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Executive Summary

The world is constantly changing, and so does required and available knowledge, e.g.
stored in Digital Libraries. Knowledge workers heavily rely on the availability and ac-
cessibility of knowledge contained in such libraries. The sheer mass of knowledge avail-
able today, however, requires sophisticated support for searching and, often considered as
equally important, personalization.

In SEKT we address these challenges by using ontologies. Ontologies by nature make
implicit knowledge explicit, they describe relevant parts of the world and make them ma-
chine understandable and processable. To be effective, ontologies need to change possibly
as fast as the parts of the world they describe

Change discoveryaims at generating implicit requirements by inducing ontology
changes from existing data. In this deliverable we focus onusage-drivenchange dis-
covery. Usage data is a very valuable source of contextual information, based on which
the ontology can be modified in order to reflect changes in the real world,

We describe a framework, in which ontology evolution and discovering potentially
useful changes can be formalized as an optimization problem. We introduce the notion
of an evaluation function that allows to measure the quality of an ontology with respect
to given criteria. We instantiate the framework for the task of ontology pruning based on
usage data, and for the task of collaborative evolution in a multi-user scenario, in which
users maintain personalized ontologies. A first case study based on the Bibster system
shows very promising results.
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Chapter 1

Introduction

1.1 Motivation

The world is constantly changing, and so does required and available knowledge, e.g.
stored in Digital Libraries. Knowledge workers heavily rely on the availability and ac-
cessability of knowledge contained in such libraries. The sheer mass of knowledge avail-
able today, however, requires sophisticated support for searching and, often considered as
equally important, personalization.

In SEKT we address these challenges by using ontologies. Ontologies by nature make
implicit knowledge explicit, they describe relevant parts of the world and make them ma-
chine understandable and processable. To be effective, ontologies need to change possibly
as fast as the parts of the world they describe.

For the understanding of this deliverable it is important to distinguish betweenchange
capturingandchange discovery.

The task ofchange capturingcan be defined as the generation of ontology changes
from explicit and implicit requirements. Explicit requirements are generated, for example,
by ontology engineers who want to adapt the ontology to new requirements or by the end-
users who provide the explicit feedback about the usability of ontology entities. The
changes resulting from this kind of requirements are called top-down changes. Implicit
requirements leading to so-called bottom-up changes are reflected in the behavior of the
system and can be induced by applying change discovery methods.

Change discoveryaims at generating implicit requirements by inducing ontology
changes from existing data. [Sto04] defines three types of change discovery: (i) structure-
driven, (ii) usage-driven and (iii) data-driven. Whereas structure-driven changes can be
deduced from the ontology structure itself, usage-driven changes result from the usage
patterns created over a period time. Data-driven changes are generated by modifications
to the underlying data, such as text documents or a database, representing the knowledge
modelled by an ontology.

3
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In this deliverable we focus on theusage-drivenchange discovery. Usage data is
a very valuable source of contextual information, based on which the ontology can be
modified in order to reflect changes in the real world, changes in user’s requirements,
drawbacks in the initial design, to incorporate additional functionality or to allow for
incremental improvement.

1.2 The SEKT Big Picture

This report is part of the work performed in workpackage (WP) 3 on “Ontology and Meta-
data Management”, more specifically work performed in the task ‘T3.2 Usage Tracking
for Ontologies and Meta Data’. As shown in Figure 1.1 this work is closely related with
other technical workpackages in SEKT. The main goal of this workpackage is to enable
and to facilitate the setting up and maintenance of semantic knowledge management ap-
plications by supporting the complex tasks of managing ontologies and corresponding
metadata.

Figure 1.1: The SEKT Big Picture
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1.3 Overview of the deliverable

In Chapter 2 we present a formal framework for the problem of ontology evolution and
change discovery. We then present two instantiations of this framework: In Chapter 3
we show how the framework can be used for the task of ontology pruning based on an
evaluation function that captures the cost incurred for accessing information structured
using the ontology. In a second instantiation in Chapter 4, we present an approach to
recommend ontology change operations to a personalized ontology based on the usage
information of the individual ontologies in a user community. We conclude in Chapter 5.

In the rest of this chapter we explain how the deliverable is relevant to the SEKT
case studies and present a logical architecture that integrates with the results of tasks T3.1
Incremental Ontology Evolution and T3.3 Data-driven Change Discovery.

1.4 Relation with the SEKT Case Studies

Ontologies play a crucial role in structuring information and enhancing information ac-
cess in all case studies of the SEKT project. In the following we exemplarily illustrate the
role of this work for the BT Digital Library case study.

In the BT Digital Library so-called information spaces have been created on topics
known to be of interest to people in the company or through the contents of journals in the
library. One of the key elements of the case study is to use information spaceontologies
to enhance the search in information spaces. Two main challenges for adapting such
information space ontologies arise. First, the evolution of ontologies to reflect changing
data, i.e. the documents stored in the Digital Library (addressed in task 3.3 “Data-driven
Change Discovery”). Second, the evolution of ontologies to reflect changing interests of
people.

For example, if none of the users of the Digital Library was interested in documents
about a particular topic of the topic hierarchy, then, probably, this topic should be ex-
cluded from the list of concepts offered by that application. These ”discovered” changes
are very important for optimizing performance of an application, e.g. by reducing the
hierarchies of topics that have to be browsed. Moreover, they enable a continual adap-
tation of the application to the implicit changes in the business environment. Chapter 3
describes methods to discover such useful changes based on the usage data.

While the evolution support for a single ontology structuring an information space ad-
dresses the problem ofchanginginterests, it does not consider the problem ofdiverging
interests, i.e. that different people have different preferences with respect to how the infor-
mation should be structured. Here, a personalization of the information spaces allows an
organization of the documents according to the interests of the individual users, expressed
in a personalized ontology. In such a scenario it makes sense to exploit changes in the
ontologies of other, similar users’ ontologies to recommend potentially useful changes.
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Such a collaborative scenario, in which changes are recommended based on methods
from Collaborative Filtering, is described in Chapter 4.

1.5 Logical Architecture

In this section we will present a logical architecture to support the evolution of ontologies
in a Digital Library, as shown in Figure 1.2.
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Figure 1.2: Logical Architecture

In this architecture, a knowledge worker interacts with a knowledge portal to access
the content of the Digital Library, which is maintained in a document base and organized
using ontologies in information spaces. The interaction is recorded in a usage log. This
usage information and the information about changes in the document base are exploited
to recommend changes to the ontologies, thus closing the loop with the knowledge worker.

Knowledge Worker The knowledge worker primarilyconsumesknowledge from the
Digital Library. He uses the Digital Library to fulfil a particular information need. How-
ever, an advanced knowledge worker may alsocontributeto the Digital Library, either
by contributing content or by organizing the existing content, providing metadata, etc. In
particular, an advanced knowledge worker can take the role of anontology engineer.

Knowledge Portal The knowledge worker interacts with the knowledge portal as the
user interface. It allows the user to search the library’s contents, it presents the content
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in an organized way. The knowledge portal may also provide the knowledge worker with
information in a proactive manner, e.g. by alerting, notification, etc.

Document Base The document base comprises a corpus of documents. In the context
of the Digital Library, these documents are typically text documents, but may also include
multimedia content such as audio, video, and images. While we treat the document as one
logical unit, it may actually consist of a number of distributed sources. For example, in
the case of the BT Digital Library, the document base includes two databases, Inspec and
ABI / Inform.

The content of the document base typically is not static, but changes over time: New
documents come in, but also documents may be removed from the the document base.

Information Spaces Information Spaces are logical units to organize a collection of
documents according to a certain criterion. Information Spaces thus bring together con-
tent from the library’s databases into a single a single place in the library.

One possible organization could be according to topics, e.g. there might be an in-
formation space to cover the topicSemantic Web. In the simplest case, an information
space can be described with a search string. In general however, the description of the
information space can be any formal specification.

It is also possible to supportpersonal information spaces, i.e. an organization of
the documents according to the interests of the individual knowledge workers. Such a
personal information space can be specified with a semantic user profile.

Ontologies Ontologies are the basis for rich, semantic descriptions of the content in the
Digital Library. Here we can identify two main modules of the ontology: Theapplication
ontologydescribes different generic aspects of bibliographic metadata (such as author,
creation data) and are valid across various bibliographic sources.

Domain ontologiesdescribe aspects that are specific to particular domains and is used
as a conceptual backbone for structuring the domain information provided in the informa-
tion spaces. Such a domain ontology typically comprises conceptual relations, such as a
topic hierarchy, but also richer taxonomic and non-taxonomic relations.

While the application ontology can be assumed to be fairly static and valid across
information spaces, the domain ontologies must be continuously adapted to the changing
needs.

The ontologies are used for various purposes: First of all, the documents in the docu-
ment base are annotated and classified according to the ontology. This ontological meta-
data can then be exploited for advanced knowledge access, including navigation, brows-
ing, and semantic searches. Finally, the ontology can be used for the visualization of
results, e.g. for displaying the relationships between information objects.
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Usage Log The interaction of the knowledge worker with the knowledge portal is
recorded in a usage log. It is of particular interest, how the ontology has been used in
the interaction, i.e. which elements have been queried, which paths have been navigated,
etc.

By tracking users’ interactions with the application in a log file, it is possible to collect
useful information that can be used to assess what the main interests of the users are. In
this way, we are able to obtain implicit feedback and to extract needs for changes to the
ontology to improve the interaction with the application.

Evolution Management Ontology evolution is timely adaptation of the ontology to
changes and the consistent management of these changes. It is not a trivial process, due
to the variety of sources and consequences of changes, cannot thus cannot be performed
manually by the knowledge worker. This process is supported by the evolution manage-
ment infrastructure. The first important aspect is the discovery of changes. While in some
cases changes to the ontology may be requested explicitly, the actual challenge is to obtain
and to examine the non-explicit but available knowledge about the needs of the end-users.
This can be done by analysing various data sources related to the content that is described
using the ontology and also the end-users’ behaviour which include the information about
her likes, dislikes, preferences or the way she behaves. Based on the analysis of this infor-
mation, the knowledge worker can be suggested to make changes in the ontology resulting
in an ontology better suited for the needs of end-users. In the following sections we will
discuss the possibility of continuous ontology improvement by semi-automatic discovery
of such changes, i.e. usage-driven and data-driven ontology evolution.

The second important aspect in the evolution process is to guarantee the consistency
of the ontology when changes occur, considering the semantics of the ontology change.
Here we refer the reader to [SMMS02] for further reading.



Chapter 2

General Framework

2.1 Ontology Model and Ontology Change Operations

2.1.1 Ontology Model

As the OWL ontology language has been standardized by the W3C consortium and the
SEKT consortium has decided for OWL (more precisely OWL-DLP) as the default on-
tology language to use within the project, we will describe the framework in terms of the
underlying OWL ontology model.

Because of their computational characteristics, the sublanguages OWL-DL, OWL-
Lite, OWL-DLP are of particular importance. These languages are syntactic variants of
theSHOIN (D),SHIF(D) and the Horn-fragment ofSHOIN (D) description logics,
respectively [HPS04]. In the following we will therefore use the more compact, traditional
SHOIN (D) description logic syntax, which we review in the following:

We use a datatype theoryD, a set of concept namesNC , sets of abstract and concrete
individual namesNIa andNIc , respectively, and sets of abstract and concrete role names
NRa andNRc, respectively.

The set ofSHOIN (D) conceptsis defined by the following syntactic rules, whereA
is an atomic concept,R is an abstract role,S is an abstract simple role (a role not having
transitive subroles),T(i) are concrete roles,d is a concrete domain predicate,ai andci are
abstract and concrete individuals, respectively, andn is a non-negative integer:

C → A | ¬C | C1 u C2 | C1 t C2 | ∃R.C | ∀R.C | ≥ nS | ≤ nS | {a1, . . . , an} |
| ≥ nT | ≤ nT | ∃T1, . . . , Tn.D | ∀T1, . . . , Tn.D

D → d | {c1, . . . , cn}

9
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An ontology is a finite set of axioms of the form1:

• concept inclusion axiomsC v D, stating that the conceptC is a subconcept of the
conceptD,

• transitivity axiomsTrans(R), stating that the abstract roleR is transitive,

• role inclusion axiomsR v S (T v U ) stating that the abstract roleR (or concrete
roleT ) is a subrole of the abstract roleS (or concrete roleU ).

• concept assertionsC(a) stating that the abstract individuala is in the extension of
the conceptC,

• abstract role assertionsR(a, b) andT (a, c)) stating that the abstract individualsa, b
(or a, c) are in the extension of the roleR (T ),

• concrete role assertionsT (a, c)) stating that the abstract individuala and the con-
crete individualc are in the extension of the concrete roleT ,

• individual (in)equalitiesa ≈ b, anda 6≈ b, respectively, stating thata andb denote
the same (different) individuals.

In the following, we denote the set of all possible ontologies withO.

2.1.2 Ontology Change Operations

Definition 1 An ontology change operationoco ∈ OCO is a function oco: O → O.
Here OCO denotes the set of all possible ontology change operations.

For the above defined ontology model, we allow the atomic change operations of adding
and removing axioms, which we denote withα+ andα−, respectively. Complex ontology
change operations can be expressed as a sequence of atomic ontology change operations.
The semantics of the sequence is the chaining of the corresponding functions: For some
atomic change operations oco1, ..., ocon we can define ococomplex = ocon ◦ ... ◦ oco1 =
ocon(...oco1)).

2.1.3 Ontology Rating Annotations

Our ontology model so far describes the actual state of an ontology as an isolated en-
tity. Once we enter the more dynamic scenario of ontology evolution, it makes sense to
consider contextual information about the ontology.

We model this contextual information by a rating annotation.

1For the direct model-theoretic semantics ofSHOIN (D) we refer the reader to [HST00].
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Definition 2 LetN := NC ∪NIa ∪NIc ∪NRa ∪NRc denote the set of all possible names
(symbols) andA the set of all possible axioms, then anontology rating annotationis a
partial functionr : N ∪ A → R.

The definition states that we allow ratings on both the axioms of the ontologies as well as
the names over which the axioms are defined.

In the scope of this work, we use rating annotations to indicate the importance of
particular elements. Here, high positive values denote high importance of a symbol or
axiom, negative values that it is unwanted by the user.

Effectively we allow that a user (i) can express in a more fine-grained way how impor-
tant a certain symbol (name) or axiom is for him and (ii) can express explicitly negative
ratings for symbols (names) or axioms he does not want to be part of his ontology, In
the context of software configuration management, the latter is known as specifying a
”taboo”.

In particular, we define the following two ontology rating annotations:

1. We use an explicit rating, called the membership-ratingrm with taboos, for which
(i) all symbols and axioms actually part of the ontology have rating +1, (ii) all
symbols and axioms not actually part of the ontology can be explicitly marked
taboo by the user and then get a rating -1.

2. We use an implicit, usage-based rating calledru, which indicates the relevance of
the elements based on how they have been used, e.g. counts the percentage of
queries issued by the user and instances in his knowledge base that reference a
given symbol name.

We will consider rating annotations as an additional ontology component in the follow-
ing.

2.2 Evaluation Function

In order to be able to define what a “good” ontology for a particular context is, we need
to be able to measure the quality of the ontology with respect to given set of criteria, e.g.
how well they reflect the underlying data they describe or how important they are based
on the usage of the ontology. We therefore define the notion of anontology evaluation
function.

Definition 3 LetV be a vocabulary andO the set of possible ontologies overV , then an
ontology evaluation functionis a function

e : O × 2R → R
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Effectively, the evaluation function provides a total order over the space of possible on-
tologies and thus allows to compare given ontologies. Here it is important to note that
the evaluation function does not operate on the ontology itself, but takes a set of rating
annotations into account and thus provides an evaluation measure for a given context.

2.3 Ontology Evolution

Based on the ontology evaluation function, we can now measure whether a particular
change to an ontology leads to an “improvement” of the ontology for the given context.
As this context changes over time, we can look at ontology evolution as adaptation to the
changing context by discovering and applying changed to the ontology. Essentially, the
goal is to discover changes that lead to a maximized evaluation function, i.e. the ideal
ontology for the particular context:

Definition 4 For a given ontologyO and an evaluation functione, we can define the
problem of change discovery as an optimization problem:

maxoco∈OCO e(oco(O))

Of course, oco can be complex (and in fact will be complex in typical scenarios).

Having the problem stated as an optimization problem opens the door to applying
established optimization techniques to find the “best” ontology with respect to the evalu-
ation function. These can be either optimization techniques, heuristics-based techniques,
but alsoevolutionary elgorithms(in particular genetic algorithms).

Speaking in terms of evolutionary algorithms (which have been inspired by biological
evolution), the rating annotations define the environment in which the ontologies “live in”,
and the evaluation function determines the fitness of the ontology for this environment.
The change operations serve as the “genetic operators”.



Chapter 3

Usage Based Ontology Evolution

3.1 Background: Usage-driven Ontology Pruning

Our goal is to help an ontology engineer in the continual improvement of the ontol-
ogy. This support can be split into two phases: (i) to help the ontology engineer find
the changes that should be performed and (ii) to help him in performing such changes.
The first phase is focused on discovering some anomalies in the ontology design, whose
repairing improves the usability of the ontology. It results in a set of ontology changes.
One important problem we face in developing an ontology is the creation of a hierarchy
of concepts, since a hierarchy, depending on the users’ needs, can be defined from various
points of view and on the different levels of granularity. It is clear that the initial hierarchy
has to be pruned, in order to fulfil the user’s needs. Moreover, the users’ needs can change
over time, and the hierarchy should reflect such a migration. The usage of the hierarchy is
the best way to estimate how a hierarchy corresponds to the needs of the users. Consider
the example shown in Figure 3.1.

Let us assume that in the initial hierarchy (developed by using one of above-mentioned
approaches), the concept X has ten subconcepts (c1, c2, ..., c10), i.e. an ontology engineer
has found that these ten concepts correspond to the users’ needs in the best way. However,
the usage of this hierarchy in a longer period of time showed that about 95% of the users
are interested in just three subconcepts (i.e. 95=40+32+23) out of these ten. It means that
95% of the users obtain 70% (i.e. 7 of 10 subconcepts) useless information via browsing
this hierarchy, since they find seven subconcepts irrelevant. Consequently, this 95% of
the users invest more time for performing a task than needed, since irrelevant information
can get their attention. Moreover, there are more chances to make an accidental error
(e.g. an accidental click on the wrong link), since the probability of selecting irrelevant
information is greater.

In order to make this hierarchy more suitable to the users’ needs, two ways of “re-
structuring” the initial hierarchy would be useful:

13



CHAPTER 3. USAGE BASED ONTOLOGY EVOLUTION 14

X

40% 32%

5%

c2 c3 c4 c5c1 c7 c8 c9 c10c6
23%

Reduction

c2 c3c1

X‘X

c1

Expansion

c2 c3

c4 c5 c7 c8 c9 c10c6

g

1.0

0.5

c1 c2

concept

frequency

c3 c4 c5 c6 c7 c8 c9 c10
a)

c) d)

b)

Figure 3.1: An example of the non-uniformity in the usage of the children. (a) the prob-
lem; (b) the Pareto diagram of the problem; (c) the resulting ontology after its extension
and (d) the resulting ontology after its reduction.

1. expansion– to put down in the hierarchy all seven “irrelevant” subconcepts, while
grouping them into a new subconcept g (see in Figure 3.1c);

2. reduction – to remove all seven “irrelevant” concepts, while redistributing their
instances into remaining subconcepts or the parent concept (see in Figure 3.1d).

Through the expansion, the needs of the 5% of the users are preserved by the newly
introduced concept and the remaining 95% of the users benefit from the more compact
structure. By the reduction, the new structure corresponds completely to the needs of 95%
of the users. The needs of 5% of the users are implicitly satisfied. Moreover, the usability
of the ontology increased, since the instances which were hidden in the “irrelevant” sub-
concepts are now visible for additional 95% of the users. Consequently, these users might
find them useful, although in the initial classification they are a priori considered as irrel-
evant (i.e. these instances were not considered at all). Note that the Pareto diagram shown
in Figure 3.1b enables the automatic discovery of the minimal subset of the subconcepts
which covers the needs of most of the users. For a formalization of this discovery process,
including an evaluation study, we refer the interested reader to [SSGS03].

The problem of post-pruning a hierarchy in order to increase its usability is explored
in the research related to modelling the user interface. The past work [BRS92] showed the
importance of a balanced hierarchy for the efficient search through hierarchies of menus.
Indeed, even though the generally accepted guidelines for the menu design favor breadth
over depth [Kig84], the problem with the breadth hierarchy in large-scale systems is that
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the number of items at each level may be overwhelming. Hence, a depth hierarchy that
limits the number of items at each level may be more effective. This is the so-called
breadth/depth trade-off.

Although there are some methods for an automatic hierarchy generation, such a hier-
archy has to be manually pruned, in order to ensure the usability of the hierarchy. The
main criterion is thecoherenceof the hierarchy (some kind of the uniform distribution
of documents in all parts of the hierarchy), which ensures that the hierarchy is closely
tailored to the needs of the intended user.

A weak point of the existing methods is that they are based onheuristicsto discover
potentially useful changes. These heuristics typically cannot guarantee that a change
actually leads to an improvement, Also, as typically these heuristics are based only on
local information about the neighborhood of a node in a graph, they do not necessarily
lead to global optimization: A change may lead to resolving a local problem, but may
introduce new ones in other places.

3.2 Usage rating model

In our model we consider a class hierarchy, which is used to classify a set of instances.
With respect to the ontology model, it does not matter at this point, whether these classes
are modelled as concepts and subconcept-axioms, or whether they are modelled as indi-
viduals and an additional relation between the individuals representing the class hierarchy.
For a conceptc in the concept hierarchy,depth(c) denotes the depth ofc in the hierarchy,
whereasbreadth(c) denotes the breadth, i.e. the number of siblings ofc.

We consider two usage rating annotations:

• rqueries annotates the concepts with the number of queries that have referenced the
particular concept,

• rinstances annotates the concepts with the number of instances that are classified
under the particular concept.

The two rating annotations capture two important and typical dimensions of usage, one
with respect to the content (how the concepts are used to classify instances, and one with
respect to the usage by the end users, i.e. which concepts were actually queried. This
information is available in a wide range of application scenarios. Of course, in specific
scenarios further information may be available and thus additional rating annotations can
be defined.
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3.3 Cost-based Evaluation Functions

With our evaluation function we try to capture that the quality of an ontology is deter-
mined by how effectively it allows the users to obtain the relevant instances. To measure
the effectiveness, we introduce a cost model to allow to quantify the user effort to arrive
at the desired information. For the case of navigating a hierarchy, this cost is determined
by the complexity of the hierarchy in terms of the breadth and depth: The breadth here
means the number of choices (child nodes) the user has to consider to decide for the right
branch to follow: The broader the hierarchy, the longer it takes to make the correct choice.
The depth means, how many links the user needs to follow to arrive at the correct con-
cept, under which the desired instance is classified: The deeper the hierarchy, the more
“clicks” need to be performed. To minimize the cost, both depth and breadth need to be
minimized, i.e. the right balance between them needs to be found.

A very simple, but intuitive cost function, is presented in the following. For a given
ontologyO with the set of conceptsC, we can calculate the cost as the weighted sum
of the cost of the individual concepts, where the weight is the importance of the concept
according to the rating annotationsrqueries, i.e. the number of queries:

Cost(O) =
∑
c∈C

rqueries(c) ∗ cost(c)

The cost of the individual concepts is:

cost(c) = cost(parent(c)) + (kd ∗ depth(c) + kb ∗ breadth(c))

Essentially, the cost is determined by the cost of the parent-concept (parent(c)), plus the
cost for following the link (weighted by a constantkd) and the cost caused by the breadth
of c (weighted by a constantkb).

Example: ACM Topic Ontology In our example we use the ACM Topic Hierarchy.
This topic hierarchy describes specific categories of literature for the Computer Science
domain. It covers large areas of computer science, containing over 1287 topics ordered
using taxonomic relations. The ACM classification is updated when necessary to reflect
changes in the domain. As a change to the classification scheme is a mainly manual task
with immense implications on existing physical and Digital Libraries, these changes are
rare, costly, but unavoidable. Automated support, e.g. to proactively recommend useful
changes, would be a great benefit. In personal information sharing systems, where users
rely on a shared background ontology, but may their personal views or extensions (c.f.
Chapter 4), such automated recommendations are of particular value.

Figure 3.2 shows a small fragment of the ACM Topic Hierarchy in the 1998 version.
Table 3.1 exemplarily shows rating annotations for the corresponding concepts and a cal-
culation forCost(O) according to the cost model described above. Please note that in the
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Figure 3.2: Fragment of the ACM Topic Ontology

Conceptc rqueries(c) cost(c)
H2 Database Management 0 2
H2.1 Logical Design 1 6
H2.2 Physical Design 2 6
H2.3 Languages 0 6

Data Manipulation Languages 5 9
Query Languages 6 9

Cost(O) 117

Table 3.1: Rating Annotations and Costs (1)

example instances are classified only under leaf concepts, none-leaf concepts are there-
fore rated with0. We see that the concepts Logical Design and Physical Design are fairly
unimportant compared with Query Languages and Data Manipulation Languages accord-
ing to their ratings. However, the more important concepts are deeper in the hierarchy,
increasing the cost for accessing relevant instances. In the following we exemplarily show
how to generate changes to alleviate this problem.

3.4 Generation of Changes

[SSGS03] presents useful heuristics for the generation of changes based on local proper-
ties. However, as mentioned before these heuristics do not guarantee that a change leads
to a global improvement of the ontology. In the following we describe a selection of two
relevant complex change operations1 and illustrate based on the example from the previ-
ous section, how their application can improve the ontology according to the evaluation
function.

1Of course, further complex change operations are possible. In this sense, the selection of these two
change operations has exemplary character.
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3.4.1 Grouping concepts

One possible change is to group concepts with low ratings under a newly introduced
concept. This decreases the breadth at the level of the new concept and thus the cost of the
sibling concepts. Figure 3.3 shows the previous example after a change that grouped the
unimportant concepts Logical Design and Physical Design under a new concept Design.
Table 3.2 shows the reduction in cost.

Figure 3.3: Fragment of the ACM Topic Ontology after Grouping Concepts

Conceptc rqueries(c) cost(c)
H2 Database Management 0 2
H2.1+2 Design 1 5
H2.1 Logical Design 1 8
H2.2 Physical Design 2 8
H2.3 Languages 0 5

Data Manipulation Languages 5 8
Query Languages 6 8

Cost(O) 112

Table 3.2: Rating Annotations and Costs (2)

3.4.2 Pulling-up concepts

An alternative change is to “pull-up” important concepts that have previously been
grouped under a common parent concept. The result is that the depth of these concepts
is reduced, resulting in a decreased cost. Figure 3.4 shows the running example after a
change that pulled-up the important concepts Data Manipulation Languages and Query
Languages by removing the common parent concept Query Languages. Table 3.3 shows
the reduction in cost.



CHAPTER 3. USAGE BASED ONTOLOGY EVOLUTION 19

Figure 3.4: Fragment of the ACM Topic Ontology after Pulling-up Concepts

Conceptc rqueries(c) cost(c)
H2 Database Management 0 2
H2.1 Logical Design 1 7
H2.2 Physical Design 2 7

Data Manipulation Languages 5 7
Query Languages 6 7

Cost(O) 98

Table 3.3: Rating Annotations and Costs (3)

Figure 3.5: Fragment of the ACM Topic Ontology after Splitting and Merging Concepts

Conceptc rqueries(c) cost(c)
H2 Database Management 0 2
H2.1+2 Design 1 6
H2.1 Logical Design 1 9
H2.2 Physical Design 2 9

Data Manipulation Languages 5 6
Query Languages 6 6

Cost(O) 93

Table 3.4: Rating Annotations and Costs (4)



Chapter 4

Collaborative and Usage-driven
Evolution

4.1 Introduction

Large information repositories as digital libraries, online shops, etc. rely on a taxonomy
of the objects under consideration to structure the vast contents and facilitate browsing
and searching (e.g., ACM Topic Hierarchy for computer science literature, Amazon prod-
uct taxonomy, etc.). As in heterogenous communities users typically will use different
parts of such an ontology with varying intensity, customization and personalization of the
ontologies is desirable.

Such personal ontologies reflect the interests of users at certain times. Interests might
change as well as the available data, therefore the personalization requires quite naturally
support for the evolution of personal ontologies. The sheer size of e.g. the ACM Topic
Hierarchy makes it quite difficult for users to easily locate topics which are relevant for
them. Often one can benefit from having a community of users which allows for recom-
mending relevant topics according to similar interests. Of particular interest are therefore
collaborative filtering systems which can produce personal recommendations by comput-
ing the similarity between own preferences and the one of other people.

We performed our evaluation within the Bibster community. Bibster is a semantics-
based Peer-to-Peer application aiming at researchers who want to benefit from sharing
bibliographic metadata. It enables the management of bibliographic metadata in a Peer-
to-Peer fashion: it allows to import bibliographic metadata, e.g. fromBIBTEX files, into a
local knowledge repository, to share and search the knowledge in the Peer-to-Peer system,
as well as to edit and export the bibliographic metadata.

As our main contribution we adapt a collaborative filtering recommender system to
assist users in the management and evolution of their personal ontology by providing
detailed suggestions of ontology changes. The approach is implemented as an extension

20
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of the Bibster application and has been thoroughly evaluated with very promising results.

The chapter is structured as follows. In the next Section 4.2 we present related work
in the areas of work in recommender systems, work in using taxonomies in recommender
systems, and work in learning taxonomies and ontology evolution in general. In Sec-
tion 2.1 we describe our underlying ontology model which is based on OWL, the change
operations used during the evolution of ontologies, and the ontology rating annotations
allowing each user to express more fine-grained the importance of certain ontology parts.
The recommender method itself and its functionality is illustrated in Section 4.3. We
will introduce the Bibster applications and its extensions with the recommender function-
ality in Section 4.4 followed by evaluation results in Section 4.5. The evaluation was
performed as an experiment within the Bibster community and shows the performance
improvements over non-personalized recommendations.

4.2 Related Work

Related work exists in three different aspects: work in recommender systems, especially
collaborative filtering in general, work in using taxonomies in recommender systems, and
work in learning taxonomies and ontology evolution in general.

Recommender systems have their roots in relevance feedback in information re-
trieval [Sal71], i.e., adding terms to (query expansion) or re-weighting terms of (term
re-weighting) a query to a document repository based on terms in documents in the result
set of the original query that have been marked relevant or non-relevant by the user, as
well as adaptive hypertext and hypermedia [SF91], i.e., the automatic adaptation of the
link structure of a document repository based on previous link usage by users.

Recommender systems broaden the domain from documents and link structure to arbi-
trary domains (e.g., movies, products), do not necessarily rely on attributes of the objects
under consideration (i.e., terms in the case of documents and calleditemsin the context of
recommender systems), and typically combine knowledge about different users. They first
have been formulated as filtering techniques generally grouped in three different types:

(1) collaborative filteringis basically a nearest-neighbor model based on user–item
correlations; if correlations are computed between users, it is calleduser-based, if be-
tween items, it is calleditem-based. (2) content-basedor feature-basedrecommender
systems use similarities between rated items of a single user and items in the reposi-
tory. User- and item-based collaborative filtering and content-based recommender sys-
tems have been introduced in [GNOT92, RIS+94], [SM95] and [BS97], respectively, and
are exemplified by the three systems presented there, MovieLens, Ringo, and fab. (3)
Hybrid recommender systems try to combine both approaches [BS97, Bur02]. Although
most recommender systems research meanwhile focuses on ore complex models treat-
ing the task as a learning or classification problem, collaborative filtering models still are
under active investigation [HKTR04, DK04] due to their simplicity and comparable fair
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quality.

Taxonomies are used in recommender systems to improve recommendation quality for
items, e.g., in [MSR04] and [ZSTL04]. But to our knowledge there is no former approach
for the inverse task, to use recommender systems for the personalization of the taxonomy
or more generally of an ontology.

Ontology evolution is a central task in ontology management that has been addressed
for example in [KN03] and [SMMS02]. In [SMMS02] the authors identify a possible six-
phase evolution process: (1) change capturing, (2) change representation, (3) semantics
of change, (4) change implementation, (5) change propagation, and (6) change valida-
tion. Our work addresses the phase of change capturing, more specifically the process
of capturing implicit requirements for ontology changes from usage information about
the ontology. One approach forusage-driven change discoveryin ontology management
systems has been explored in [SS02], where the user’s behavior during the knowledge
providing and searching phase is analyzed. [SHG03] describes a tool for guiding ontol-
ogy managers through the modification of an ontology based on the analysis of end-users’
interactions with ontology-based applications, which are tracked in a usage-log.

However, the existing work only addressed the evolution of a single ontology in a cen-
tralized scenario. In our work we are extending the idea of applying usage-information to
a multi-ontology model by using collaborative filtering to recommend ontology changes
based on the usage of the personal ontologies.

4.3 Recommending Ontology Changes

A recommender system for ontology changes tries to suggest ontology changes to the user
based on some information about him and potential other users. Formally, anontology
recommenderis a function

% : X → 2OCO (4.1)

whereX contains suitable descriptions of the target ontology and user.

For example, let recommendations depend only on the actual state of a user’s ontol-
ogy, i.e.,X = O, whereO denotes the set of possible ontologies. A simple ontology
evolution recommender can be built by just evaluating some heuristics on the actual state
of the ontology, e.g., if the number of instances of a concept exceeds a given threshold, it
recommends to add subconcepts to this concept. But without any additional information,
this is hardly very useful, as we would not be able to give any semantics to these subcon-
cepts: we could recommend to further subdivde the concept, but not how, i.e., neither be
able to suggest a suitable label for these subconcepts nor assertions of instances to them.
We will call such an approachcontent-basedto distinguish it from more complex ones.

Recommendation quality eventually can be improved by taking into account other
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users’ ontologies and thereby establishing some kind of collaborative ontology evolution
scenario, where each user keeps his personal ontology but still profits from annotations of
other users. The basic idea is as follows: assume that for a target ontology we know sim-
ilar ontologies calledneighborsfor short, then we would like to spot patterns in similar
ontologies that are absent in our target ontology and recommend them to the target ontol-
ogy. Another wording of the same idea is that we would like to extract ontology change
operations that applied to the target ontology increases the similarity with its neighbors
Ω.

This criterion can directly be used to formulate an ontology evaluation function (c.f.
equation 4.6 below).

Let

sim : O ×O → R (4.2)

be such a similarity measure wheresim(O, P ) is large for similar ontologiesO andP
and small for dissimilar ontologies. Typically, these measures are symmetric and maximal
for two same arguments. For further properties and examples of similarity functions for
ontologies, we refer the reader to [EHS04].

Recall that ontologies in our context may have additional rating annotations that
are valuable information to consider in similarity measures suitable for recommendation
tasks.

We can choose a simple unnormalized correlation measure (vector similarity) to com-
pute similarities between ontologies of two users based on their ratings of the elements
(i.e. symbol names and axioms) in the ontology:

simr(O, P ) :=

∑
s∈N∪A rO(s) rP (s)√∑

s∈N∪A rO(s)2
√∑

s∈N∪A rP (s)2
(4.3)

Similarities for the two different rating annotationsrm andru are computed separately
and then linearly combined with equal weights:

sim(O, P ) :=
1

2
simrm(O, P ) +

1

2
simru(O,P ) (4.4)

Finally, as in standard user-based collaborative filtering, ratings of all neighborsΩ are
aggregated using the similarity-weighted sum of their membership ratingsrm, allowing
for a personalized recommender function:

rpersonalized(O, Ω, c) :=

∑
P∈Ω sim(O,P ) rm

P (c)∑
P∈Ω | sim(O, P )| (4.5)

The recommendations are obtained directly from the rating: Elements with a positive
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rating are recommended to be added to the ontology, elements with a negative rating are
recommended to be removed.

Let us consider the recommended changes in terms of an ontology evaluation function.
As stated above, the goal is to increase the weighted similarity of an ontology with those
of the neighbors inΩ:

eΩ(O) :=
∑
P∈Ω

sim(O, P ) ∗ simrm(O,P ) (4.6)

The similarity of the states of the ontologies is determined bysimrm(O,P ), whereas
sim(O, P ) serves as a weighting factor. Essentially, the recommendation function tries to
exactly recommend those changes whose application results in an increase of the value of
the ontology according to the ontology evaluation function.

Disregarding the similarity measure between the users’ ontologies, we can build a
naive recommender that does not provide personalized recommendations, but instead
simply recommends “most popular” operations based on an unweighed average of the
membership ratings:

rbaseline(O, Ω, c) =

∑
P∈Ω rm

P (c)

|Ω| (4.7)

4.4 Case Study: Bibster

In this section we will first introduce the Bibster system [HBE+04] and the role of person-
alized ontologies in its application scenario. We will then describe how the recommender
functionality is applied in the system to support the users in evolving their personalized
ontologies.

4.4.1 Application Scenario: Sharing Bibliographic Metadata with
Bibster

Bibster1 is an award-winning semantics-based Peer-to-Peer application aiming at re-
searchers who want to benefit from sharing bibliographic metadata. Many researchers
in computer science keep lists of bibliographic metadata, preferably inBIBTEX format,
that they must laboriously maintain manually.

At the same time, many researchers are willing to share these resources, assuming
they do not have to invest work in doing so.

1http://bibster.semanticweb.org/
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Bibster enables the management of bibliographic metadata in a Peer-to-Peer fashion:
it allows to import bibliographic metadata, e.g. fromBIBTEX files, into a local knowledge
repository, to share and search the knowledge in the Peer-to-Peer system, as well as to edit
and export the bibliographic metadata.

Two ontologies are used to describe properties of bibliographic entries in Bibster, an
application ontology and a domain ontology [Gua98]. Bibster makes a rather strong com-
mitment to the application ontology, but the domain ontology can be easily substituted to
allow for the adaption to different domains.

Bibster uses the SWRC2 ontology as application ontology, that describes different
generic aspects of bibliographic metadata. The SWRC ontology has been used already in
various projects, e.g. also in the semantic portal of the Institute AIFB3.

In our scenario we use the ACM Topic Hierarchy4 as the domain ontology. This topic
hierarchy describes specific categories of literature for the Computer Science domain.
It covers large areas of computer science, containing over 1287 topics ordered using
taxonomic relations, e.g.:

SubTopic(Artificial Intelligence,Knowledge Representation Formalisms).

TheSubTopic relation is transitive, i.e.Trans(SubTopic).

The domain ontology is being used for classification of metadata entries, e.g.

isAbout(someArticle, Artificial Intelligence), therefore enabling advanced
querying and browsing. The classification can be done automatically by the application
or manually (by drag and drop).

4.4.2 Extensions for Evolution and Recommendations

In Bibster we initially assumed both ontologies to be globally shared and static. This
basically holds for the application ontology, but users want to adapt the domain ontology
continuously to their needs. This is largely motivated by the sheer size of the ACM Topic
Hierarchy which makes browsing, and therefore also querying and manual classification,
difficult for users.

As part of this work we implemented extensions as described in the previous Sec-
tion 4.3 to Bibster which support the evolution – i.e. the continuous adaptation – of the
domain ontology by the users. A basic assumption here is that all users agree in general on
the ACM Topic Hierarchy as domain ontology, but each user is only interested in seeing

2http://ontoware.org/projects/swrc/
3http://www.aifb.uni-karlsruhe.de/about.html
4http://www.acm.org/class/1998/
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those parts of it which are relevant for him at a certain point of time.

In the application, we have separated the interaction with the ontology in two modes:
ausage modeand anevolution mode. The usage mode is active for the management of the
bibliographic metadata itself, i.e. creating and searching for the bibliographic metadata.
This mode only shows the current view on the ontology consisting of the topics that the
user has explicitly included in his ontology. The evolution mode allows for the adaptation
of the ontology. In this mode also the possible extensions along with the corresponding
recommendations are shown.

Ontology Change Operations To keep things simple and trying to separate effects
from eventually different sources as much as possible, we allow as change operations
the addition and removal of topics from the personal ontology. More specifically, this
addition/removal corresponds to the addition/removal of the individual assertion axiom
(e.g. Topic(Knowledge Representation Formalisms) and the role assertion axiom
that fixes the position in the topic hierarchy (e.g.
SubTopic(Artificial Intelligence, Knowledge Representation Formalisms)).
The addition of topics is restricted to those topics that are predefined in the ACM Topic
Hierarchy. Also, the position of the topics is fixed globally by the background ontology.

Ontology Ratings To elicit as much information as possible from users’ work with the
application, we gather various ontology rating annotations in the different modes.

We obtain the membership-ratingrm in the evolution mode from the explicit user
actions (c.f. Figure 4.2): The user can either add a topic in the taxonomy, which will
assigning a rating +1 for the topic, or he can exclude (taboo) the topic from the taxonomy,
which will assign -1 for the explicitly taboo-ed topic.

We obtain the usage-based ratingru in the usage mode by counting the percentage
of queries issued by the user and instances in his knowledge base that reference a given
topic.

(For this, references to all topics are retained, especially also to topics not contained
in the ontology of the user.)

The ontology ratings of the individual users are propagated together with peer profile
descriptions as advertisements in the Peer-to-Peer network, such that every peers is in-
formed about the usage of the ontology in the network. For the details of this process, we
refer the reader to [HBE+04].

Recommending Ontology Changes For the recommendations of topics we rely on the
rating functionrpersonalizedpresented in the previous section. From the ratings of the topics,
we can directly obtain the recommendations:

Topics with a positive rating are recommended to be added to the ontology, topics
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with a negative rating are recommended to be removed. (Please note that adding a topic
actually means adding the corresponding axioms, as described above.)

Topics in the topic hierarchy are visualized depending on the current ratingrm of the
topic and on the recommendation for the topic using a the coding scheme shown in Figure
4.1.

Recommendation
Rating Remove Neutral Add

Taboo-ed X topicname X topicname + topicname
Unrated - topicname ? topicname + topicname
Accepted - topicname √ topicname √ topicname

Figure 4.1: Visualization of topics in evolution mode

Figure 4.2 shows a screenshot of the ontology in the evolution mode.

Figure 4.2: Screenshot

4.5 Evaluation

For our evaluation, we wanted to study two questions: (i) do users accept recommenda-
tions for ontology changes at all? (ii) is a personalized recommender better suited for the
task than a naive, non-personalized recommender?
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To answer these questions, we have performed a user experiment in an in-situ setting
using the Bibster system, in which we compared the baseline (non-personalized) and the
personalized recommender, as defined in the previous section. In the following we will
describe the setup of the experiment, evaluation measures, and the results.

4.5.1 Design of the Experiment

The experiment was performed within three Computer Science departments at different
locations. For a pre-arranged period of one hour, 23 users were actively using the system.
The recommender strategy (baseline or personalized) was chosen randomly for each user
at the first start of the Bibster application. The users were not aware of the existence of
the different recommendation strategies.

During the experiment, the users performed the following activities (in no particular
order), which are typical for the everyday use of the system:

• Import data: The users need to load their personal bibliography as initial dataset.
This data should also reflect their research interest. As described before, the classi-
fication information of the bibliographic instances is part of the ontology rating and
thus used to compute the similarity between the peers.

• Perform queries:The users were asked to search for bibliographic entries of their
interest by performing queries in the Peer-to-Peer system. These queries may refer
to specific topics in the ontology, and are thus again used as ontology ratings.

• Adapt ontology:Finally the users were asked to adapt their ontology to their per-
sonal needs and interests by adding or removing topics. This process was guided
by the recommendations of the respective recommender function. The recommen-
dations were updated (recalculated) after every ontology change operation.

The user actions were logged at every peer for later analysis. The logged informa-
tion included: The type of the action (e.g. user query, ontology change operations), the
provided recommendations, and a timestamp.

4.5.2 Evaluation Measures

We base our evaluation on the collected usage information in form of events consisting of
the actual user actione ∈ OCO, i.e., the specific ontology change operation performed,
and the setÊ ⊆ OCO of recommendations at that point in time, represented by a set
E ⊆ OCO× 2OCO.

We observe a successful recommendation or ahit, whene ∈ Ê.
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Recommendation
User Action Remove None Add

Remove 1 0 -1
None 0 0 0
Add -1 0 1

Table 4.1: Evaluation Profit Matrix

For non-hits, we distinguish two situations: (i) If the actual recommendation was
exactly the opposite action, e.g., we recommended to add a topic but the user taboo-ed it,
then we call this anerror. (ii) If there was no recommendation for this action neither for
its opposite, we call thisrestraint. Based on these counts, we can compute the following
performance measures.

recall(E) := |{(e,Ê)∈E | e∈Ê}|
|E| (4.8)

error(E) := |{(e,Ê)∈E | opp(e)∈Ê}|
|E| (4.9)

restraint(E) := |{(e,Ê)∈E | opp(e)/∈Ê∧e/∈Ê}|
|E| (4.10)

where opp denotes the respective opposite operation, e.g., opp(e+) := e− and
opp(e−) := e+.

Higher recall and lower error and restraint are better.

For a higher level of detail, we do so not only for all user actions, but also for some
classes OCOC⊆ OCO of user actions, such as alladd- and allremove/taboo-operations.

As each of the measures alone can be optimized by a trivial strategy, we also computed
the profit of the recommenders w.r.t. the profit matrix in Table 4.1:

profit(E) :=

∑
(e,Ê)∈E

∑
ê∈Ê profit(e, ê)

|E| = recall(E)− error(E) (4.11)

An intuitive reading of the profit is: The higher the profit, the better the performance
of the recommender. In the best case (profit = 1), all user actions were correctly recom-
mended by the system, in the worst case (profit = −1), all user actions were opposite of
the recommendation.

4.5.3 Evaluation Results

For the 23 participating users in the experiment, the baseline recommender was active for
10 users, the personalized recommender was active for the other 13 users. The partici-
pants performed a total of 669 user actions (452 add topic and 217 remove topic), 335
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ACM Topic # Add Actions
InformationSystems 23
ComputingMethodologies 15
Data 14
ComputingMethodologies/ArtificialIntelligence 12
InformationSystems/DatabaseManagement 12
Software 11
MathematicsOf Computing 10
ComputerSystemsOrganization 10
ComputerSystemsOrganization/ComputerCommunicationNetworks 10
ComputingMethodologies/ArtificialIntelligence/ 10

KnowledgeRepresentationFormalismsAnd Methods

Table 4.2: Most Popular Topics

of these action were performed by users with the baseline strategy, 334 by users with the
personalized recommender. Table 4.2 shows the number of add-topic-actions for the most
popular topics.

Figure 4.3 shows the cumulative results of the performance measures defined above
for the baseline and the personalized recommender. The diagrams show the results for
AddandRemoveoperations separately, as well as combined for all change operations.

As we can see in Figure 4.3 (upper right), overall the personalized recommender cor-
rectly recommended more than 55% of the user actions, while the baseline achieved less
than 30%. The error rate of the baseline algorithm is considerably higher: We observed
anerror= 17% and9% for the baseline and the personalized approach, respectively. Fur-
ther we observed a very large amount of restraint operations withrestraint= 67% for
users with the baseline strategy. Probably this is the result of a large number of recom-
mendations irrelevant to the user given by the system with the baseline strategy. In such
a case the user would not like to follow the system and constructs the ontology mainly by
themselves. Only from time to time he takes some of the recommendations into account.

By comparing add and remove operations we observe a considerably higher amount of
error recommendations for remove operations in comparison to the really small amount
for the add recommendations while the correct recommendations are comparable for both
operations (cf. Figure 4.3, left side). We think that this observation is based on the fact
that a user is more likely to follow an add operation without a “substantiated” reason or
explanation than a remove operation.

While adding something to his “collection” and following the idea of having more the
remove operation forces the feeling of “loosing” something, so typically users are more
reluctant to remove topics.

Calculating the overall profit of the two recommender functions, we obtain
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Figure 4.3: Performance measures of the recommender

profit(E) = 0.11 for the baseline recommender. For the collaborative recommender, we
obtain a significantly better value ofprofit(E) = 0.47. Concluding we can state that the
personalized recommender function provides substantially more useful recommendations.



Chapter 5

Conclusion

In this deliverable we have presented an approach to the problem of change discovery by
describing a framework based on the notion of an ontology evaluation function that allows
to measure the quality of on ontology with respect to given criteria. While this framework
is general enough to define evaluation functions for arbitrary contexts, we have applied it
for the problem of change discovery based on the usage of the ontology.

In a first instantiation we have shown how the framework can be used for the task
of ontology pruning based on an evaluation function that captures the cost incurred for
accessing information structured using the ontology.

In a second instantiation, we have presented an approach to recommend ontology
change operations to a personalized ontology based on the usage information of the indi-
vidual ontologies in a user community. In this approach we have adapted a collaborative
filtering algorithm to determine the relevance of ontology change operations based on the
similarity of the users’ ontologies.

In our experimental evaluation with the Peer-to-Peer system Bibster we have seen
that the users actually accept recommendations of the system for the evolution of their
personal ontologies. The results further show the benefit of exploiting the similarity be-
tween the users’ ontologies in a personalized recommender compared with a simple, non-
personalized baseline recommender. In our experiment we have made various simplifying
assumptions. Their relaxation will open fruitful directions for future work: We assumed
a fixed background ontology which limits the space of change operations. Relaxing this
assumption will introduce challenges related to aligning heterogeneous ontologies. Fur-
ther, the recommendation of adding or removing concepts in a given concept hierarchy
can only be a first step. Next steps will therefore also include recommendations of richer
change operations.

In the scope of the SEKT project, we will apply and evaluate the presented framework
and methods in the SEKT case studies.
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