person”);
Concept document =

oimodel.getConcept(m_sLogicalURI +"#Document”);

Listing A.3: Create new concepts

Since the metho®IModel.getConcept always returns a concept (even if there
is no concept with the specified URI in the OI-Model), it can be used for both cre-
ating new concepts and accessing existing ones. The only parameter required by
OIModel.getConcept is a unique URI for the concept to be created or retrieved.
Very often, the logical URI of the OI-Model is used as a prefix for newly created con-
cepts, because in this case the URIs of all model entities will be serialized relative to the
model's URI, when the Ol-Model is serialized in RDF.

As soon as the two new concepts have been created they can be added to the OI-
Model as shown below:

List changes = new LinkedList();

changes.add(new AddEntity(person));

changes.add(new AddEntity(document));

changes.add(new AddSubConcept(oimodel.getRootConcept(),
person));

changes.add(new AddSubConcept(oimodel.getRootConcept(),
document));

oimodel.applyChanges(changes);

changes.clear();

Listing A.4: Add new concepts

APPENDIX A. ONTOLOGY MANAGEMENT AND EVOLUTION IN KAON 73

With regards to ontology evolution (cf. subsection A.2) the KAON API does not allow
for performing changes directly on the OI-Model. Therefore a list of change events has to
be created and applied to the mddéh this case for each concept two change events are
required: one for adding it to the OIModel and one for making it a subconcepbbf .

Listing A.5 shows how to add a subconc&asearcheto the previously created con-
ceptPersonand a subconcefaperto Document

Concept researcher =

oimodel.getConcept(m_sLogicalURI +"#Researcher");
Concept paper =

oimodel.getConcept(m_sLogicalURI +"#Paper");
changes.add(new AddEntity(researcher));
changes.add(new AddEntity(paper));
changes.add(new AddSubConcept(person, researcher));
changes.add(new AddSubConcept(document, paper));
oimodel.applyChanges(changes);
changes.clear();

Listing A.5: Add new subconcepts

It is important to know thaeach new subconcept has to be added to the OlI-
Model (AddEntity) before it can be made a subconcept of any other concept
(AddSubConcept).

Add New Properties

Analogously to conceptsQlModel.getConcept) new properties can be created
by OIModel.getProperty . The following code creates a new properige
as an attribute tdPerson a property hasWritten(Researcher,Papeand a property
hasAuthor(Paper,Researcher)

Property age = oimodel.getProperty(m_sLogicalURI +"#age");
Property hasWritten =

oimodel.getProperty(m_sLogicalURI +"#hasWritten");
Property hasAuthor =

oimodel.getProperty(m_sLogicalURI +"#hasAuthor");
changes.add(new AddEntity(age));
changes.add(new AddEntity(hasWritten));
changes.add(new AddEntity(hasAuthor));
changes.add(new AddPropertyDomain(age, person));
changes.add(new AddPropertyDomain(hasWritten, researcher));
changes.add(new AddPropertyDomain(hasAuthor, paper));
changes.add(new AddPropertyRange(hasWritten, paper));
changes.add(new AddPropertyRange(hasAuthor, researcher));

4All available change events are located in ¢uiei.unika.aifb.kaon.api.change package.

APPENDIX A. ONTOLOGY MANAGEMENT AND EVOLUTION IN KAON 74

oimodel.applyChanges(changes);
changes.clear();

Listing A.6: Add new properties

As shown by listing A.6 up to four steps are required for adding a new property to the
Ol-Model:

e Creating a property@IModel.getProperty)

e Inserting the property into the Ol-ModeAddEntity)

e Defining the domain of the propertAddPropertyDomain)
¢ Defining the range of the propertpddPropertyRange)

Subproperties can be created by using the change eAddSubProperty(
superProperty, subProperty) (cf. subsection A.1).

Instantiate Concepts

Since an Ol-Modelmay not only include concepts and properties, but also instances of
both, the KAON API provides methods for the instantiation of concepts (cf. listing A.7)
and properties (cf. subsection A.2).

The following example demonstrates how instances of the con&sgssarcheand
Papercan be added to the Ol-Model.

Instance erwin =

oimodel.getinstance(m_sLogicalURI +"#Erwin_Skela");
Instance david =

oimodel.getinstance(m_slLogicalURI +"#David_Montero");
Instance paperxXYZ =

oimodel.getinstance(m_sLogicalURI +"#Paper_XYZ"),
changes.add(new AddinstanceOf(researcher, erwin));
changes.add(new AddinstanceOf(researcher, david));
changes.add(new AddinstanceOf(paper, paperXYZ));
oimodel.applyChanges(changes);
changes.clear();

Listing A.7: Add new instances

Instantiate Properties

The instantiation of properties is very similar to the instantiation of concepts described in
the previous subsection. The code fragment shown by listing A.8 instantiates the proper-
tiesageandhasWritten(Researcher,Papdyy assigning an age of 27 Erwin_Skelaand
creating ehasWritterrelation betweemavid_ MonteroandPaper XYZ

APPENDIX A. ONTOLOGY MANAGEMENT AND EVOLUTION IN KAON 75

Propertylnstance erwin_age 27 =
oimodel.getPropertylnstance(age, erwin, "27");
Propertylnstance david_hasWritten_paperXYZ =
oimodel.getPropertylnstance(hasWritten, david, paperxXYZ);
changes.add(
new AddPropertylnstance(erwin_age_27));
changes.add(
new AddPropertylnstance(david_hasWritten_paperXYZ));
oimodel.applyChanges(changes);
changes.clear();

Listing A.8: Instantiate properties

Pose Queries

KAON Query is an experimental conceptual query language, which is part of the KAON
ToolSuite (cf. figure 4.1). It can be used programmatically by means of the KAON API
for efficient locating of Ol-Model elements. The following example demonstrates how to
retrieve all instances of the concdfaper, which has been created in subsection A.1.

String sQuery = "["+ m_sLogicalURI +"#Paper]";
Collection answer = oimodel.executeQuery(sQuery);
Listing A.9: Pose queries

Since PaperXYZ is the only instance ofPaper the collection returned by
OIModel.executeQuery in the above listed code fragment contains only one ele-
ment (cf. listing A.10).

Query: [http: Ilwww.dummyurl.de/testOntology#Paper]
Answer: http: //lwww.dummyurl.de/testOntology#Paper_XYZ
Listing A.10: Query result

Since all instances of a certain concept can also be retrieved by using the
Concept.getinstances() method, the same result would be returned by
paper.getinstances()

Remove Concepts

As shown by listing A.11 a concept can be removed from an Ol-Model by using the
RemoveEntity change event.

changes.add(new RemoveEntity(paper));
List requestedChanges =

oimodel.applyChanges(requestedChanges);
changes.clear();

Listing A.11: Remove a concept

APPENDIX A. ONTOLOGY MANAGEMENT AND EVOLUTION IN KAON 76

Similar change events are provided for removing subconcepts, properties or instances,
for example.

The impact of removing concepts or other entities such as properties or instances from
an Ol-Model is demonstrated by the following RDF serialization (cf. subsection A.2) of
the sample ontology created in the previous subsections.

<rdf:RDF xml:base="http://www.dummyurl.de/testOntology"
xmins:rdf="&rdf;"
xmins:rdfs="&rdfs;"
xmins:a="&a;">
<a:Researcher rdf:ID="David_Montero"/>
<rdfs:Class rdf:ID="Document"/>
<a:Researcher rdf:ID="Erwin_Skela" a:age="27"/>
<rdfs:Class rdf:ID="Person"/>
<rdfs:Class rdf:ID="Researcher">
<rdfs:subClassOf rdf:resource="#Person"/>
</rdfs:Class>
<rdf:Property rdf:ID="age">
<rdfs:domain rdf:resource="#Person"/>
</rdf:Property>
</rdf:RDF>

Listing A.12: Remove conceRaper
Obviously, the deletion of the concepaperentails the deletion of
e its instancePaperXYZ
¢ the propertyhasWritten(Researcher,Paper)
¢ the propertyhasAuthor(Paper,Researcher)
e and the property instandeasWritten(Davidviontero,PaperXYZ)

In order to manage such complex changes and to avoid potential problems like inconsis-
tencies, for example, KAON provides different evolution strategies. The next subsection
describes how these evolution strategies can be employed by means of the KAON API.

Use Evolution Strategies

Since each change to an Ol-Model might potentially cause inconsistencies in this as well
as in dependent ontologies, the KAON API supports the use of different evolution strate-
gies (cf. [SMMSO02b] and [SSHO02])). The following code fragment below shows how
to use evolution strategies considering as example the deletiBapefrdescribed in the
previous subsection.

APPENDIX A. ONTOLOGY MANAGEMENT AND EVOLUTION IN KAON 7

EvolutionStrategy strategy =
new EvolutionStrategylmpl(oimodel);
changes.add(new RemoveEntity(paper));
List requestedChanges =
strategy.computeRequestedChanges(changes);
oimodel.applyChanges(requestedChanges);
changes.clear();

Listing A.13: Evolution strategies

Once an EvolutionStrategy object has been created it can be used in order to
transform a list of change events (e.gRemoveEntity(Paper)) into a new
list containing all the change events, which are necessary for safely perform-
ing the desired changes. The content as well as the sequential order of this list
depends on the evolution strategy implementation and the evolution parameters
(edu.unika.aifb.kaon.defaultevolution.EvolutionParameters)
specified by the user.

Serialization

The easiest way of serializing an Ol-Model is to apply @i&odel.save() method,
which stores the Ol-Model either to a local file (determined by its physical URI) or, for in-
stance, to a database - depending on which implementation of the KAON APl is currently
used.

Nevertheless, for debugging purposes it might be useful to create a textual output of
the OI-Model . In this case theDFSerializer class can be instantiated in order to
write an RDF serialization to an output stream such as System.out (cf. listing A.14).

RDFSerializer serializer = RDFManager.createSerializer();

serializer.serialize(((OIModelimpl)oimodel).getModel(),
System.out, "UTF-8");

writer.close();

Listing A.14: RDFSerializer

The following extract shows an RDF serialization of the sample ontology, which has
been created in the subsections A.2 to A.2.

<rdf:RDF xml:base="http://www.dummyurl.de/testOntology"
xmins:rdf="&rdf;"
xmins:rdfs="&rdfs;"
xmins:a="&a;">
<a:Researcher rdf:ID="David_Montero">
<a:hasWritten rdf:resource="#Paper_XYZ"/>
</a:Researcher>
<rdfs:Class rdf:ID="Document"/>
<a:Researcher rdf:ID="Erwin_Skela" a:age="27"/>

APPENDIX A. ONTOLOGY MANAGEMENT AND EVOLUTION IN KAON 78

<rdfs:Class rdf:ID="Paper">
<rdfs:subClassOf rdf:resource="#Document"/>
</rdfs:Class>
<a:Paper rdf:ID="Paper_XYZ"/>
<rdfs:Class rdf.ID="Person"/>
<rdfs:Class rdf:ID="Researcher">
<rdfs:subClassOf rdf:resource="#Person"/>
</rdfs:Class>
<rdf:Property rdf:.ID="age">
<rdfs:domain rdf:resource="#Person"/>
</rdf:Property>
<rdf:Property rdf:ID="hasAuthor">
<rdfs:domain rdf:resource="#Paper"/>
<rdfs:range rdf:resource="#Researcher"/>
</rdf:Property>
<rdf:Property rdf:ID="hasWritten">
<rdfs:domain rdf:resource="#Researcher"/>
<rdfs:range rdf:resource="#Paper"/>
</rdf:Property>
</rdf:RDF>

Listing A.15: RDF serialization

A.3 KAON Engineering Server

Currently, there are three different back-end implementations of the KAON API (cf. Sec-

tion A.2): theMain Memory implementation, th&DF Server as well as thé&engineer-

ing Server. In this chapter we focus on the latter, most sophisticated KAON implemen-

tation, the Engineering Server.

Motivation

When building large ontologies (with probably thousands of concepts and relations and
maybe millions of instances), it is with current standard technology rather infeasible to
store that amount of data in main memory. In fact, when the ontology to be built exceeds

a certain size, the usage of a database management system storing the mass of data is
unavoidable. For that purpose, i.e. for managing the interaction with the database system,
KAON includes an implementation of the so-called Engineering Server fulfilling that task.

In short, the Engineering Server isstéorage mechanism for KAON ontologies,
based on relational databases and suitable for use during ontology engineerings
features include

e transactions,

APPENDIX A. ONTOLOGY MANAGEMENT AND EVOLUTION IN KAON 79

¢ client-side caching with conflict detection,

¢ distributed change notification mechanism,

¢ bulk-loading of ontology elements,

e modularization (limited to models within the same database).

The Engineering Server has been tested with an ontology consisting of 100.000 con-
cepts, 66.000 properties and 1.000.000 instances, where loading related information about
20 ontology entities took under 3 seconds, while deleting a concept took under 5 seconds.

Database Access

The Engineering Server is an ontology server that is optimized for ontology engineering.
This optimization is in particular reflected in the database schema used by the server.
Since ontology engineering often involves creating and deleting concepts, which should
be multi-user capable and transactional, the engineering server has a database schema
with afixednumber of tables.

An obvious alternative realization of an ontology servers might create a table per con-
cept. However, this would make concept creation and deletion non-transactional, and in
general, more heavy-weight. The schema employed by the Engineering Server is pre-
sented in Figure 1: One can see that it consists of a fixed number of tables. Indeed, this
fact distinguishes the Engineering Server from other ontology servers implementations,
which store all instances of a concept in a separate table (and thus require table creation
and deletion every time a concept is created).

CONCEPT_INSTANCE PROPERTY_DOMAIN
* CONCEPT * PROPERTY
* INSTANCE * CONCEPT

* MIN_CARDINALITY
* MAX_CARDINALITY

CONCEPT_HIERARCHY

+ SUPER_CONCEPT ENTITY
* SUB_CONCEPT — U PROPERTY_RANGE
+IS_CONCEPT « PROPERTY
PROPERTY_HIERARCHY +IS_PROPERTY « CONCEPT
« SUPER_PROPERTY +IS_INSTANCE
+ SUB_PROPERTY +IS_ATTRIBUTE
* SYMMETRIC RELATION_INSTANCE
« TRANSITIVE « PROPERTY
.A;;FSIEESTE? INSTANCE —* INV_PROP_URI * SOURCE_INSTANCE
« SOURCE_INSTANCE « TARGET_INSTANCE

* TEXT_VALUE

Figure A.18: Engineering Server Database Schema

The Engineering Server offers scalable, transactional and concurrent access to ontol-
ogy information. To achieve that, optimized bulk-loading is implemented, that allows
fetching information about several ontology entities in one database request.

APPENDIX A. ONTOLOGY MANAGEMENT AND EVOLUTION IN KAON 80

The Engineering Server has been tested with MSL SQL Server 2000. Also, it has suc-
cessfully been run, but not thoroughly tested, on PostgreSQL, IBM DB2 7.2 and Oracle
9i. Although other databases may work, the Hypersonic databaseatiork, since
it doesn’t support many of standard features of relational databases that are needed for
server operation. For users of IBM DB2 it is important to configure the DB2 database to
use JDBC2 — please refer to the DB2 documentation for information on how to perform
that.

Usage Scenario for the Engineering Server

Mainly, there are three ways of using the Engineering Server (Direct, Remote, and Local)
which we describe in more detail in the subsequent sections.

In general, clients (e.g. ontology editors) access the Engineering Server through an
appropriate KAON API implementation (e.g. the API Proxy, cf. Figure 4.1), which pro-
vides client-side ontology information caching, along with a mechanism for detecting
incoherencies between the cache and the database. This feature thus significantly sim-
plifies developing applications where ontology entities are loaded and kept at the client
across transaction boundaries.

Before using the Engineering Server, it is necessary to create the necessary schema
in the database used. For this, the Engineering Server comes with a number of scripts
(SQL scripts, database-specific) whose execution results in the creation of the necessary
database tables. If those scripts can be executed without errors, the Engineering Server
is ready for usage. For more details concerning obtaining and installing the Engineering
Server please refer to Appendix A.4.

Direct Engineering Server TheDirect Engineering Serverorresponds to awo-tiered
setting (database and Engineering Server). This means that the Engineering Server ac-
cesses the database directly, which, of course, may be played on another host. In this
setting distributed change notification is not available.

The Direct Engineering Server is useful for any type of application in which dis-
tributed event notification is not required. So, it represents the simplest variant to set up
and use the Engineering Server (because it does not require a J2EE server such as JBoss).

Remote/Local Engineering Server In this three-tieredsetting an additional interven-
ing application server JBodss employed. The main advantage of these forms of the
Engineering Server is that clients can register themselves to be notified whenever other
users make a change in the ontology. Thus the Engineering Server can serve as a basis for
collaborative ontology development.

In the case of using thRemote Engineering Servirat JBoss Application Server is
accessed through another Java Virtual Machine (JVM) through remote interfaces. The

Shttp://www.jboss.org

APPENDIX A. ONTOLOGY MANAGEMENT AND EVOLUTION IN KAON 81

Remote Engineering Server is useful for applications which need distributed event noti-
fication. This in particular relates to applications where ontologies are manipulated by
several users concurrently, such as an ontology editor.

TheLocal Engineering Servaepresents ¢ghree-tieredsolution as well. Here, how-
ever, the Engineering Server accesses the JBoss application Server from within the same
JVM through local interfaces. The Local Engineering Server is useful in particular for
web applications, since the web application and the server can be deployed in the same
JVM, and thus increase performance (since the remote call overhead is eliminated).

Both, the Remote and Local Engineering Servers come in two versions: secure and
non-secure. In the non-secure version no authentication of clients, that want to access the
ontology/database, is needed. For the secure version, authentication is realized via JBoss.
Note, that the version of the Engineering Server being used (i.e. secure or non-secure) is
determined at deployment time.

Collaborative Ontology Engineering with the Engineering Server

As emphasized before, the main benefit of using the Engineering Server—apart from han-
dling huge amounts of data via accessing a relational database system—is the possibility
to collaboratively work on a single ontology model instance. That individual instance is
maintained by the Engineering Server to which clients may connect.

Due to these multi-user capabilities of the Engineering Server it is feasible to develop
an ontology in a distributed setting, e.g. with a group of ontology engineers or domain
experts who are spread across several locations. Here, each participant connects to the
instance of the Engineering Server (e.g. running on a server in Karlsruhe) with his/her
local client (e.g. the Ol-Modeler as part of the KAON Workbench). Then, it is possible to
browse and explore the entire ontology without restrictions. Furthermore, if the respective
user has the appropriate rights for writing, i.e. is also allowed to apply changes to the
ontology, he/she may add, change, or delete ontology entities.

Property Instances
Entity Mame Value

@}rvm Skela |
ﬁzd |
{H}

This OI-model contains a stale version of the entity 'http:fikaon.semanticweb. orgf2001)11 /kaon-lexical#Root'.

Figure A.19: Ontology Version Conflict during Distributed Ontology Engineering

APPENDIX A. ONTOLOGY MANAGEMENT AND EVOLUTION IN KAON 82

At its current stage of development the Engineering Server assigns a version number
to each successive state of the ontology. In case a client’s local “copy” of the ontology has
a lower version number than the current ontology version maintained by the Engineering
Server, the user is prompted that a conflict exists.

Imagine ontology engineer A has noticed tBavin Skela was misspelled and cor-
rects that typo so that that instance is caliedn Skela . Moreover, ontology engineer
B wants to change that instance’s value for attribwge from 27 to 28. In case B has not
updated his/her OI-Model, he/she will be notified about the conflict as depicted in Figure
A.19: Obviously, B is not allowed to change the value for attribage as his/her cur-
rent version of the ontology is obsolete. Now, ontology engineer B would have to refresh
his/her ontology—which means that the Engineering Server’s current ontology version is
transferred to the client—and must reapply the changes he/she wanted to introduce, i.e.
change the value for thesE attribute as desired.

A.4 Download & Installation

This chapter gives hints concerning download and installation of tools and components
related to KAON.

After a short overview on current versions and download sites we devote a single
subsection to the installation of each tool presented in this document.

Download Overview

The following table A.1 summarizes download sources for and version numbers of the
tools described within this document. Note, that future versions might not necessarily be
compatible with the current versions described here. Be aware, that KAON needs at least
Java 1.4.0.

| Tool | Version | Download Site |
KAON | V1.2.7 | http://sourceforge.net/projects/kaon
Note: You may choose between the source code and a binary version.
KAON Extensions http://sourceforge.net/projects/kaon-ext/
Includes:KAONToEdit | V1.0
TextToOnto V0.95b | http://sourceforge.net/projects/texttoonto/
Java V1.4.2 | http://java.sun.com/j2se/1.4.2/download.html
OntoEdit V2.6 http://www.ontoprise.de/customercenter/
softwaredownloads/
JBoss V3.2.1 | http://www.jboss.org

Table A.1: Downloading KAON

APPENDIX A. ONTOLOGY MANAGEMENT AND EVOLUTION IN KAON 83

Installation of KAON, its Workbench, and Ol-Modeler

After having obtained KAON from the download site mentioned in Table A.1, you may
proceed making that software applicable.

Note, that the term “KAON Workbench” (cf. Section 4.1) in particular comprises the
Ol-Modeler, KAON's ontology editor.

Installation: Installing KAON and its Workbench is straightforward. To install KAON
just unpack the downloaded archive to some directory without spaces.

Using OI-Modeler: Set the KAONROOT environment variable to point
to the root of your KAON distribution, for example viec:\ >set
KAON_ROOT=c:\kaon. Then, you may start the Ol-Modeler by invoking
KAON_ROOT\bin\kaongui.bat

As shown in Figure 4.1 the KAON archive you have downloaded comprises KAON’s
Engineering Server as well. However, since installing and using that software involves a
number of steps to be followed, we describe that proceeding in very detail in the following
section.

Installation of the Engineering Server

The Engineering Server represents KAON’s implementation for large-scale and dis-
tributed ontology engineering. Note, that the Engineering Server is a part of KAON. So,
the files and libraries related to it are included in the KAON archive you probably have
downloaded and installed in Section A.4. The following steps describe how to install and
use the Engineering Server.

Exemplarily, we describe the installation process for Microsoft SQL Server 2000 as
the database system the Engineering Server collaborates with, for which it has been tested
thoroughly. However, it should work in principle with all SQL2-compatible databases. It
has been successfully run on IBM DB2, PostgreSQL and Oracle 8i/9i.

Direct Engineering Server

Applying the Direct Engineering Server corresponds to a two-tiered setting. Of course,

the functionality of both tiers (i.e. client and relational database system) may be placed
on the same machine. Anyway, the first phase of the Engineering Server’s installation
involves the creation of the server’'s database and filling it with the necessary database
schema (see Section A.18).

1. Install the relational database system and make sure it is up and running.

2. Create a new database (emgyOntologyDatabase) with your database man-
agement tool (in case of MS SQL Server that tool is the “SQL Server Enterprise
Manager”).

APPENDIX A. ONTOLOGY MANAGEMENT AND EVOLUTION IN KAON 84

3.

Use your database tool to execute tlsehema.sql script located in
KAON_ROOT\engineeringserver\schemal . For example, for the MS

SQL Server you may use the “SQL Query Analyzer” for that purpose. That script
will create the schema in your database. The file is in the SQL2 format and uses
the semicolon character as the command separator. Depending on your database,
you may need to replace that character with the keyword used by your database (for
exampleplder versions of MS SQL Server used the keyword GO as the command
separator).

Depending on your database (i.e. if you are not using MS SQL Server), execute
the supplementary schema script. For example, in case of Oracle database, exe-
cuteengineeringserver\schema\schema_oracle.sql file. The same
comments about the command separator apply.

Create a database user with your database management tool, e.g. MS SQL Server
Enterprise Manager. Pay also attention that the security settings of MS SQL Server
Enterprise Manager do not only allow for Windows authentication, but for “SQL
Server and Windows”.

Now, the Engineering Server is ready to be used imitsct version. From within
the Ol-Modeler you may create a new or open an existing ontology model via the Direct
Engineering Server by supplying the following information:

Start the Ol-Modeler and choose open or create an Ol-Model.
Choose the tab “Direct Engineering Server”.

User Name and Password as specified in 5.

Host Name: localhost or the server the SQL Server is running on

Driver: Here, you can choose between MS SQL Server, IBM DB2, Oracle, Post-
greSQL, and other.

Port: 1433

Database: name of your database, mmgOntologyDatabase

Remote/Local Engineering Server

For theremote or localversion of the Engineering Server, you need the JBoss application
server and you have to deploy the Engineering Server’s EJBs to that application server.
To do so, follow these steps:

1.

Download JBoss frorttp://www.jboss.org/downloads.jsp . Unpack
the JBoss into a directory without spaces.

APPENDIX A. ONTOLOGY MANAGEMENT AND EVOLUTION IN KAON 85

2. SettheJBOSS_HOMEnNvironment variable to point to the root of the JBoss distri-
bution (e.g.C:\java\jboss-3.2.1_tomcat-4.1.24).

3. KAON distribution contains JBoss 3.2.1 libraries (in the 3rdparty directory) that
facilitate connection to the JBoss application server. The version of the client-side
libraries must match to the JBoss version. If you are using some other version of
JBoss, then you should exchange the JBoss libraries in the 3rdparty directory with
the appropriate libraries from your JBoss distribution.

Please note, that we conducted all our tests with version 3.2.1 of JBoss, thus we
recommend using that JBoss version as incompatibilities might arise otherwise.
4. Customize JBoss to connect to your database. This involves the following steps:

e Copy the template database configuration file for your database
(for MS SQL Server that file is called mssqgl-ds.xml)
from JBOSS_HOME\docs\examples\jca directory to
JBOSS_ HOME\server\default\deploy

e Open that file in a text editor.

e Customize the name of the JNDI data source to KAON (by editing the value
of the<jndi-name> element).

e Enter other information about your database (such as connection string, user
name and password).

e Make the JDBC driver available to JBoss by copying it to

JBOSS_HOME\server\default\lib directory. The JDBC driver
for MS SQL, for example, consists of three filesngbase.jar
mssqlserver.jar , andmsutil.jar).

5. Start JBoss (by invoking thé80SS_HOME\bin\run.bat script).

6. Deploy the Engineering Server. Here, you will have to decide whether you intend
to use the Engineering Server in gscureor non-secureversion (see below). For
the non-secure version invoke thengineeringserver\deploy.bat

script (which will copy engineeringserver-beans.jar file
to the JBOSS_HOME\server\default\deploy directory). For
the secure version invoke thedeploy_secure.bat script (which
will copy engineeringserversecure-beans.jar file to
JBOSS_HOME\server\default\deploy directory).

Now, the Local/Remote Engineering Server is ready for use. From within the ontology
editor Ol-Modeler you may now access it. Depending on the decision whether you intend
to use the Engineering Server in its non-secure or secure version, proceed as follows:

Non-Secure VersionIn the non-secure version no authentication mechanism is present.

APPENDIX A. ONTOLOGY MANAGEMENT AND EVOLUTION IN KAON 86

Start the Ol-Modeler and choose open or create an Ol-Model.

Choose the tab “Engineering Server”.

Host Name: localhost or the server on which JBoss is running
Port: 1099

User Name and Password: You can leave these fields blank as no authentica-
tion methods are employed in the non-secure version.

Secure Version In the secure version the same information as in the non-secure version
have to be supplied. Moreover, you have to fill in your user name and password
allowing you to access JBoss. Of course, you have to customize JBoss in prior so
that it supports authentication. This basically means, you have to define a set of
users and grant them rights to read and/or modify the ontology.

For this you must set up a security domain callebn and specify how au-
thentication is performed. A simple way of authenticating users is by using
UsersRolesLoginModule of JBoss. This module expects two files in
JBOSS_HOME\server\default\conf directory: users.properties

contains entries of the form userName=password |, whereas
roles.properties contains entries of the foroserName=rolel,role2

The Engineering Server supports two role&AONReader role allows the
user to read the OI-Model, whereERONWriter role allows user to change
the Ol-Model. TheUsersRolesLoginModule can be started by editing
JBOSS_ HOME\server\default\conf\login-config.xml file and ap-
pending the following fragment:

<application-policy name="kaon">
<authentication>
<login-module
code=
"org.jboss.security.auth.spi.UsersRolesLoginModule"
flag="required" />
</authentication>
</application-policy>

For installation of other authentications modules, please refer to JBoss documenta-
tion.

Installation of TextToOnto

TextToOnto has been developed as an open-source project and therefore can be freely
obtained from the address mentioned in table A.1. Because it does not need any additional

APPENDIX A. ONTOLOGY MANAGEMENT AND EVOLUTION IN KAON 87

libraries or software apart from the Java Runtime Environfyémé installing and running
TextToOnto is straightforward:

e decompress the binary distribution into a directerfNST-DIR > (for example
c: \TextToOnto)

e go to<INST-DIR >\bin

e set the classpath and start TextToOnto:
DOS / Windowsinvoke <INST-DIR >\bin \texttoonto.bat
Unix / Linux:

— execute the shell scripfsentenv.sh in order to set up your environment

— start TextToOnto via java -cp "WTEXTTOONTO _CLASSPATH%"
edu.unika.aifb.texttoonto.TextToOnto

Moreover, although this is not required for using TextToOnto, you might want to
install WordNet 1.7.1 which significantly improves the results of the TaxoBuilder module.
WordNet distributions for various operating systems can be downloaded Htim
/lwww.cogsci.princeton.edu/ ~wn/ .

Shttp://java.sun.com/j2se/desktopjavaljre/index.jsp

Bibliography

[AFMO3]

[BGO04]

[BHGSO01]

[BKKK87]

[BLHLO1]

[BVHH]

[C*03]

[CFFro8]

[CSTO3]

Alessandro Artale, Enrico Franconi, and Federica Mandreoli. Description
logics for modeling dynamic information. llbogics for Emerging Appli-
cations of Database2003.

D. Brickley and R. V. Guha. RDF Vocabulary Description Language 1.0:
RDF Schema. W3C Recommendation 10 February 2004, 2004. available
at http://www.w3.org/TR/rdf-schema/.

S. Bechhofer, I. Horrocks, C. Goble, and R. Stevens. OilEd: A reason-able
ontology editor for the semantic web. Ki-2001: Advances in Atrtificial
Intelligence LNAI 2174, pages 396—408. Springer, 2001.

Jay Banerjee, Won Kim, Hyoung-Joo Kim, and Henry F. Korth. Semantics
and implementation of schema evolution in object-oriented databases. In
Proceedings of the 1987 ACM SIGMOD international conference on Man-
agement of datgpages 311-322. ACM Press, 1987.

T. Berners-Lee, J. Hendler, and O. Lassila. The seman-
tic web. Scientific American 2001(5), 2001. available at
http://www.sciam.com/2001/0501issue/0501berners-lee.html.

Sean Bechhofer, Frank van Harmelen, Jim Hendler, lan Horrocks, Deborah
McGuinness, Peter F. Patel-Schneider, and Lynn Andrea Stein. Owl web
ontology language referenchbttp://www.w3.org/TR/owl-ref/

Per Cederqvist et alThe CVS manual - Version Management with CVS
Network Theory Limited, 2003.

V. K. Chaudhri, A. Farquhar, R. Fikes, P. D. Karp, and J. Rice. OKBC: A
programmatic foundation for knowledge base interoperabilityAAAI/I-
AAl, pages 600-607, 1998.

P. Cimiano, S.Staab, and J. Tane. Automatic acquisition of taxonomies
from text: Fca meets nlp. IRroceedings of the PKDD/ECML'03 Interna-
tional Workshop on Adaptive Text Extraction and Miniag03.

88

BIBLIOGRAPHY 89

[DP04]

[EGH"04a]

[EGH*04b]

[Fel98]
[FGMOO]

Zhongli Ding and Yun Peng. A Probabilistic Extension to Ontology Lan-
guage OWL. InProceedings of the 37th Hawaii International Conference
On System Sciences (HICSS-3B)g Island, Hawaii, January 2004.

M. Ehrig, T. Gabel, P. Haase, Y. Sure, C. Tempich, and J. Voelker. Data
manual - initial version. SEKT informal deliverable 7.1.1.b, Institute AIFB,
University of Karlsruhe, 2004.

M. Ehrig, T. Gabel, P. Haase, Y. Sure, C. Tempich, and J. Voelker. Use
cases - initial version. SEKT informal deliverable 7.1.1.a, Institute AIFB,
University of Karlsruhe, 2004.

C. Fellbaum WordNet, an electronic lexical databaddIT Press, 1998.

Enrico Franconi, Fabio Grandi, and Federica Mandreoli. A semantic ap-
proach for schema evolution and versioning in object-oriented databases.
In Proceedings of the First International Conference on Computational
Logic, pages 1048-1062. Springer-Verlag, 2000.

[GPAFLT02] A. Gomez-Rerez, J. Angele, M. Fernaéd-Lopez, V. Christophides,

[GSV04]

[GW99]

[Hea92]

[HEHS04]

[HHOO]

[HHO2]

A. Stutt, Y. Sure, et al. A survey on ontology tools. OntoWeb deliver-
able 1.3, Universidad Politecnia de Madrid, 2002.

T. Gabel, Y. Sure, and J. Voelker. KAON — ontology management infras-
tructure. SEKT informal deliverable 3.1.1.a, Institute AIFB, University of
Karlsruhe, 2004.

B. Ganter and R. WilleFormal Concept Analysis. Mathematical Founda-
tions Springer Verlag, 1999.

M.A. Hearst. Automatic acquisition of hyponyms from large text corpora.
In Proceedings of the 14th International Conference on Computational
Linguistics 1992.

P. Haase, M. Ehrig, A. Hotho, and B. Schnizler. Personalized information
access in a bibliographic peer-to-peer systenPrvceedings of the AAAI
Workshop on Semantic Web Personalization, 2004 2004.

Jeff Heflin and James A. Hendler. Dynamic ontologies on the web. In
Proceedings of the Seventeenth National Conference on Artificial Intelli-
gence and Twelfth Conference on Innovative Applications of Atrtificial In-
telligence pages 443-449. AAAI Press / The MIT Press, 2000.

I. Horrocks and J. A. Hendler, editor®roceedings of the First Interna-
tional Semantic Web Conference: The Semantic Web (ISWC,2002ne
2342 ofLecture Notes in Computer Science (LNC&jrdinia, Italy, 2002.
Springer.

BIBLIOGRAPHY 90

[HMSO04a]

[HMS04b]

[HPS04]

[HPSVHO3]

[HS98]

[HSTOO]

[HVO04]

[Kar02]
[KFO1]

[KFKO02]

[KKO4]

U. Hustadt, B. Motik, and U. Sattler. Reasoning for Description Logics
aroundSHZQ in a Resolution Framework. Technical Report 3-8-04/04,
FZI1, Karlsruhe, Germany, April 2004.
http://www.fzi.de/wim/publikationen.php?id=1172.

U. Hustadt, B. Motik, and U. Sattler. Reduci§@{Z Q Description Logic

to Disjunctive Datalog Programs. In D. Dubois, C. Welty, and M.-A.
Williams, editorsProc. of the 9th Int. Conf. on Knowledge Representation
and Reasoning (KR2004pages 152-162, Menlo Park, California, USA,

June 2004. AAAI Press.

I. Horrocks and P. F. Patel-Schneider. Reducing OWL Entailment to De-
scription Logic SatisfiabilityJournal of Web Semantic$(4), 2004.

I. Horrocks, P. F. Patel-Schneider, and F. van Harmelen. From SHIQ and
RDF to OWL: The Making of a Web Ontology Languagéournal of Web
Semantics1(1), 2003.

U. Hahn and K. Schnattinger. Towards text knowledge engineering. In
AAAI'98/IAAI'98 Proceedings of the 15th National Conference on Atrtifi-
cial Intelligence and the 10th Conference on Innovative Applications of
Artificial Intelligence 1998.

I. Horrocks, U. Sattler, and S. Tobies. Practical Reasoning for Very Ex-
pressive Description LogicsLogic Journal of the IGPL8(3):239-263,
2000.

P. Haase and J. Voelker. Requirements analysis for usage-driven and data-
driven change discovery. SEKT informal deliverable 3.3.1.a, Institute
AIFB, University of Karlsruhe, 2004.

FZI Karlsruhe. OI-Modeler user’s guide, 2002.

Michel Klein and Dieter Fensel. Ontology versioning for the Semantic
Web. InProceedings of the First International Semantic Web Working
Symposium (SWW)ages 75-91, Stanford University, California, USA,
July 30 — August 1, 2001.

Michel Klein, Dieter Fensel, Atanas Kiryakov, and Damyan Ognyanov.
Ontology versioning and change detection on the webl13ih Interna-
tional Conference on Knowledge Engineering and Knowledge Manage-
ment (EKAWO02)number 2473 in LNCS, page 197 ff, Signza, Spain,
October 1-4, 2002.

FZI Karlsruhe and AIFB Karlsruhe. KAON the Karlsruhe ontology and
semantic web framework — developer’s guide for KAON 1.2.7, 2004.

BIBLIOGRAPHY 91

[KKOF02]

[Kle04]

[KNO3]

[MDOO]

[Men99]

[MMO4]

[MMS03a]

[MMS*03b]

[MMVO02]

[MPO02]

[MS00]

Michel Klein, Atanas Kiryakov, Damyan Ognyanov, and Dieter Fensel.
Finding and characterizing changes in ontologies.Pioceedings of the
21st International Conference on Conceptual Modeling (ER20@2nber
2503 in LNCS, pages 79-89, Tampere, Finland, October 7-11, 2002.

Michel Klein. Change Management for Distributed Ontologi&hD the-
sis, Vrije Universiteit Amsterdam, 2004.

Michel Klein and Natalya F. Noy. A component-based framework for on-
tology evolution. InProceedings of the Workshop on Ontologies and Dis-
tributed Systemsm, 1IJCAI '03capulco, Mexico, August9, 2003. Also
available as Technical Report IR-504, Vrije Universiteit Amsterdam.

T.J. Menzies and J. Debenham. Expert systems maintenancgclopedia
of Computer Science and Technolpgy(27):35-54, 2000. Available from
http://tim.menzies.com/pdf/00cst.pdf

Tim Menzies. Knowledge maintenance: The state of theHne Knowl-
edge Engineering Review4(1), 1999.

F. Manola and E. Miller. Resource Description Framework (RDF).
primer. W3C Recommendation 10 February 2004, 2004. available at
http://www.w3.org/TR/rdf-primer/.

Alexander Maedche, Boris Motik, and Ljiljana Stojanovic. Managing
multiple and distributed ontologies in the semantic w&th.DB Journal
12(4):286—-302, 2003.

A. Maedche, B. Motik, L. Stojanovic, R. Studer, and R. Volz. An infras-
tructure for searching, reusing and evolving distributed ontologieBrdn
ceedings of the twelfth international conference on World Wide Yaies
439-448, Budapest, Hungary, 2003. ACM Press.

A. Maedche, B. Motik, and R. Volz. A conceptual modeling approach for
semantics-driven enterprise applications. In Springer-Verlag, e@itoihe
Move to Meaningful Internet Systems, 2002 - DOA/CooplS/ODBASE 2002
Confederated International Conferences DOA, CooplS and QpRges
1082 — 1099, October 30 - November 01 2002.

Peter McBrien and Alexandra Poulovassilis. Schema evolution in heteroge-
neous database architectures, a schema transformation approdio- In
ceedings of the 14th International Conference on Advanced Information
Systems Engineeringages 484—-499. Springer-Verlag, 2002.

A. Maedche and S. Staab. Discovering conceptual relations from text. In
W. Horn, editorProceedings of the 14th European Conference on Artificial
Intellignece (ECAI'’2000)2000.

BIBLIOGRAPHY 92

[MS02]

[MSSVO02]

[MVO1]

[NFMOO]

[NKO3]

[0G03]

[OK02]

[PK97]

[PSHH]

[Pz97]

[Rod95]

A. Maedche and S. Staab. Measuring similarity between ontologies. In
Proceedings of the European Conference on Knowledge Acquisition and
Management (EKAWSpringer, 2002.

A. Maedche, L. Stojanovic, R. Studer, and R. Volz. Managing multiple on-
tologies and ontology evolution in ontologging. Pnoceedings of the IFIP
17th World Computer Congress — TC12 Stream on Intelligent Information
Processingpages 51 — 63, Montreal, Canada, 2002. Kluwer.

A. Maedche and R. Volz. The ontology extraction and maintenance frame-
work text-to-onto. InProceedings of the ICDM’01 Workshop on Integrat-
ing Data Mining and Knowledge Managemg2001.

N. Noy, R. Fergerson, and M. Musen. The knowledge model ofeigeet
2000: Combining interoperability and flexibility. In R. Dieng and
O. Corby, editorsProceedings of the 12th International Conference on
Knowledge Engineering and Knowledge Management: Methods, Models,
and Tools (EKAW 2000yolume 1937 ot.ecture Notes in Artificial Intel-
ligence (LNAI) pages 17-32, Juan-les-Pins, France, 2000. Springer.

Natalya F. Noy and Michel Klein. Ontology evolution: Not the same as
schema evolutionKnowledge and Information Systerbs 2003. in press.

ontoprise GmbH. How to work with OntoEdit — user’s guide for OntoEdit
version 2.6. http://www.ontoprise.de/documents/tutoniaioedit.pdf,
September 2003.

Damyan Ognyanov and Atanas Kiryakov. Tracking changes in rdf(s) repos-
itories. InProceedings of the 13th International Conference on Knowledge
Engineering and Knowledge Management. Ontologies and the Semantic
Weh pages 373-378. Springer-Verlag, 2002.

Anne Pons and Rudolf R. Keller. Schema evolution in object databases by
catalogs. InProceedings of the International Database Engineering and
Applications Symposium (IDEAS’97), Montreal, Cangpages 368—376,
1997.

Peter F. Patel-Schneider, Patrick Hayes, and lan Horrocks. Owl web on-
tology language semantics and abstract syrttp://www.w3.org/
TR/2004/REC-owl-semantics-20040210/

Randel J. Peters and M. Tamer Özsu. An axiomatic model of dy-
namic schema evolution in objectbase syster®CM Trans. Database
Syst, 22(1):75-114, 1997.

John F. Roddick. A survey of schema versioning issues for database sys-
tems.Information and Software Technolqd/7(7):383—393, 1995.

BIBLIOGRAPHY 93

[Rou04] Marie-Christine Rousset. Small can be beautiful in the semantic web.
In Proceedings of the 3rd International Semantic Web Conference (ISWC
2004) Hiroshima, Japan, November 2004.

[SASO03] Y. Sure, J. Angele, and S. Staab. OntoEdit: Multifaceted inferencing for
ontology engineeringJournal on Data SemantickNCS(2800):128-152,
2003.

[SASS04] L. Stojanovic, A. Abecker, N. Stojanovic, and R. Studer. On managing
changes in the ontology-based e-governmentProceedings of the 3rd
International Conference on Ontologies, Databases and Application of Se-
mantics (ODBASE 2004number 3291 in Lecture Notes in Computer Sci-
ence, pages 1080-1097, Agia Napa, Cyprus, November 2004. Springer
Verlag.

[SEAT02] Y. Sure, M. Erdmann, J. Angele, S. Staab, R. Studer, and D. Wenke. On-
toEdit: Collaborative ontology development for the semantic web. In Hor-
rocks and Hendler [HHO2], pages 221-235.

[SHGO3] N. Stojanovic, J. Hartmann, and J. Gonzalez. Ontomanager - a system for
usage-based ontology managementnlRroceedings of FGML Workshop.
Special Interest Group of German Information Society (FGML - Fach-
gruppe Maschinelles Lernen der Gl e,\2P03.

[SKO3] Heiner Stuckenschmidt and Michel Klein. Integrity and change in modular
ontologies. INProceedingso of the 18th International Joint Conference on
Artificial Intelligence Acapulco, Mexico, August 2003.

[SMMSO02a] Ljiljana Stojanovic, Alexander Kdche, Boris Motik, and Nenad Sto-
janovic. User-driven ontology evolution management. Huaropean
Conf. Knowledge Eng. and Management (EKAW 20papes 285-300.
Springer-Verlag, 2002.

[SMMSO02b] L. Stojanovic, A. Maedche, B. Motik, and N. Stojanovic. User-driven on-
tology evolution management. FProceedings of the 13th European Con-
ference on Knowledge Engineering and Knowledge Management EKAW
volume 2473 ofLecture Notes in Computer Sciengeages 285 — 300,
Siguenza, Spain, October 1-4 2002. Springer.

[SMSS03] Ljiljana Stojanovic, Alexander Maedche, Nenad Stojanovic, and Rudi
Studer. Ontology evolution as reconfiguration-design problem solving. In
KCAP 2003 pages 162-171. ACM, OCT 2003.

[SRO3] Ganesan Shankaranarayanan and Sudha Ram. Research issues in database
schema evolution - the road not taken. Technical Report 2003-15, The
University of Arizona, 2003.

BIBLIOGRAPHY 94

[SSHO2]

[STO4]

[Sto04a]

[Sto04b]

[SWMO04]

[TKMO4]

[VMPO3]

[Vol04a]

[Vol04b]

L. Stojanovic, N. Stojanovic, and S. Handschuh. Evolution of the meta-
data in the ontology-based knowledge management systenSeriman
Workshop on Experience Managemeaages 65 — 77, 2002.

Y. Sure and C. Tempich. State of the art in ontology engineering method-
ologies. SEKT informal deliverable 7.1.2, Institute AIFB, University of
Karlsruhe, 2004.

Ljiljana Stojanovic.Methods and Tools for Ontology EvolutioRhD the-
sis, University of Karlsruhe, 2004.

Ljlijana Stojanovic.Methods and Tools for Ontology EvolutioRhD the-
sis, University of Karlsruhe, 2004.

M. K. Smith, C. Welty, and D. McGuinness. OWL Web Ontology Lan-
guage Guide, 2004. W3C Recommendation 10 February 2004, available at
http://www.w3.0rg/TR/owl-guide/.

l. Terziev, A. Kiryakov, and D. Manov. Base upper-level ontology (bulo)
guidance. SEKT deliverable 1.8.1, Ontotext Lab, Sirma Al EAD (Ltd.),
2004.

Yannis Velegrakis, Renee J. Miller, and Lucian Popa. Mapping adaptation
under evolving schemas. Wi.DB 2003, Proceedings of 29th International
Conference on Very Large Data Bases, September 9-12, 2003, Berlin, Ger-
many 2003.

Raphael VolzWeb Ontology Reasoning with Logic DatabadeisD thesis,
University of Karlsruhe, 2004.

R. Wolz. Web Ontology Reasoning with Logic Databasd3hD thesis,
Institute AIFB, University of Karlsruhe, 2004.

