
EU-IST Integrated Project (IP) IST-2003-506826 SEKT

SEKT: Semantically Enabled Knowledge Technologies

D3.1.2 Incremental Ontology
Evolution - Evaluation

Peter Haase and York Sure
(Institute AIFB, University of Karlsruhe)

Abstract.
EU-IST Integrated Project (IP) IST-2003-506826 SEKT
Deliverable D3.1.2 (WP3.1)
In this deliverable addresses we present the evaluation of our work performed in the task ‘T3.1
Incremental Ontology Evolution’. There are two aspects to this evaluation: First, we introduce the
notion of ontology evaluation into our framework of incremental ontology evolution. Second, we
present evaluation results of our methods in terms of effectiveness, performance and applicability.
Keyword list: Ontology Evolution, Ontology Evaluation, Ontology Management

Copyright c© 2006 Institute AIFB, University of Karlsruhe

Document Id.
Project
Date
Distribution

SEKT/2005/D3.1.2/v1.0
SEKT EU-IST-2003-506826
November 2, 2005
public

SEKT Consortium

This document is part of a research project partially funded by the IST Programme of the Commission of the European
Communities as project number IST-2003-506826.

British Telecommunications plc.
Orion 5/12, Adastral Park
Ipswich IP5 3RE
UK
Tel: +44 1473 609583, Fax: +44 1473 609832
Contact person: John Davies
E-mail: john.nj.davies@bt.com

Empolis GmbH
Europaallee 10
67657 Kaiserslautern
Germany
Tel: +49 631 303 5540, Fax: +49 631 303 5507
Contact person: Ralph Traphöner
E-mail: ralph.traphoener@empolis.com

Jozef Stefan Institute
Jamova 39
1000 Ljubljana
Slovenia
Tel: +386 1 4773 778, Fax: +386 1 4251 038
Contact person: Marko Grobelnik
E-mail: marko.grobelnik@ijs.si

University of Karlsruhe , Institute AIFB
Englerstr. 28
D-76128 Karlsruhe
Germany
Tel: +49 721 608 6592, Fax: +49 721 608 6580
Contact person: York Sure
E-mail: sure@aifb.uni-karlsruhe.de

University of Sheffield
Department of Computer Science
Regent Court, 211 Portobello St.
Sheffield S1 4DP
UK
Tel: +44 114 222 1891, Fax: +44 114 222 1810
Contact person: Hamish Cunningham
E-mail: hamish@dcs.shef.ac.uk

University of Innsbruck
Institute of Computer Science
Technikerstraße 13
6020 Innsbruck
Austria
Tel: +43 512 507 6475, Fax: +43 512 507 9872
Contact person: Jos de Bruijn
E-mail: jos.de-bruijn@deri.ie

Intelligent Software Components S.A.
Pedro de Valdivia, 10
28006 Madrid
Spain
Tel: +34 913 349 797, Fax: +49 34 913 349 799
Contact person: Richard Benjamins
E-mail: rbenjamins@isoco.com

Kea-pro GmbH
Tal
6464 Springen
Switzerland
Tel: +41 41 879 00, Fax: 41 41 879 00 13
Contact person: Tom B̈osser
E-mail: tb@keapro.net

Ontoprise GmbH
Amalienbadstr. 36
76227 Karlsruhe
Germany
Tel: +49 721 50980912, Fax: +49 721 50980911
Contact person: Hans-Peter Schnurr
E-mail: schnurr@ontoprise.de

Sirma AI EAD, Ontotext Lab
135 Tsarigradsko Shose
Sofia 1784
Bulgaria
Tel: +359 2 9768 303, Fax: +359 2 9768 311
Contact person: Atanas Kiryakov
E-mail: naso@sirma.bg

Vrije Universiteit Amsterdam (VUA)
Department of Computer Sciences
De Boelelaan 1081a
1081 HV Amsterdam
The Netherlands
Tel: +31 20 444 7731, Fax: +31 84 221 4294
Contact person: Frank van Harmelen
E-mail: frank.van.harmelen@cs.vu.nl

Universitat Autonoma de Barcelona
Edifici B, Campus de la UAB
08193 Bellaterra (Cerdanyola del Vallès)
Barcelona
Spain
Tel: +34 93 581 22 35, Fax: +34 93 581 29 88
Contact person: Pompeu Casanovas Romeu
E-mail: pompeu.casanovas@uab.es

Executive Summary

This deliverable is the successor of D3.1.1, where we have presented methods and tools
for the ontology management infrastructure to support incremental ontology evolution.
This deliverable complements the prior one with an evaluation in two senses: First, we
extend our formalisms with support for formalontology evaluation. Second, we apply our
methods in a practical setting of the BT Digital Library case study and presentevaluation
resultsin terms of performance and effectiveness.

In our formalism we introduce the notion of an ontology evaluation function that al-
lows to assess the quality of an ontology for a given context. Based on this ontology
evaluation function, the task of ontology evolution can be formalized as a search for an
ontology that maximizes the evaluation function. We incoporate the existing methods for
change discovery developed in tasks T3.2 and T.3 into the framework, considering the
usage-driven and a data-driven approach, respectively. We demonstrate the application
using a scenario from the BT DL case study.

The evaluation of the methods covers aspects such as performance of the approach of
consistent ontology evolution and the underlying reasoner, extensibility and effectiveness.

Contents

1 Introduction 3
1.1 The SEKT Big Picture . 3
1.2 Motivation . 3
1.3 Related Work . 5
1.4 Application Scenario . 7
1.5 Overview of the Deliverable . 9

2 Ontology Evaluation for Ontology Evolution 11
2.1 Ontology Evaluation for Ontology Evolution – Overview of the Approach 11

2.1.1 OWL Ontology Model . 11
2.1.2 Context Model or “How can you define thecontextof an ontology?” 12
2.1.3 Ontology Evaluation or “How can you define agood ontology

given a certain context?” . 13
2.1.4 Ontology Evolution or “How can you make good ontologiesbet-

ter given a certain context?” . 14
2.2 Usage Context . 15

2.2.1 A Cost-based Approach . 16
2.2.2 Collaborative Scenario . 17

2.3 Domain Context . 19
2.3.1 Domain-driven Evaluation . 22
2.3.2 Domain-Driven Evolution . 23

3 Results 25
3.1 Evaluation Setting . 25
3.2 Evaluation Results . 25

3.2.1 Performance Results . 27
3.2.2 Performance of Reasoning with KAON2 28

4 Conclusions and Future Work 30
4.1 Conclusion . 30
4.2 Future Work . 31

A Performance of Reasoning with KAON2 32

1

CONTENTS 2

A.1 Test Setting . 32
A.2 Test Ontologies . 34
A.3 Querying Large ABoxes . 36
A.4 TBox Reasoning . 39

Chapter 1

Introduction

1.1 The SEKT Big Picture

This report is part of the work performed in workpackage (WP) 3 on “Ontology and
Metadata Management”. As shown in Figure 1.1 this work belongs to the central part of
the research and development WPs in SEKT. Quite naturally it is closely connected with
Ontology Generation and Metadata Generation, in particular we will integrate parts of
their technologies. We are focusing on how to manage ontologies (and related metadata)
and their evolution over time. As part of WP3.1, we provide a basic infrastructure for
ontology management. We extend this in WP3.2 and WP3.3 with functionalities for data-
driven change discovery and usage tracking, i.e. with means to adapt ontologies according
to underlying domain knowledge in form of documents on the one hand and the usage of
ontologies in applications by users on the other hand. As part of WP7 Methodology we
closely collaborate with the case study partners to apply our technologies within the case
studies (see e.g. [EGH+04b, EGH+04a, STV+05] and following ones).

The aspect of ontology evaluation has also been addressed as part of task T1.6 Ontol-
ogy Evaluation. The work is currently being aligned and combined as part of a common
framework on ontology evaluation [BGH+05]. The efforts in these tasks are complemen-
tary in the sense that T1.6 develops specific methods for ontology evaluation, while T3.1
uses such methods for the purpose of ontology evolution.

1.2 Motivation

What is agoodontology? This question, though quite crucial from a practical perspective
for developing ontology-based applications, cannot be answered clearly at the moment
due to the fact that there exists no commonly agreed definition of what ‘good’ means
for ontologies. How to make an ontologybetter? Even if you have defined what ‘good’
means, the question remains whether you can still improve an ontology so that it becomes

3

CHAPTER 1. INTRODUCTION 4

Figure 1.1: The SEKT Big Picture

a ‘better’ one and what has to be done to make it better.

To approach potential answers for the above questions we briefly re-visit the (cur-
rently hot) research topics of ontology evaluation and ontology evolution and how they are
embedded into ontology engineering methodologies. Typical criteria to evaluate ontolo-
gies are focused on structural aspects and logical consistency [GP04]. E.g., OntoClean
[GW04] provides means to evaluate the taxonomic relationships of an ontology based on
philosophical notions. Evolution of ontologies deals with the “timely adaptation of an on-
tology to the arisen changes and the consistent propagation of these changes to dependent
artefacts” [Sto04]. Both, ontology evolution and ontology evaluation, are typically seen
as parts of an ontology lifecycle. The most well-known methodologies for ontology en-
gineering [FLGPSS, SS02b, TPSS05] include distinct steps for evaluation and evolution
which are performed in iterative cycles.

In this work we explore boundaries of current approaches for ontology evaluation and
ontology evolution. Particularly we argue that they cannot be seen as separate phases
of an ontology lifecycle. In line with current methodologies for ontology engineering
we propose iterative cycles during ontology engineering, but in contrast to them we take
evaluation considerations into accountduring and evenbeforeevolution. Our approach
facilitates in general the automation of ontology engineering, which seems a crucial step

CHAPTER 1. INTRODUCTION 5

for making ontology engineering less time-consuming and thus more attractive for indus-
trial users. We would like to emphasize that our approach works for manually engineered
as well as for learned ontologies (e.g. from texts).

From our understanding, the question “What is a good ontology?” can only be an-
swered for given contexts. Our main contribution therefore is not to provide a generic
answer to the initial question, but rather to provide methods for defining a context for
an ontology, methods for defining what ‘good ontology’ means for a given context, and
methods for improving good ontologies. In a nutshell we provide answers to the following
questions:

• How can you define thecontextof an ontology?

• How can you definegood ontologygiven a certain context?

• How can you make good ontologiesbettergiven a certain context?

After providing a formalism to answer these questions, we apply the formalism for a
specific task of ontology evolution, namely that of incremental ontology learning. Here,
the context is given by a text corpus describing a domain of interest. The value of a
learned ontology is on the one hand defined by how well it reflects the domain of interest,
and on the other hand by its usefulness for question answering, which requires its logical
consistency.

1.3 Related Work

The work presented here weaves together the fields of contextualisation, evaluation and
evolution of ontologies. They have been partially brought together already in ontol-
ogy lifecyle models like the On-To-Knowledge methodology [SS02b], Methontology
[FLGPSS], DILIGENT [TPSS05] and others. All these methodologies and ontology life-
cycle models offer rather generic frameworks for locating several ontology techniques
in the lifecycle of an ontology. In this paper we focus instead on the explicit and novel
combination of context, evaluation and evolution, in order to enhance all three of them.

There has been a lot of work in the respective disciplines. We point to a number of
works and describe how they can be related to the approach presented here.

Context. Early models for context representation come from Artificial Intelligence,
where they are are mostly represented in a logical notation. Functions and predicates
are given for each of the aspects (dimensions) of the environment [GMF04]. The goal
in our work however is not to incorporate context explicitly into the logic, but instead to
model contextual information as annotations of the ontology elements.

CHAPTER 1. INTRODUCTION 6

There exists a huge body of work on the broader theme of probabilistic and uncertainty
aspects of knowledge representation and reasoning [Bac90]. The specifics of ontology
languages are a research issue right now, particularly involving Bayesian networks (see
e.g. [DP04]).

Evaluation. The work on ontology evaluation has increased significantly in the last
years. Approaches like [PSK05] or [GP04] deal with fundamental aspects of ontologies
like syntactic correctness or logical consistency, that are rather a necessary precondition
for the usage of the suggested framework. But many evaluation methodologies deal with
the relation between the intended conceptualization and the actual specification that is the
ontology. [Gua98] says that most ontologies due to a weak axiomatization allow unin-
tended models, and describes two ways to get closer to a conceptualization: developing
a richer axiomatization or adopting a richer domain and/or a richer set of relevant con-
ceptual relations. Based on this model of ontology evaluation the authors later introduce
the OntoClean methodology [GW04], which is used within this paper as well, in order to
evaluate concept hierarchies based on philosophical notions annotated to the concepts.

In order for an evaluation approach to be amenable to our framework, it has to fulfil
two conditions: first, it needs to be able to answer the question which of two given on-
tologies is the better one. Second, it needs to offer a way to come up automatically with
sensible ontology change operations in order to automatically evolve the ontology. Al-
though most evaluation methodologies only answer the first question, many of them can
be extended to offer answers for the second as well: in [BADW04] we find a methodol-
ogy to compare a given ontology with a text and calculate a similarity. Ontology change
operations adding further keywords from the text, or removing superfluous ones, may be
used in order to use the whole framework with the evaluation methodology in [BADW04].
[MS02] analyses the similarity to a gold standard ontology in order to suggest changes
to the evolving ontology. As described in [HHSTS05] the gold standard could also be an
ontology aggregated from several personalized ontologies.

Ontology evaluation methodologies that need a high amount of user input, or even
input from a community of users, as for example [Sup05], are not applicable within this
framework, as the search for the fitting ontology change operation would ultimately in-
volve comparing a high number of ontologies, which can’t be sensibly done manually.
On the other hand, methodologies that offer a metric-based approach, like [BJSSA04],
[FBGL98] or [LTGP04] fit easily into the framework, as long as the metric maps reliably
to quality as defined by the user.

Evolution. Ontology evolution is a central task in ontology management that has been
addressed for example in [KN03] and [SMMS02]. In [SMMS02] the authors identify a
possible six-phase evolution process: (1) change capturing, (2) change representation, (3)
semantics of change, (4) change implementation, (5) change propagation, and (6) change
validation. Our work is based on this evolution process. The link between the evaluation

CHAPTER 1. INTRODUCTION 7

methodology and the evolution process is that the evaluation provides as with an ontol-
ogy change operation, thus covering phases (1)–(3) of the given process. The evolution
framework then applies the other phases and we are ready to evaluate the resulting on-
tology anew. One approach forusage-driven change discoveryin ontology management
systems has been explored in [SS02a], where the user’s behaviour during the knowledge
providing and searching phase is analysed. [SHG03] describes a tool for guiding ontol-
ogy managers through the modification of an ontology based on the analysis of end-users’
interactions with ontology-based applications, which are tracked in a usage-log.

1.4 Application Scenario

In this section we present a typical application scenario to motivate and illustrate our ap-
proach. Intelligent search over document corpora in Digital Libraries is one application
scenario that shows the immediate benefit of the ability to reason over ontologies auto-
matically learned from text. While search in Digital Libraries nowadays is restricted to
structured queries against the bibliographic metadata (author, title, etc.) and to unstruc-
tured keyword-based queries over the full text documents, complex queries that involve
reasoning over the knowledge present in the documents are not possible.

This application scenario is the subject of the BT Digital Library case study. In the
BT Digital Library so-called information spaces have been created for domains known to
be of interest to people in the company to structure the contents of journals in the library.
One of the key elements of the case study is to use ontologies to enhance the knowledge
access to the Digital Library.

Interests of people change over time, as does the content of the digital library. The
ontologies need to adapt to those changes in order to stay current and useful.

Figure 1.2 offers an overview of the main building blocks to support the evolution of
ontologies in the Digital Library, which we explain in more detail in the following.

Users of the Digital Library interact with theknowledge portalas the user interface.
The knowledge portal allows the user to search the library’s contents as it presents the
content in an organized way. The knowledge portal may also provide the user with infor-
mation in a proactive manner, e.g. by alerts, notification, etc. The typical user primarily
consumes knowledge from the Digital Library. He/she uses the Digital Library to fulfil a
particular information need. However, an advanced user may also contribute to the Digi-
tal Library, either by contributing content or by organizing the existing content, providing
metadata, etc.

Ontologiesare the basis for rich, semantic descriptions of the content in the Digital Li-
brary. Here we can identify two main modules of the ontology: Theapplication ontology
describes different generic aspects of bibliographic metadata (such asauthoror creation
data) and is valid across various bibliographic sources.

CHAPTER 1. INTRODUCTION 8

Usage-driven

Evaluation

Domain-driven

Evaluation

Ontology Evolution – Change Discovery

Usage

Log

Ontologies

Document Base

Knowledge

Portal

…

O
n

to
lo

g
y

C
h

a
n

g
e

s

Context

Evaluation

and

Evolution

Figure 1.2: Logical Architecture

Domain ontologiesdescribe aspects that are specific to particular domains and are
used as a conceptual backbone for structuring the domain information provided in the
information spaces. Such a domain ontology typically comprises conceptual relations,
such as a topic hierarchy, but also richer taxonomic and non-taxonomic relations.

Personalisation of ontologiesfurther tailors the interaction of the user with the knowl-
edge portal to a particular user. Thus a view on the domain ontologies that reflect the
interests of the user at a certain time can be represented. This allows to better deal with
the large size of the data by selecting the relevant parts of the ontology.

The ontologies are used for various purposes: First of all, the documents in the docu-
ment base are annotated and classified according to the ontology. This ontological meta-
data can then be exploited for advanced knowledge access, including navigation, brows-
ing, and semantic searches. Of particular interest for this deliverable is the use of learned
ontologies to support advanced question answering. An important aspect here is that the
learned ontology needs to best reflect the domain of interest as well as it needs to be
consistent to return meaningful query results.

Finally, the ontology can be used for the visualization of results, e.g. for displaying
the relationships between information objects.

CHAPTER 1. INTRODUCTION 9

While the application ontology can be assumed to be fairly static and applicable across
information spaces, the domain ontologies (including personalized ontologies) must be
continuously adapted to the changing domain and user needs.

Thedocument basecomprises a corpus of documents. The content of the document
base typically is not static, but changes over time: New documents come in, but also
documents may be removed from the the document base. The document base holds doc-
uments from one or more domains.Information Spacesare the logical units to organize a
collection of documents according to domains.

The interaction of the knowledge worker with the knowledge portal is recorded in a
usage log. It is of particular interest how the ontology has been used in the interaction,
i.e. which elements have been queried, which paths have been navigated, etc. By tracking
users’ interactions with the application in a log file, it is possible to collect useful infor-
mation that can be used to assess what the main interests of the users are. In this way, we
are able to obtain implicit feedback and to extract needs for changes to the ontology to
improve the interaction with the application.

Both the usage log information as well as the document corpus for a particular domain
establish acontextfor the ontology. This contextual information is a valuable input for
the evaluationof the ontology. Specifically, we can define the value of the ontology as
how good it reflects the interests of the user and allows the user to obtain the relevant
information, and how well it reflects the domain of the document corpus.

Based on the evaluation of ontologies, we can guide theevolutionof the ontology by
discovering and applying potentially useful changes that increase the value of the ontol-
ogy, i.e. we generate changes to the ontology to improve the interaction with the Digital
Library. While the recommendations for ontology changes are generated in an automated
manner, they typically will be approved by a knowledge engineer before the actual appli-
cation.

1.5 Overview of the Deliverable

In this Chapter we have motivated the work of this deliverable and situated it within
the context of the project. A real-world application scenario from the BT DL case study
described in Section 1.4 serves as a base for concrete application examples of our methods
in the subsequent chapters.

In Chapter 2 we present our approach to ontology evolution based on ontology evalu-
ation. This chapter is structured as follows. In Section 2.1 we provide the formalization of
the context model as well as further foundations including the ontology model underlying
the context model. We tackle the notion of ‘good ontology’ based on the definition of an
evaluation function, and show how the evaluation function can be used for making an on-
tology better. We then apply the approach to dealing with the usage context in Section 2.2,
and domain context in Section 2.3.

CHAPTER 1. INTRODUCTION 10

In Chapter 3 we present evaluation results of our methods. We perform the evaluation
by applying our framework to the task of incremental ontology learning and using real-
life data from the BT Digital Library case study. We conclude with an outlook to future
work in Chapter 4.

Chapter 2

Ontology Evaluation for Ontology
Evolution

2.1 Ontology Evaluation for Ontology Evolution –
Overview of the Approach

In this section we provide an overview of our approach to ontology evolution based on
ontology evaluation. We first lay the foundations to capture an ontology together with its
context. Therefore, we introduce a formal ontology model, based on the OWL ontology
language [HPSvH03]. We then formalize how to capture contextual information, i.e.
information outside of the ontology itself. We then formalize the notion of an ontology
evaluation function, which serves as a basis to define what a good ontology is. Finally,
we present the problem of discovering changes for ontology evolution in terms of an
optimization of the ontology evaluation function. In the subsequent Sections 2.2 and 2.3
we will fill these rather abstract model with life by applying it to our application scenario.

2.1.1 OWL Ontology Model

In continuation of our work in D3.1.1 we base our work on the OWL ontology model.
Today, many different ontology languages exist. Although our definitions of context gen-
erally would be compatible with any such language, we base our definitions on the W3C
standardized OWL ontology language which we briefly summarize here.

The OWL ontology language is based on a family of description logics languages
[HPSvH03]. As usual in description logics, an OWL ontology is built over a vocabulary
that consists a set of concept namesNC , sets of abstract and concrete individual names
NIa andNIc , respectively, and sets of abstract and concrete role namesNRa andNRc ,
respectively. The set of OWL DLconceptsis defined by the following syntactic rules,
whereA is an atomic concept,R is an abstract role,S is an abstract simple role (a role

11

CHAPTER 2. ONTOLOGY EVALUATION FOR ONTOLOGY EVOLUTION 12

not having transitive subroles),T(i) are concrete roles,d is a concrete domain predicate,ai

andci are abstract and concrete individuals, respectively, andn is a non-negative integer:

C → A | ¬C | C1 u C2 | C1 t C2 | ∃R.C | ∀R.C | ≥ nS | ≤ nS | {a1, . . . , an} |
| ≥ nT | ≤ nT | ∃T1, . . . , Tn.D | ∀T1, . . . , Tn.D

D → d | {c1, . . . , cn}

An ontology then is a finite set of of the form1:

• concept inclusion axiomsC1 v C2, stating that the conceptC1 is a subconcept of
the conceptC2,

• transitivity axiomsTrans(R), stating that the abstract roleR is transitive,

• role inclusion axiomsR v S (T v U) stating that the abstract roleR (or concrete
roleT) is a subrole of the abstract roleS (or concrete roleU).

• concept assertionsC(a) stating that the abstract individuala is in the extension of
the conceptC,

• abstract role assertionsR(a, b) andT (a, c) stating that the abstract individualsa, b
(or a, c) are in the extension of the roleR (T),

• concrete role assertionsT (a, c) stating that the abstract individuala and the concrete
individual c are in the extension of the concrete roleT ,

• individual (in)equalitiesa ≈ b, anda 6≈ b, respectively, stating thata andb denote
the same (different) individuals.

In the following, we denote the set of all ontology elements, i.e. both axioms and
symbol names, withN . We denote the set of all possible ontologies withO.

2.1.2 Context Model or “How can you define thecontextof an ontol-
ogy?”

Our ontology model so far describes the actual state of an ontology as an isolated entity.
Once we enter the more dynamic scenario of ontology evolution, it makes sense to con-
sider contextual information about the ontology. The term “context” has many different
connotations depending on the field it is being used in. In general, the context of an en-
tity includes the circumstances and conditions which “surround” it. [Dey01] has defined
context as:Context is any information that can be used to characterize the situation of

1For the direct model-theoretic semantics we refer the reader to [HST00].

CHAPTER 2. ONTOLOGY EVALUATION FOR ONTOLOGY EVOLUTION 13

an entity. An entity is a person, place, or object that is considered relevant to the interac-
tion between a user and an application, including the user and applications themselves.
Applied to ontologies this means that we consider any information that is external to the
ontology itself, but relevant to the interaction between the user and the ontology-based ap-
plication. Typical examples of contextual information include – as we will later elaborate
– usage log information, provenance, information about trust, confidence and certainty,
etc.

To capture such contextual information about ontologies, we introduce the notion of
ontology rating annotations, which are used to relate the context to the elements of the
ontology:

Definition 1 Let N denote the set of all possible ontology elements andX be a suitable
representation of a context space, then anontology rating annotationis a partial function
r : N → X .

Please note that the ontology elements to be rated – according to the definition of the
ontology model – can be either axioms or entities. The context spaceX is kept as general
as possible in this definition, to allow to attach essentially arbitrary information external
to the ontology. We will instantiateX for the specific contexts we consider.

The user may easily define new rating annotations for whatever need arises. The
contextual information is the basis for the following evaluation function, but may also be
used outside of evaluations. In Sections 2.2 and 2.3 we will introduce the two particular
forms of contexts that will be used to exemplify our approach,usage contextanddomain
context. These two forms of context are of particular importance, as they model how
users interact with the ontology, and how well the ontology reflects a particular domain,
respectively. They thus provide useful indications to the value of an ontology in this
scenario.

2.1.3 Ontology Evaluation or “How can you define agood ontology
given a certain context?”

Good ontologies are ontologies that serve their purpose. In order to be able to define what
a “good” ontology for a particular context is, we need to be able to measure the quality of
the ontology with respect to a given set of criteria. For our framework, we do not commit
to a certain set of evaluation methodologies, but rather allow the user of this framework
to choose the evaluation approach she deems best fitting for her task. We will detail some
approaches in this section.

The relationship between intended models and specification is being captured by the
context, as described in the former section, and is measured by anontology evaluation
function.

CHAPTER 2. ONTOLOGY EVALUATION FOR ONTOLOGY EVOLUTION 14

Definition 2 LetO be the set of possible ontologies, then anontology evaluation function
e is a functione : O → [0, 1].

Effectively, the evaluation function provides a total order over the space of possible
ontologies and thus allows to compare given ontologies. Here it is important to note that
the evaluation function can take the rating annotations into account and thus provides an
evaluation measure with regards to a given context. The intuitive reading of the evaluation
function is that a value of1 indicates the “perfect” ontology, whereas a value of0 is the
“worst case”.

By using the unit interval for the representation of the value of an ontology, we obtain
the immediate benefit of being able to combine different quality criteria, e.g. using a
weighted average of different ontology evaluation functions.

2.1.4 Ontology Evolution or “How can you make good ontologiesbet-
ter given a certain context?”

Ontology evolution is timely adaptation of the ontology to changes and the consistent
management of these changes. In particular, we need to account for changes in the context
of the ontology, i.e. to evolve the ontology with its context. To operationalize this, we first
formalize the notion of ontology changes. Based on the ontology evaluation function we
are then able to determine whether a particular change leads to an improved ontology. The
actual challenge then is the discovery of potentially useful changes. In Sections 2.2 and
2.3 we present such mechanisms for change discovery for the usage-driven and domain-
driven evolution of our running scenario.

Definition 3 (Ontology Change Operation) An ontology change operationoco is a
function

oco : O → O

With OCO we denote the set of all possible ontology change operations. For the on-
tology model defined above, we allow the atomic change operations of adding and re-
moving axioms, which we denote withα+ and α−, respectively. Complex ontology
change operations can be expressed as a sequence of atomic ontology change operations.
The semantics of the sequence is the chaining of the corresponding functions: For some
atomic change operations oco1, ..., ocon we can define ococomplex = ocon ◦ ... ◦ oco1 =
ocon(...oco1).

Change Discovery

Based on the ontology evaluation function, we can now measure whether a particular
change to an ontology leads to an “improvement” of the ontology for the given context.
As this context changes over time, we can regard ontology evolution as the adaptation to

CHAPTER 2. ONTOLOGY EVALUATION FOR ONTOLOGY EVOLUTION 15

the changing context by discovering and applying changes to the ontology. Essentially,
the goal is to discover changes that lead to a maximized evaluation function, i.e. the ideal
ontology for the particular context:

Definition 4 For a given ontologyO and an evaluation functione, we can define the
problem of change discovery as an optimization problem:

maxoco∈OCO e(oco(O))

Having the problem stated as an optimization problem opens the door to applying estab-
lished optimization techniques to find the “best” ontology with respect to the evaluation
function. In general, it will be hard to determine the optimal ontology that maximizes the
evaluation function, as one theoretically would need to search the entire space of possible
consistent ontologies. However, in most cases it is not necessary to prove the optimality
of an obtained solution. Instead it is possible to exploit heuristics-based techniques to
obtain a “fairly” optimal ontology.

2.2 Usage Context

The first type of context we consider is theusage context. The intention of modelling
usage context is to capture the users’ behavioural patterns, which can in turn be used to
assess the effectiveness in the interaction with the ontology, to identify important parts,
but also weaknesses of the ontology. We here use the rating annotations to indicate the
importance of particular elements. The methods presented in this section have - to a large
extent - already been presented in [HS05b]. We here repeat the main ideas and rephrase
them in terms of our framework.

Generally, we can distinguish betweenexplicit andimplicit user feedback from usage
information. We talk about explicit feedback if we allow that a user (i) can express way
how important a certain ontology element is for him, and that he (ii) can explicitly express
negative ratings for ontology elements that he does not want to be part of his ontology.

Example 1 (Explicit Usage Rating) We use an explicit rating, called the membership-
rating rm : N → {−1, 0, +1}, for which (i) all symbols and axioms the user actually
wants to be part of the ontology have rating+1, and (ii) all symbols and axioms not ac-
tually part of the ontology can be explicitly marked by the user with a rating−1. Finally,
0 indicates an unrated element.

Implicit feedback we can obtain from log information that indirectly indicate the im-
portance of ontology elements based on how they have been used.

Example 2 (Implicit Usage Rating) We use an implicit, usage-based rating calledru :
N → N, which indicates the relevance of the elements based on how they have been used,

CHAPTER 2. ONTOLOGY EVALUATION FOR ONTOLOGY EVOLUTION 16

e.g. counts the number of queries issued by the user and instances in her knowledge base
that reference a given symbol name.

We consider two implicit usage rating annotations:

• ru
queries annotates the ontology elements with the number of queries that have refer-

enced the particular ontology elements,

• ru
instances annotates the ontology elements with the number of instances that are

classified under the particular ontology elements.

The two rating annotations capture two important and typical dimensions of usage,
one with respect to the content (how the concepts are used to classify instances), and one
with respect to the usage by the end users, i.e. which concepts were actually queried. This
information is available in a wide range of application scenarios. Of course, in specific
scenarios further information may be available and thus additional rating annotations can
be defined.

The focus of the usage-driven evaluation is to evaluate how effectively a particular
ontology is used in an ontology-based application. In the following we present two par-
ticular forms of evaluation: (1) cost-based evaluation, where we capture the efficiency
of using the ontology for a particular task, and (2) collaborative evaluation, where we
consider the ontologies of other users and their usage context in a collaborative setting.

2.2.1 A Cost-based Approach

Cost-based Evaluation

With the evaluation function presented here we capture the intuition that the quality of
an ontology built for browsing is determined by how efficiently it allows the users to
obtain relevant instances. To measure the efficiency, we introduce a cost model to allow
to quantify the user effort to arrive at the desired information. For the case of navigating
a concept hierarchy, this cost is determined by the complexity of the hierarchy in terms
of its breadth and depth: Thebreadthhere means the number of choices (sibling nodes of
the correct concept) the user has to consider to decide for the right branch to follow: The
broader the hierarchy, the longer it takes to make the correct choice. Thedepthmeans,
how many links does the user need to follow to arrive at the correct concept, under which
the desired instance is classified: The deeper the hierarchy, the more “clicks” need to be
performed. To minimize the cost, both depth and breadth need to be minimized, i.e. the
right balance between them needs to be found.

A very simple, but intuitive cost function, is presented in the following. For a given
ontologyO with the set of conceptsC, we can calculate the cost as the weighted sum of
the costs of the individual concepts, where the weight is the importance of the concept
according to the rating annotationsru

queries, i.e. the number of queries:

CHAPTER 2. ONTOLOGY EVALUATION FOR ONTOLOGY EVOLUTION 17

Cost(O) =
∑
c∈C

ru
queries(c) ∗ cost(c)

The cost of an individual concept is:

cost(c) = cost(parent(c)) + (kd + kb ∗ breadth(c))

Essentially, the cost is determined by the cost of the parent-concept (parent(c)), plus
the cost for following the link (the constantkd > 1) and the cost caused by the breadth of
c (weighted by a constantkb > 1). Now we can define the ontology evaluation function
ecost(O) as the reciprocal ofCost(O). ecost(O) may now be applied as described in
section 3 later.

Cost-based Heuristics for Evolution

[SSGS03] presents useful heuristics for the generation of changes based on local proper-
ties. However, as mentioned before these heuristics do not guarantee that a change leads
to a global improvement of the ontology. In the following we describe a selection of two
relevant complex change operations2 and illustrate based on the example from the pre-
vious Section 2.2.2 on, how their application can improve the ontology according to the
evaluation function.

Grouping concepts One possible change is to group concepts with low ratings under a
newly introduced concept. This decreases the breadth at the level of the new concept and
thus the cost of the sibling concepts.

Pulling-up concepts An alternative change is to “pull-up” important concepts that have
previously been grouped under a common parent concept. The result is that the depth of
these concepts is reduced, resulting in a decreased cost.

2.2.2 Collaborative Scenario

Collaborative Evaluation

A very typical form of evaluation is based on comparisons with a gold-standard, typically
based on similarity measures. The problem here is that such a gold standard is hard to
obtain. However, in a multi-user scenario with evolving personal ontologies we have the
interesting situation that we can exploit other users’ ontologies for evaluation. While each

2Of course, further complex change operations are possible. In this sense, the selection of these two
change operations has exemplary character.

CHAPTER 2. ONTOLOGY EVALUATION FOR ONTOLOGY EVOLUTION 18

of them individually may not be gold standard, in their collectivity they may very well be
drawn on for evaluation.

The basic idea is as follows: assume that for a target ontology we know similar ontolo-
gies calledneighboursfor short. We then would like to define the value of an ontology
with respect to how similar it is to the ontology of other users. In particular, we want to
take the ontologies of those users into account that have used the ontology in a similar
way, i.e. with a similar context. In a next step we then would like to spot patterns in sim-
ilar ontologies that are absent in our target ontology and recommend them to the target
ontology.

To do so, we first need to define what it means for two ontologies to be similar and
what it means for their contexts to be similar.

A similarity measure for ontologies can be defined as a function

simontology : O ×O → [0, 1]

wheresimontology(O,P) is large for similar ontologiesO andP and small for dissimi-
lar ontologies. Typically, these measures are symmetric and maximal for two same ar-
guments. For further properties and examples of similarity functions for ontologies in
general, we refer the reader to [EHSH05].

Similarly we can define a similarity measure for the context of two ontologies. Recall
that ontologies have additional rating annotations that are valuable information to consider
in such a similarity measure. We can for example choose a correlation measures (vector
similarity) to compute similarities between the context of the ontologiesO andP of two
users based on their usage ratingsru

O andru
P of the elementsN (i.e. symbol names and

axioms) in the ontology:

simcontext(O, P) :=

∑
n∈N ru

O(n) ru
P (n)√∑

n∈N ru
O(n)2

√∑
n∈N ru

P (n)2
(2.1)

For details about such measures, we refer the reader to [HHSTS05].

Based on the similarity measure, we can define the value of ontology to be the average
similarity with all its neighbours’ neighbours, weighted by the similarity of the contexts
of the ontologies:

ecollaborative(O) :=

∑
P∈Ω (simcontext(O, P) ∗ simontology(O, P))∑

P∈Ω simcontext(O, P)

We now present a recommender function for ontology changes based on collaborative
filtering, which recommends changes to increase the value of the ontology according to
this evaluation function.

CHAPTER 2. ONTOLOGY EVALUATION FOR ONTOLOGY EVOLUTION 19

Collaborative Filtering for Evolution

Change discovery eventually can be improved by taking into account other users’ ontolo-
gies and thereby establishing a collaborative ontology evolution scenario, where each user
keeps her personal ontology but still profits from annotations of other users.

The basic idea is as follows: assume that for a target ontology we know similar ontolo-
gies calledneighboursfor short, then we would like to spot patterns in similar ontologies
that are absent in our target ontology and recommend them to the target ontology. Another
wording of the same idea is that we would like to extract ontology change operations that
applied to the target ontology increases the similarity with its neighbours. We do that
by applying collaborative filtering techniques to identify these changes. As in standard
user-based collaborative filtering, ratings of all neighboursΩ are aggregated using the
similarity-weighted sum of their membership ratingsrm:

rpersonalized(O, Ω, c) :=

∑
P∈Ω simContext(O, P) rm

P (c)∑
P∈Ω simContext(O, P)

(2.2)

Let us discuss the intuition of this function: The membership ratings indicate whether
the ontology element should be part of the user’s ontology or not. With the similarity-
weighted average we thus obtain a majority voting for the individual user. The recom-
mendations are obtained directly from the rating: Elements with a positive rating are rec-
ommended to be added to the ontology, elements with a negative rating are recommended
to be removed.

In [HHSTS05] we have presented experimental results of applying these methods
based on collaborative filtering in a case study where users maintain personal ontologies.
The results show that (1) the users indeed accept recommendations for ontology changes,
and (2) recommendations based on the similarity-based evaluation functions lead to better
recommendations than naive, non-personalized measures.

2.3 Domain Context

The second type of context we refer to asdomain context, which considers the relation
with the data that the ontology has been engineered from, to allow to assess how well the
ontology reflects the underlying corpus of data. In this section we present two examples
for data-driven approaches to modelling the domain context of ontology elements based
on an analysis of textual data (e.g. domain-specific corpus) or linguistic resources such as
WordNet [Mil95].

Linguistic Properties

With ’Linguistic Properties’ we refer to the relatedness between an ontology and a natural
language description of the underlying domain. The linguistic properties of an ontology,

CHAPTER 2. ONTOLOGY EVALUATION FOR ONTOLOGY EVOLUTION 20

in particular the linguistic evidence for a set of ontology elements, can be determined by
a detailed linguistic analysis of domain-specific corpora such as the information spaces
described in Section 1.4. For this analysis we rely on ontology learning algorithms im-
plemented, for example, in the ontology learning framework of Text2Onto [CV05].

In order to learn subclass-of relations, for instance, we apply a variety of algorithms
exploiting the hypernym structure of WordNet [Mil95], matching Hearst patterns [Hea92]
in the corpus and applying linguistic heuristics mentioned in [VNCN05]. All ontology
learning algorithms provide different kinds of evidences with respect to the correctness
and the relevance of ontology elements for the domain in question.

Example 3 (Ontology learning) For example, from the following text fragment we might
conclude with a certain confidence that the concept’computer scientist’is a subclass of
the concept’IT professional’:
“Technology and content costs also went up because the company is adding IT profession-
als such as computer scientists and software engineers to improve the customer experience
and processes on its Web sites.”
From the pattern“... X such as Y and Z...”we derive with a certain confidence thatY
andZ are instances or subclasses ofX.

Based on these evidences we can compute confidences which model the certainty
about whether a particular ontology element holds for a certain domain. Since confidence
can be considered as a corpus-based support for ontology elements, it can be used to span
the space of possible ontologies, i.e. those ontologies which are (linguistically) supported
by the underlying corpus. From this space of possible ontologies we will later choose
those which bring us closer to the aim of an optimal ontology (see Section 2.1.4).

In line with the definition in Section 2.1.2 we can represent the confidence with respect
to a particular ontology element by means of a special ontology rating annotation being a
function

rconf : N → [0, 1]

Moreover, for the formalization of confidence we rely on probability theory, which
we consider to be most appropriate for modeling the kind of uncertainty involved in our
approach. Thus, we have

• A confidence is a value between 0 and 1. A confidence of 0 means that a proposition
certainly does not hold. A confidence value of 1 means that a proposition certainly
holds.

• The confidence for propositions (about ontology elements) and their complements
add up to 1. When we talk about the confidence for the complement of a propo-
sition we do not refer to the logical negation of the proposition, but to the fact the
proposition does not hold.

CHAPTER 2. ONTOLOGY EVALUATION FOR ONTOLOGY EVOLUTION 21

• The combined confidence of two propositions (analogous to joint probability) is
the product of the confidence for one of them and the confidence for the second,
conditional on the first.

We believe that linguistic evidence with respect to an ontology can be appropriately
measured by ontology learning techniques which try to capture the ontological commit-
ment in human language. Although linguistic evidence is particularly relevant for termi-
nological ontologies, similar data-driven approaches have frequently been applied in the
evaluation of domain ontologies (see Section 1.3).

Formal Properties

As a practical example for establishing the formal context of an ontology we consider the
OntoClean methodology. OntoClean is a unique approach towards the formal evaluation
of ontologies as it analyses the intensional content of concepts. It defines the four meta-
properties rigidity (R), unity (U), identity (I) and dependence (D) which can be used
for the formal verification of taxonomic (subclass-of) relationships. For a definition of
the meta-properties refer to [GW04], or take a look at example 4 for a first idea of how
OntoClean is applied.

In order to be able to integrate OntoClean’s notion of formal ontology evaluation
into our approach, we developed methods for the automatic tagging of concepts with
OntoClean meta-properties [VVS05]. In particular, we match lexico-syntactic patterns
on the domain corpus and the Web to obtain positive and negative evidence for rigidity,
unity, dependence and identity of concepts in an OWL ontology.

For each pattern we collect positive and negative evidence for a concept having a
certain meta-property by considering instances of the regarding pattern in the corpus.
Given a conceptc and the normalized frequencies obtained for all patterns the decision
whether or not a meta-propertyp applies toc is made by a classifier. A set of classifiers –
one for each meta-property – can be trained on examples provided by human annotators
(shown in [VVS05]). A certainty value for correctness of each classification result is
provided by the classifier which has been trained forp.

Given the certainty of the classifier we can represent the confidence with respect to
the tagging of a particular ontology element with a meta-propertyp ∈ {R, U, I, D} by
means of an ontology rating annotation which is a function

rp : N → [0, 1]

The approach for automatic tagging of ontological concepts with OntoClean meta-
properties which we have chosen to obtain a formal context for the ontology has been
successfully evaluated in [VVS05], which we consider as an important step towards au-
tomating formal evaluation of ontologies.

CHAPTER 2. ONTOLOGY EVALUATION FOR ONTOLOGY EVOLUTION 22

2.3.1 Domain-driven Evaluation

The focus of the domain-driven evaluation concerns the congruence or “fit” between an
ontology and a domain of knowledge.

The goal of the evaluation is to obtain an ontology that is (1) consistent, and (2)
captures the most certain information while disregarding the potentially erroneous in-
formation. Consistency here is regarded from two points of view: formal consistency,
which disallows certain hierarchical relations between concepts based on their taggings
as shown in the next example, and logical consistency, which allows meaningful reason-
ing as it leads to satisfiable ontologies (exemplified afterwards).

We can use the existing OntoClean rules on an ontology tagged with the formal meta-
properties in order to check the ontology for consistency. Here we will give only one
illustrative example for such a rule. For a full list refer to [GW04]. As shown in [SAS03]
such rules can be formalized as logical axioms and validated by an inference engine. Here
we give one applied example of OntoClean.

Example 4 (Consistency of Formal Properties)Rigidity of a concept means that every
instance of this concept must always be an instance of this concept, in every possible
world and at any time as long as it exists, as it is essential to each instance. OntoClean
states the following restriction: a rigid concept must not be subsumed by a concept that
is not rigid to all of its instances (a so called anti-rigid concept). The classic example
is student, an anti-rigid concept (as, contrary to some beliefs, no students are doomed to
always remain students), subsuming human, a rigid concept, which is obviously wrong:
whereas every student is free to leave the university and stop being a student, humans
cannot stop being humans. But as every human would be a student, according to the
example, they never could stop being a student, which contradicts the previous sentence.

Another important form of consistency is that of logical consistency, which refers to
the model-theoretic semantics of the ontology. An ontology is logically inconsistent, if it
contains contradicting axioms that will allow no possible interpretations. A consequence
of a logically inconsistent ontology is that it allows no meaningful reasoning, as any axiom
is entailed by an inconsistent ontology. From this perspective, a logically inconsistent
ontology has no value.

Example 5 (Logical Consistency)Consider the following ontology:
O1 = {Employee v Person, Student v Person, PhDStudent v Student,
PhDStudent v Employee, Employee v ¬Student (Stating that employees cannot
be students.) In this ontology, the conceptPhDStudent does not allow any interpreta-
tion, it is thus inconsistent.

In general, for a particular domain, there may be many different consistent ontologies.
For the above example, a consistent ontology could be obtained by removing either the
axiom α = PhDStudent v Employee, PhDStudent v Student, or Employee v

CHAPTER 2. ONTOLOGY EVALUATION FOR ONTOLOGY EVOLUTION 23

¬Student. The difficulty is to select the “best” ontology, i.e. the one that will result in
most meaningful reasoning.

For our particular goal to obtain a consistent ontology capturing the most certain in-
formation, we can define an evaluation function as follows:

ecertainty(O) =

{
max

(P
α∈O rconf (α)−t

‖O‖ , 0
)

if O is consistent

0 if O is inconsistent
(2.3)

Let us discuss the intuition behind this function. The basic idea is to maximize the
certainty of the ontology based on the confidence of its individual axioms, as given by
rconf (α). t is a threshold that is introduced to “filter out” axioms with a confidence level
below a minimal value: An axiom with a confidence belowt will thus decrease the value
of an ontology. An inconsistent ontology is defined to have “no value”.

2.3.2 Domain-Driven Evolution

The goal of the domain-driven evolution is to adapt the ontology to the changes in the un-
derlying domain corpus. Over time, new information may become relevant that is not yet
reflected in the ontology, or existing information may become obsolete. In Section 2.3.1
we have already presented an evaluation function that captures this intuition. We now
outline an algorithm that exploits the behaviour of the evaluation function and local char-
acteristics of inconsistencies to maximize the value. It is based on the ideas of consistent
ontology evolution as presented in [HS05a]. Consistent ontology evolution ensures the
consistency of changing ontologies by mapping consistency conditions to resolution func-
tions that resolve introduced inconsistencies. The task of the resolution function consists
of two main steps: (1) localizing the inconsistency and (2) generating additional changes
that lead to another consistent state.

Algorithm 1 shows how to optimize an ontologyO in the following way: Starting
with the current state of the ontologyO, we incrementally add axioms from the space
of possible changes whose confidence is equal to or greater than the thresholdt. The
space of possible ontology changes essentially consists of all axioms that have been rated
(e.g. by the ontology learning tool), but that are not actually part of the ontology. If
adding the axioms leads to an inconsistent ontology, we localize the inconsistency by
identifying a minimal inconsistent subontology. (For the details of this procedure, we
refer the reader to [HS05a]). An ontologyO′ is a minimal inconsistent subontology of
O, if O′ is inconsistent and every subontology ofO′ is consistent. Within this minimal
inconsistent subontology we then identify the axiom that is most uncertain, i.e. has the
lowest confidence value. This axiom will be removed from the ontology, thus resolving
the inconsistency.

In [HV05] we have applied this approach to ontologies learned from a corpus of docu-
ments from the BT Digital Library using the evaluation function and algorithms presented

CHAPTER 2. ONTOLOGY EVALUATION FOR ONTOLOGY EVOLUTION 24

Algorithm 1 Algorithm for Ontology Evolution
Require: The current ontologyO, ontology changesOCO

1: for all α+ ∈ OCO, α+ /∈ O, rconf (α
+) ≥ t do

2: O′ := O ∪ {α+}
3: while O′ is inconsistentdo
4: O′′ := minimal inconsistentsubontology(O′, α+)
5: α− := α+

6: for all α′ ∈ O′′ do
7: if rconf (α

′) ≤ rconf(α
+) then

8: α− := α′

9: end if
10: end for
11: O′ := O′ \ {α−}
12: end while
13: if e(O) < e(O′) then
14: O := O′

15: end if
16: end for

in the previous section. Here we performed an analysis of the influence of the threshold
of uncertainty on the obtained ontology. The results clearly show the connection between
the level of uncertainty and inconsistency introduced. A low thresholdt results in more
uncertain information being allowed in the target ontology. As a result, the chances for
inconsistencies increase. How to choose the “right” thresholdt will very much depend on
the application scenario, as it essentially means finding a trade-off between the amount of
information learned and the confidence in the correctness of the learned information.

Chapter 3

Results

In this chapter we present evaluation results for an application of the framework and
methods presented in the previous chapter. We first describe the evaluation setting in
Section 3.1 and report the results in Section 3.2.

3.1 Evaluation Setting

For our evaluation we have chosen the use case of question answering over a knowl-
edge base extracted from a collection of textual resources of the BT DL, in particular the
Knowledge Management information space. The ontology changes have been discovered
/ generated with Text2Onto, using the algorithms presented in [VS05]. The goal of this
evaluation was to evaluate (1) the applicability of the approach of incremental ontology
evolution for this learning task, (2) the effect of parameters such as the required confi-
dence of information on the evolution process, and (3) the performance of the developed
algorithms.

3.2 Evaluation Results

We have applied the approach presented in the previous chapter to ontologies learned
from a corpus of 1700 abstracts (from documents about knowledge management) of the
BT Digital Library. The learned ontology consisted of 938 concepts and 125 instances.
For the concepts, 406 subconcept-of relations and 2322 disjoint-concepts relations were
identified. For the instances, 143 instance-of relations were obtained (as multiple instan-
tiations are allowed).

For the incremental transformation of the learned ontology to an OWL ontology, we
applied the evaluation function and algorithms presented in the previous section. Here we
performed an analysis of the influence of the threshold of uncertainty on the transforma-

25

CHAPTER 3. RESULTS 26

Thresholdt # of Inconsistencies # of Axioms in Result Time in seconds

0.1 40 1686 1305
0.2 8 896 111
0.4 3 389 11
0.8 0 197 7

Table 3.1: Influence of certainty thresholdt on transformation process

tion. The results in Table 3.1 clearly show the connection between the level of uncertainty
and inconsistency introduced:

Experimental Results

0

10

20

30

40

50

60

70

0,8 0,4 0,2 0,1

Threshold t

#
 o

f
in

c
o

n
s
is

te
n

c
ie

s

0

200

400

600

800

1000

1200

1400

1600

1800

#
 o

f
re

s
u

lt
in

g
 a

x
io

m
s

of inconsistencies

of resulting axioms

Figure 3.1: Evaluation Results: Threshold vs. Size of KB and Inconsistencies

A low thresholdt results in more uncertain information being allowed in the target
ontology. As a result, the chances for inconsistencies increase. How to choose the “right”
thresholdt for the transformation process will very much depend on the application
scenario, as it essentially means finding a trade-off between the amount of information
learned and the confidence in the correctness of the learned information.

In the following we will discuss typical types of inconsistencies and present examples
of such inconsistencies that were detected and resolved. The first type of inconsistency
involves unsatisfiable concepts (often called incoherent concepts) in the T-Box of the
ontology. This can for example happen if two concepts are identified to be disjoint, but
at the same time these concepts are in a subconcept-relation (either explicitly asserted or
inferred). Interestingly, this type of inconsistency often occurred for concepts for which

CHAPTER 3. RESULTS 27

even for a domain expert the correct relationship is hard to identify, as the following
example shows:

Example 6 The relationship between the conceptsData, Information, andKnowledgeis
a very subtle (often philosophical) one, for which one will encounter different definitions
depending on the context. The (inconsistent) definitions learned from our data set stated
that Data is a subconcept of bothInformation andKnowledge, while Information
andKnowledge are disjoint concepts:

Axiomt Confidence
Data v Information 1.0
Data v Knowledge 1.0
Information v ¬Knowledge 0.7

The inconsistency was resolved by removing the disjointness axiom, as its confidence
value was lowest.

The second type of inconsistency involves A-Box assertions. Here, typically instances
were asserted to be instances of two concepts that were identified to be disjoint. We again
present an example:

Example 7 HereKaV iDo was identified to be both an instance ofApplication and a
Tool (based on the abstract of [TD03]), however,Application andTool were learned to
be disjoint concepts:

Axiomt Confidence
Application(kavido) 0.46
Tool(kavido) 0.46
Tool v ¬Application 0.3

This inconsistency was again resolved by removing the disjointness axiom.

Other types of inconsistencies involving, for example, domain and range restrictions
were not considered in our current experiments, thus being left for future work. Neverthe-
less, this evaluation showed that inconsistency is an important issue in ontology learning.

3.2.1 Performance Results

Maintaining consistency during ontology evolution obviously implies a performance
overhead. In the case of maintaining logical consistency, the satisfiability needs to be
checked after every add-operation (as mentioned before, because of the monotonicity,
remove-operations can not cause a logical inconsistency). If logical inconsistencies are
found, resolving them (by identifying the cause of the inconsistency) means additional

CHAPTER 3. RESULTS 28

overhead. Checking satisfiability on the other hand, is computationally expensive in the
first place (NEXPTIME for OWL DL, although the ontologies used in these tests are in a
lower complexity class).

Figure 3.2 demonstrates this situation for the previous evaluation scenario. It shows
the time required for the incremental ontology evolution depending on the threshold of
confidence. The relationship between the two is not a direct one: First – as shown in the
previous figure – a lower threshold means a larger resulting knowledge base, and second,
a larger number of inconsistencies is introduced. The time required for the evolution
process depends on both the number of inconsistencies to be resolvedand the size of the
knowledge base. As a result,

The consequences for practical applications are the following:

• Ontology evolution tasks (e.g. based on ontology learning) will be typically done
offline, such that results are not required in real-time. Furthermore, ontology learn-
ing is already expensive by itself, such that we expect that the costs for consistent
ontology evolution will not be a dominant factor.

• For cases where the performance overhead is an issue, we recommend to tune the
evolution process to decrease potential inconsistencies, e.g. by requiring a larger
threshold for the confidence.

On the other hand, for future work on improving the performance for large knowledge
bases, we see the following options:

• The first option concerns the algorithms for reasoning with expressive ontologies
(which includes e.g. satisfiability checking). Efficient reasoning algorithms for
large ontologies have recently attracted increased attention especially in the context
of large A-Boxes. In Appendix A we report on some of the latest results in this
area.

• The second option concerns the algorithms for resolving inconsistencies. Again, the
field of diagnosis and repair is an active research field. In fact, we see the potential
to re-use methods developed in the scope of this project in task 3.4 (Diagnosis and
Repair). This synergy has already been promoted with the work in [HvHH+05].

3.2.2 Performance of Reasoning with KAON2

As we have seen in the previous results, the performance of consistent ontology evolution
is heavily dependent on the complexity and performance of the underlying reasoning al-
gorithms. The development of efficient algorithms for reasoning with ontologies in very
expressive description logics (in particular OWL DL) as a main focus of the KAON2 en-
gine. KAON2 is an ontology management infrastructure developed within the European

CHAPTER 3. RESULTS 29

Experimental Results

0

10

20

30

40

50

60

70

0,8 0,4 0,2 0,1

Threshold t

#
 o

f
in

c
o

n
s
is

te
n

c
ie

s

0

200

400

600

800

1000

1200

1400

ti
m

e # of inconsistencies

time (s)

Figure 3.2: Evaluation Results: Threshold vs. Time and Inconsistencies

Semantic Systems initiative (ESSI1) cluster. The KAON2 core reasoner has been to a
large extent developed in the scope of the DIP2 project, while extensions e.g. for evolu-
tion support have been developed in the scope of SEKT. As such, the performance evalu-
ations of the KAON2 reasoner are not only relevant for the methods developed within this
task, but also for all other components and methods relying on the ontology and metadata
management developed within this workpackage. We therefore provide recent results of
performance evaluations in Appendix A.

1http://www.essi-cluster.org/
2urlhttp://dip.semanticweb.org/

Chapter 4

Conclusions and Future Work

4.1 Conclusion

In this deliverable we have presented an approach for handling the tasks of ontology eval-
uation and ontology evolution jointly integrated as part of the ontology lifecycle, instead
of treating them as two separate phases.

The core questions we have answered were: How can we define what a good ontology
for a particular context is, and how can we perform ontology evolution to actually obtain
better ontologies in an automated manner. A central role in this approach is played by
the ontology evaluation function, which guides the discovery of changes that lead to an
improved ontology.

Considering a practical application scenario as an example, we have shown how to
define the context, evaluation functions and methods for evolution. We here selected two
particularly important forms of context: the usage-context, and the domain context, which
are relevant in many ontology-based applications. In this sense, the methods presented
in this deliverable can readily be employed for other application scenarios. On the other
hand, the approach provides the flexibility to essentially define arbitrary ontology evalu-
ation functions for a variety of contexts and is open to embed new methods for change
discovery leading to improved ontologies.

The key advantage of our presented work is that we allow users a great flexibility in
defining for themselves what a good ontology is, and offer them in return a system that
provides automatic support for making ontologies even better. In a nutshell the framework
needs to be extended only once with an evaluation function, then all kind of different
extensions can be applied without having to change the ontology evaluation function.

We have further applied and evaluated the framework in the context of incremental on-
tology learning. As we have shown, uncertainty and inconsistencies are issues that need to
be dealt with in order to allow meaningful reasoning over the learned ontologies. We have
presented how uncertainty can be represented in the Learned Ontology Model (LOM) and

30

CHAPTER 4. CONCLUSIONS AND FUTURE WORK 31

how such learned ontologies can be transformed to consistent OWL ontologies using the
notion of an ontology evaluation function. Our experiments with ontologies learned from
documents of a Digital Library show the feasibility and usefulness of the approach.

4.2 Future Work

Future work has to cover such extensions, as well as creating a user-friendly and usable
software framework that is able to apply the whole system automatically and create self-
contained and self-evolving systems. As extensions we envision evolutionary algorithms
to be used to optimize ontologies. Further we could imagine so-called ‘pro-active’ on-
tology change operations, meaning methods which analyse the given evaluation criteria,
anticipate changes, and act accordingly to update ontologies. Thus, another level of au-
tomatization of ontology engineering could be realized on top of our presented work.

In our work we have focused on one particular approach to evaluation based on the
confidence as generated by ontology learning algorithms, i.e. a data-driven approach
to the evaluation of ontologies. There are many other notions of ontology quality and
consistency which could be used for the definition of an ontology evolution function.

Appendix A

Performance of Reasoning with KAON2

To test our algorithms on practical problems, we compared the performance of KAON2
with that of other DL reasoners. This comparison, however, is slightly blurred since it
comparesimplementations, and not algorithms. DL algorithms are complex, and over-
heads in maintaining data structures or memory management can easily dominate the run
time. The implementation language itself may introduce limitations that become evident
when dealing with large data sets. Finally, we had to cope with the usual “chicken-and-
egg” problem: powerful ABox reasoners are a rather recent developement, so few knowl-
edge bases with both interesting TBoxes and large ABoxes exist.

Therefore, the results we present in this section should not be taken as a definitive mea-
sure of practicability of either algorithm. However, they do show that deductive database
techniques can significantly improve the performance of DL reasoning. This seems to
hold even if the TBox is complex, as long as it is relatively small. For TBox reasoning,
our results show a mixed picture: on certain ontologies, KAON2 performs relatively well,
whereas on others it is slower than the tableau systems. This suggests that further opti-
mizations are needed to match the robustness of tableau algorithms on TBox reasoning
problems.

A.1 Test Setting

We compared KAON2 with RACER and Pellet. To the best of our knowledge, these are
the only reasoners that provide sound and complete algorithms forSHIQ with ABoxes.

RACER1 [HM01] was developed at the Concordia University and the Hamburg Uni-
versity of Technology, and is written in Common Lisp. We used the version 1.8.2, to
which we connected using the JRacer library. RACER provides an optimized reasoning
mode (so-called nRQL mode 1), which provides significant performance improvements,

1http://www.racer-systems.com/

32

APPENDIX A. PERFORMANCE OF REASONING WITH KAON2 33

but which is complete only for certain types of knowledge bases. At the time of writing,
RACER did not automatically recognize whether the optimized mode is applicable to a
particular knowledge base, so we used RACER in the mode which guarantees complete-
ness (so-called nRQL mode 3). Namely, determining whether optimizations are appli-
cable is a form of reasoning which, we believe, should be taken into account in a fair
comparison.

Pellet2 [PS04] was developed at the University of Maryland, and it is the first system
which fully supports OWL-DL, taking into account all the nuances of the specification. It
is implemented in Java, and is freely available with the source code. We used the version
1.3 beta.

For each reasoning task, we started a fresh instance of the reasoner and loaded the test
knowledge base. Then, we measured the time required to execute the task. We made sure
that all systems return the same answers.

Many optimizations of tableau algorithms involve caching computation results, so the
performance of query answering should increase with each subsequent query. Further-
more, both RACER and Pellet check ABox consistency before answering the first query,
which typically takes much longer than computing query results. Hence, starting a new
instance of the reasoner for each query might seem unfair. We justify our approach as
follows.

First, the effectiveness of caching depends on the type of application: if an ABox
changes frequently, caching is not very useful. Second, usefulness of caches also depends
on the degree of similarity between queries. Third, we did not yet consider caching for
KAON2; however, materialized views were extensively studied in deductive databases,
and [Vol04] applied them to ontology reasoning. Finally, KAON2 does not perform a
separate ABox consistency test because ABox inconsistency is discovered automatically
during query evaluation. Hence, we decided to measure only the performance of the actual
reasoning algorithm, and to leave a study of possible materialization and caching strate-
gies for future work. Since ABox consistency check is a significant source of overhead
for tableau systems, we measured the time required to execute it separately. Hence, in our
tables, we distinguish one-timesetuptime (S) and query processing time (Q) for Pellet
and Racer. The time for computing the datalog program in KAON2 was not significant,
so we include it into the query processing time.

All tests were performed on a laptop computer with a 2 GHz Intel processor, 1 GB of
RAM, running Windows XP Service Pack 2. For Java-based tools, we used Sun’s Java
1.5.0 Update 5. The virtual memory of the Java virtual machine was limited to 800 MB,
and each reasoning task was allowed to run for at most 5 minutes.

2http://www.mindswap.org/2003/pellet/index.shtml

APPENDIX A. PERFORMANCE OF REASONING WITH KAON2 34

Table A.1: Statistics of Test Ontologies

KB incl. eq. disj. func. dom. rng. RBox C(a) R(a, b)
vicodi 0 16942 36711
vicodi 1 33884 73422
vicodi 2 193 0 0 0 10 10 10 50826110133
vicodi 3 67768146844
vicodi 4 84710183555

semintec0 17941 47248
semintec1 35882 94496
semintec2 55 0 113 16 16 16 6 53823141744
semintec3 71764188992
semintec4 89705236240

lubm 1 18128 49336
lubm 2 36 6 0 0 25 18 9 40508113463
lubm 3 58897166682
lubm 4 83200236514
wine 0 247 246
wine 1 741 738
wine 2 1235 1230
wine 3 1729 1722
wine 4 2223 2214
wine 5 126 61 1 6 6 9 9 2717 2706
wine 6 5187 5166
wine 7 10127 10086
wine 8 20007 19926
wine 9 39767 39606
wine 10 79287 78966

dolce 203 27 42 2 253 253 522 0 0
galen 3237699 0 133 0 0 287 0 0

A.2 Test Ontologies

We based our tests on ontologies available in the Semantic Web community. To obtain
sufficiently large test ontologies, we used ABox replication—duplication of ABox ax-
ioms with appropriate renaming of individuals. The information about the structure of
ontologies we used is summarized in Table A.1. All test ontologies are available on the
KAON2 Web site.3

An ontology about European history was manually created in the EU-funded VICODI
project.4 The TBox is relatively small and simple: it consists of role and concept inclusion
axioms, and domain and range specifications; it does not contain disjunctions, existential
quantification, or number restrictions. However, the ABox is relatively large, with many
interconnected instances. With vicodi0, we denote the ontology from the project, and

3http://kaon2.semanticweb.org/download/test \ ontologies.zip
4http://www.vicodi.org/

APPENDIX A. PERFORMANCE OF REASONING WITH KAON2 35

with vicodi n the one obtained by replicatingn times the ABox of vicodi0.

An ontology about financial services was created in the SEMINTEC project5 at the
University of Poznan. Like VICODI, this ontology is relatively simple: it does not use
existential quantifiers or disjunctions; it does, however, contain functionality assertions
and disjointness constraints. With semintec0, we denote the ontology from the project,
and with semintecn the one obtained by replicatingn times the ABox of semintec0.

Lehigh University Benchmark (LUBM)6 was developed by [GPH04] as a benchmark
for testing performance of ontology management and reasoning systems. The ontology
describes organizational structure of universities, and is relatively simple: it does not use
disjunctions or number restrictions, but it does use existential quantifiers, so it is in Horn-
ALCHI fragment. Each lubmn is generated automatically by specifying the numbern
of universities.

The Wine7 ontology contains a classification of wines. It uses nominals, which our
algorithms cannot handle. Therefore, we apply a sound but incomplete approximation: we
replace each enumerated concept{i1, . . . , in} with a new conceptO, and add assertions
O(ik). Thus obtained ontology is relatively complex: it contains functionality axioms,
disjunctions, and existential quantifiers. With wine0, we denote the original ontology,
and with winen the one obtained by replicating2n times the ABox of wine0.

This approximation of nominals is incomplete for query answering: for completeness
one should further add a clause¬O(x) ∨ x ≈ i1 ∨ . . . ∨ x ≈ in. Furthermore, Pellet
fully supports nominals, so one may question whether the Wine ontology is suitable for
our tests. Unfortunately, in our search for test data, we could easily find ontologies with
a complex TBox but without an ABox, or ontologies with an ABox and only a simple
TBox, or a TBox with nominals. The (approximated) Wine ontology was the best on-
tology we found that contained both a nontrivial TBox and an ABox. We also used this
approximated ontology in tests with Pellet, in order to ensure that all systems are dealing
with the same problem.

DOLCE8 is a foundational ontology developed at the Laboratory for Applied Ontol-
ogy of Italian National Research Council. It is very complex, and no reasoner currently
available can handle it. Therefore, the ontology has been factored into several modules.
We used the DOLCE OWL version 397, up to the Common module (this includes the
DOLCE-Lite, ExtDnS, Modal and Common modules).

GALEN9 is a medical terminology ontology developed in the GALEN project
[RNG93]. It has a very large and complex TBox, and has traditionally been used as a
benchmark for terminological reasoning.

5http://www.cs.put.poznan.pl/alawrynowicz/semintec.htm
6http://swat.cse.lehigh.edu/projects/lubm/index.htm
7http://www.schemaweb.info/schema/SchemaDetails.aspx?id=62
8http://www.loa-cnr.it/DOLCE.html
9We obtained GALEN through private communication with Ian Horrocks.

APPENDIX A. PERFORMANCE OF REASONING WITH KAON2 36

The results of the tests are shown in Figure A.1. Tests which ran either out of memory
or out of time are denoted with a value of 10000.

A.3 Querying Large ABoxes

VICODI. Because VICODI does not contain existential quantifiers or disjunctions, it
can be converted into disjunctive datalog directly, without invoking the reduction algo-
rithm. Hence, reasoning with VICODI requires only an efficient deductive database.
From the ontology author we received the following two queries, used in the project:
? -

QV1(x) ≡ Individual(x)
QV2(x, y, z) ≡ Military-Person(x), hasRole(y, x), related(x, z)

The results show that Pellet and RACER spend the bulk of their time in checking
ABox consistency by computing a completion of the ABox. Because the ontology is sim-
ple, no branch splits are performed, so the process yields a single completion representing
a model. Query answering is then very fast, as it amounts to model lookup.

According to the authors of Racer, the gap in performance between Pellet and Racer
should be resolved in the next release of Racer.

SEMINTEC. The SEMINTEC ontology is also very simple; however, it is interesting
because it contains functional roles and therefore requires equality reasoning. From the
ontology author, we obtained the following two queries, used in the project: ? -

QS1(x) ≡ Person(x)
QS2(x, y, z) ≡ Man(x), isCreditCardOf (y, x),Gold(y),

livesIn(x, z),Region(z)

The SEMINTEC ontology is roughly of the same size as the VICODI ontology; how-
ever, the time that KAON2 takes to answer a query to SEMINTEC are one order of mag-
nitude larger than for the VICODI ontology. This is mainly due to equality, which is
difficult for deductive databases.

LUBM. LUBM is comparable in size to the VICODI and the SEMINTEC ontologies,
but its TBox contains complex concepts. It uses existential quantifiers, so our reduction
algorithm must be used to eliminate function symbols. Also, the ontology does not con-
tain disjunctions and equality, so the translation produces an equality-free Horn program.

We wanted a mix of simple and complex queries, so we selected three queries from

APPENDIX A. PERFORMANCE OF REASONING WITH KAON2 37

Note: (S) — one-time setup time (including ABox consistency check)
(Q) — time required to process the query

Figure A.1: Test Results

APPENDIX A. PERFORMANCE OF REASONING WITH KAON2 38

Figure A.1: Test Results (continued)

the LUBM Web site: ? -

QL1(x) ≡ Chair(x)
QL2(x, y) ≡ Chair(x),worksFor(x, y),Department(y),

subOrganizationOf (y, http://www.University0.edu)
QL3(x, y, z) ≡ Student(x),Faculty(y),Course(z), advisor(x, y),

takesCourse(x, z), teacherOf (y, z)

As our results show, LUBM does not pose significant problems for KAON2; namely,
the translation produces an equality-free Horn program, which KAON2 evaluates in poly-
nomial time. Although LUBM is roughly of the same size as VICODI, both Pellet and
Racer performed better on the latter; namely, Pellet was not able to answer any of the
LUBM queries within the given resource constraints, and Racer performed significantly
better on VICODI than on LUBM. We were surprised by this result: the ontology is still
Horn, so an ABox completion can be computed in advance and used as a cache for query
answering. By analyzing a run of Pellet on lubm1 in a debugger, we observed that the
system performs disjunctive reasoning (i.e., it performs branch splits). Further investiga-
tion showed that this is due toabsorption[Hor97]—a well-known optimization technique
used by all tableau reasoners. Namely, an axiom of the formC v D, whereC is a com-
plex concept, increases the amount of don’t-know nondeterminism in a tableau because
it yields a disjunction¬C t D in the label of each node. If possible, such an axiom is
transformed into an equivalentdefinitionaxiomA v C ′ (whereA is an atomic concept),
which can be handled in a deterministic way. The LUBM ontology contains several ax-
ioms that are equivalent toA v B u ∃R.C andB u ∃R.C v A. Now the latter axiom
contains a complex concept on the left-hand side ofv, so it is absorbed into an equivalent
axiomB v A t ∀R.¬C. Whereas this is a definition axiom, it contains a disjunction on
the right-hand side, and thus causes branch splits.

APPENDIX A. PERFORMANCE OF REASONING WITH KAON2 39

Wine. The Wine ontology is a fairly complex ontology, using advanced DL constructors
such as disjunctions and equality. The translation of nominals is incomplete, so we ran
only the following query: ? -

QW1(x) ≡ AmericanWine(x)

The results show that the ontology complexity affects the performance: wine0 is sig-
nificantly smaller than, say, lubm1, but the time required to answer the query is roughly
the same. The degradation of performance in KAON2 is mainly due to disjunctions. On
the theoretical side, disjunctions increase the data complexity of our algorithm fromP to
NP[HMS05]. On the practical side, the technique for answering queries in disjunctive
programs used in KAON2 should be further optimized.

A.4 TBox Reasoning

Although TBox reasoning was not in the focus of our work, to better understand the
limitations of our algorithms, we also conducted several TBox reasoning tests. In par-
ticular, we measured the time required to compute the subsumption hierarchies of Wine,
DOLCE, and GALEN ontologies. Furthermore, we observed that a considerable source
of complexity for KAON2 on DOLCE are the transitivity axioms, so we also performed
the tests for a version of DOLCE in which all transitivity axioms were removed.

Our results indicate that the performance of TBox reasoning in KAON2 lags behind
the performance of the state-of-the-art tableau reasoners. This should not come as a sur-
prise: in the past decade, many optimization techniques were developed that optimize
TBox reasoning in tableau algorithms; these techniques are not directly applicable to the
resolution setting. Still, KAON2 can classify DOLCE without transitivity axioms, which
is known to be a fairly complex ontology. Hence, we believe that developing additional
optimization techniques for resolution algorithms might yield some interesting and prac-
tically useful results.

By analyzing the ontologies for which KAON2 was unable to compute the sub-
sumption hierarchy within given resource limits, we noticed that they all contain many
ALCHIQ-clauses of types 3 and 7 with the same role symbol, which generate many
consequences. This explains why KAON2 is not able to classify the original DOLCE
ontology, but why it works well if the transitivity axioms are removed: the transformation
used to deal with transitivity introduces axioms which, when clausified, produce many
clauses of types 3 and 7.

Bibliography

[Bac90] F. Bacchus.Representing and Reasoning with Probabilistic Knowledge.
MIT Press, 1990.

[BADW04] Christopher Brewster, Harith Alani, Srinandan Dasmahapatra, and Yorick
Wilks. Data-driven ontology evaluation. InProceedings of the 4th Interna-
tional Conference on Language Resources and Evaluation, Lisbon, 2004.
European Language Resources Association.

[BGH+05] Janez Brank, Marko Grobelnik, Peter Haase, Dunja Mladenić, Johanna
Völker, and Denny Vrandečić. A framework for ontology evaluation. In
submitted, 2005.

[BJSSA04] A. Burton-Jones, V.C. Storey, V. Sugumaran, and P. Ahluwalia. A semiotic
metrics suite for assessing the quality of ontologies. InData and Knowledge
Engineering, 2004.

[CV05] P. Cimiano and J. Voelker. A framework for ontology learning and
data-driven change discovery. InProceedings of the 10th International
Conference on Applications of Natural Language to Information Systems
(NLDB’2005), 2005.

[Dey01] A. K. Dey. Understanding and using context.Personal Ubiquitous Comput-
ing, 5(1):4–7, 2001.

[DP04] Z. Ding and Y. Peng. A probabilistic extension to ontology language OWL.
In Proceedings of the 37th Hawaii International Conference on System Sci-
ences, 2004.

[EGH+04a] M. Ehrig, T. Gabel, P. Haase, Y. Sure, C. Tempich, and J. Voelker. Data
manual - initial version. SEKT informal deliverable 7.1.1.b, Institute AIFB,
University of Karlsruhe, 2004.

[EGH+04b] M. Ehrig, T. Gabel, P. Haase, Y. Sure, C. Tempich, and J. Voelker. Use
cases - initial version. SEKT informal deliverable 7.1.1.a, Institute AIFB,
University of Karlsruhe, 2004.

40

BIBLIOGRAPHY 41

[EHSH05] Marc Ehrig, Peter Haase, Nenad Stojanovic, and Mark Hefke. Similarity for
ontologies - a comprehensive framework. In13th European Conference on
Information Systems, MAY 2005.

[esw05] The semantic web: Research and applications. In C. Bussler, J. Davies,
D. Fensel, and R. Studer, editors,Second European Semantic Web Confer-
ence, ESWC 2005, LNCS, Heraklion, Crete, Greece, May 2005. Springer.

[FBGL98] M.S. Fox, M. Barbuceanu, M. Gruninger, and J. Lin. An organization on-
tology for enterprise modelling.Simulating organizations: Computational
models of institutions and groups, 1998.

[FLGPSS] M. Ferńandez-Ĺopez, A. Ǵomez-Ṕerez, J. P. Sierra, and A. P. Sierra. Build-
ing a chemical ontology using Methontology and the Ontology Design En-
vironment.IEEE Intelligent Systems, 14(1). 1999.

[GMF04] Ramanathan V. Guha, Rob McCool, and Richard Fikes. Contexts for the
semantic web. In Sheila A. McIlraith, Dimitris Plexousakis, and Frank van
Harmelen, editors,International Semantic Web Conference, volume 3298 of
Lecture Notes in Computer Science, pages 32–46. Springer, 2004.

[GP04] A. Gómez-Ṕerez. Ontology evaluation. In Staab and Studer [SS04], chap-
ter 13, pages 251–274.

[GPH04] Y. Guo, Z. Pan, and J. Heflin. An Evaluation of Knowledge Base Systems
for Large OWL Datasets. InProc. ISWC 2004, volume 3298 ofLNCS, pages
274–288, Hiroshima, Japan, November 7–11 2004. Springer.

[Gua98] N. Guarino. Formal ontology and information systems. volume 46 ofFron-
tiers in Artificial Intelligence and Applications, Trento, Italy, 1998. IOS-
Press.

[GW04] N. Guarino and C. A. Welty. An overview of OntoClean. In Staab and
Studer [SS04], chapter 8, pages 151–172.

[Hea92] M.A. Hearst. Automatic acquisition of hyponyms from large text corpora.
In Proceedings of the 14th International Conference on Computational Lin-
guistics, pages 539–545, 1992.

[HHSTS05] P. Haase, A. Hotho, L. Schmidt-Thieme, and Y. Sure. Collaborative and
usage-driven evolution of personal ontologies. In Bussler et al. [esw05],
pages 486–499.

[HM01] V. Haarslev and R. M̈oller. RACER System Description. InProc. IJCAR
2001, volume 2083 ofLNAI, pages 701–706, Siena, Italy, June 18–23 2001.
Springer.

BIBLIOGRAPHY 42

[HMS05] U. Hustadt, B. Motik, and U. Sattler. Data Complexity of Reasoning in
Very Expressive Description Logics. InProc. IJCAI 2005, pages 466–471,
Edinburgh, UK, July 30 – August 5 2005.

[Hor97] I. Horrocks.Optimising Tableaux Decision Procedures for Description Log-
ics. PhD thesis, University of Manchester, UK, 1997.

[HPSvH03] Ian Horrocks, Peter F. Patel-Schneider, and Frank van Harmelen. From
shiq and rdf to owl: the making of a web ontology language.J. Web Sem.,
1(1):7–26, 2003.

[HS05a] P. Haase and L. Stojanovic. Consistent evolution of OWL ontologies. In
Bussler et al. [esw05], pages 182–197.

[HS05b] P. Haase and Y. Sure. Usage tracking for ontology evolution. SEKT deliv-
erable 3.2.1, Institute AIFB, University of Karlsruhe, 2005.

[HST00] I. Horrocks, U. Sattler, and S. Tobies. Practical Reasoning for Very Expres-
sive Description Logics.Logic Journal of the IGPL, 8(3):239–263, 2000.

[HV05] Peter Haase and Johanna Völker. Ontology learning and reasoning – deal-
ing with uncertainty and inconsistency. InProceedings of the Workshop on
Uncertainty Reasoning for the Semantic Web (URSW), Nov 2005.

[HvHH+05] Peter Haase, Frank van Harmelen, Zhisheng Huang, Heiner Stucken-
schmidt, and York Sure. A framework for handling inconsistency in chang-
ing ontologies. In Y. Gil, E. Motta, V. R. Benjamins, and M. A. Musen,
editors,Proceedings of the Fourth International Semantic Web Conference
(ISWC2005), volume 3729 ofLNCS, pages 353–367. Springer, NOV 2005.

[KN03] M. Klein and N. Noy. A component-based framework for ontology evo-
lution. In Proc. of the WS on Ont. and Distr. Sys., IJCAI ’03, Acapulco,
Mexico, August9, 2003.

[LTGP04] A. Lozano-Tello and A. Gomez-Perez. ONTOMETRIC: A Method to
Choose the Appropriate Ontology.Journal of Database Management,
15(2), 2004.

[Mil95] G. Miller. WordNet: A lexical database for English.Communications of the
ACM, 38(11):39–41, 1995.

[MS02] Alexander Maedche and Steffen Staab. Measuring similarity between on-
tologies. InProc. Of the European Conference on Knowledge Acquisition
and Management - EKAW-2002. Madrid, Spain, October 1-4, 2002, volume
2473 ofLNCS/LNAI. Springer, 2002.

BIBLIOGRAPHY 43

[PS04] B. Parsia and E. Sirin. Pellet: An OWL-DL Reasoner, Poster at ISWC 2004,
Hiroshima, Japan, 2004, 2004.

[PSK05] B. Parsia, E. Sirin, and A. Kalyanpur. Debuging OWL ontologies. InProc.
of the 14th World Wide Web Conference (WWW2005), Chiba, Japan, May
2005.

[RNG93] A. L. Rector, W. A. Nowlan, and A. Glowinski. Goals for concept represen-
tation in the galen project. InProc. SCAMC ’93, pages 414–418, Washing-
ton DC, USA, November 1–3 1993.

[SAS03] Y. Sure, J. Angele, and S. Staab. OntoEdit: Multifaceted inferencing for
ontology engineering.Journal on Data Semantics, LNCS(2800):128–152,
2003.

[SHG03] N. Stojanovic, J. Hartmann, and J. Gonzalez. Ontomanager - a system for
usage-based ontology management. InIn Proc. of FGML Workshop. SIG of
German Information Society (FGML - Fachgruppe Maschinelles Lernen GI
e.V.), 2003.

[SMMS02] Ljiljana Stojanovic, Alexander M̈adche, Boris Motik, and Nenad Sto-
janovic. User-driven ontology evolution management. InEuropean Conf.
Knowledge Eng. and Management (EKAW 2002), pages 285–300. Springer-
Verlag, 2002.

[SS02a] N. Stojanovic and L. Stojanovic. Usage-oriented evolution of ontology-
based knowledge management systems. InInt. Conf. on Ontologies,
Databases and Applications of Semantics, (ODBASE 2002), Irvine, CA,
LNCS, pages 230–242, 2002.

[SS02b] Y. Sure and R. Studer. On-To-Knowledge methodology. In J. Davies,
D. Fensel, and F. van Harmelen, editors,On-To-Knowledge: Semantic Web
enabled Knowledge Management, chapter 3, pages 33–46. J. Wiley and
Sons, 2002.

[SS04] S. Staab and R. Studer, editors.Handbook on Ontologies in Information
Systems. International Handbooks on Information Systems. Springer, 2004.

[SSGS03] L. Stojanovic, N. Stojanovic, J. Gonzalez, and R. Studer. Ontomanager -
a system for the usage-based ontology management. InODBASE 2003,
volume 2888, pages 858–875. Springer, Dec 2003.

[Sto04] L. Stojanovic. Methods and Tools for Ontology Evolution. PhD thesis,
University of Karlsruhe, 2004.

BIBLIOGRAPHY 44

[STV+05] Y. Sure, C. Tempich, D. Vrandečić, H.S. Pinto, E. Paslaru Bontas, and
M. Hefke. Sekt methodology: Evaluation of guidelines. SEKT deliverable
7.1.2, Institute AIFB, University of Karlsruhe, DEC 2005.

[Sup05] K. Supekar. A peer-review approach for ontology evaluation. In8th Int.
Protéǵe Conference, Madrid, Spain, July 2005.

[TD03] O. Tamine and R. Dillmann. Kavido: a web-based system for collaborative
research and development processes.Computers in Industry, 52(1):29–45,
2003.

[TPSS05] C. Tempich, H. S. Pinto, Y. Sure, and S. Staab. An argumentation ontology
for DIstributed, Loosely-controlled and evolvInG Engineering processes of
oNTologies (DILIGENT). In Bussler et al. [esw05], pages 241–256.

[VNCN05] P. Velardi, R. Navigli, A. Cuchiarelli, and F. Neri. Evaluation of ontolearn,
a methodology for automatic population of domain ontologies. In P. Buite-
laar, P. Cimiano, and B. Magnini, editors,Ontology Learning from Text:
Methods, Applications and Evaluation. IOS Press, 2005. to appear.

[Vol04] R. Volz. Web Ontology Reasoning With Logic Databases. PhD thesis, Uni-
versiẗat Fridericiana zu Karlsruhe (TH), Germany, 2004.

[VS05] J. Voelker and Y. Sure. Data-driven change discovery. evaluation. SEKT
deliverable 3.3.2, Institute AIFB, University of Karlsruhe, 2005.

[VVS05] J. Völker, D. Vranděcić, and Y. Sure. Automatic evaluation of ontolo-
gies (AEON). InProc. of the 4th International Semantic Web Conference
(ISWC’05), Nov 2005.

