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Executive Summary

This document is an informal deliverable provided to SEKT WP3 partners.
The classical entailment in logics isexplosive: any formula is a logical consequence of

a contradiction. Therefore, conclusions drawn from an inconsistent ontology by classical
inference may be completely meaningless. An inconsistency reasoner is one which is able
to return meaningful answers to queries, given an inconsistent ontology.

In this document, we overview reasoning with inconsistency in logics and AI, in par-
ticular, in paraconsistent logics and approximation reasoning. Furthermore, we examine
several typical examples and scenarios of inconsistency in the context of the Semantic
Web. Based on the technology overview, we propose a general framework for reasoning
with inconsistent ontologies. We present the formal definitions of soundness, meaning-
fulness, local completeness, and maximal completeness of an inconsistency reasoner. We
propose and investigate a pre-processing algorithm, discuss the strategies of inconsistency
reasoning based on pre-defined selection functions dealing with concept relevance.

In this document, we also discuss how the syntactic relevance can be used for rea-
soning with inconsistent ontologies. We also briefly discuss how particular semantic rel-
evance approaches which have been used in computational linguistics can be applied to
this task.

In addition, we propose an architecture for systems which support client side and
server side reasoning with inconsistent ontologies, based on the DIG description logic
interface.
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Chapter 1

Introduction

The Semantic Web is characterized by scalability, distribution, and multi-authorship. All
these characteristics may introduce inconsistencies in the Semantic Web. Limiting lan-
guage expressivity with respect to negation (like RDF and other languages that are based
on negation as failure) can avoid inconsistencies to a certain extent. However, for specifi-
cations the expressivity of these languages is quite limited.

There are two main ways to deal with inconsistency. One is to diagnose and repair it
when we encounter inconsistencies. In [23] Schlobach and Cornet propose a non-standard
reasoning service for debugging inconsistent terminologies. Another one is to simply
avoid it and to apply a non-standard reasoning method to obtain meaningful answers. In
this report, we will focus on the latter.

We will consider ontology specifications for which their logical foundations are based
on Description Logics [2] and OWL, the Web counterpart of Description Logics. Seman-
tically, description logics can be considered as a subset of first order logic. The classical
entailment in logics isexplosive: any formula is a logical consequence of a contradiction.
Therefore, conclusions drawn from an inconsistent knowledge base by classical inference
may be completely meaningless.

In this report, we propose a general framework for reasoning with inconsistent ontolo-
gies. We investigate how an inconsistency reasoner can be developed for the Semantic
Web. The general task of an inconsistency reasoner is: given an inconsistent ontology,
return meaningful answers to queries.

Reasoning with inconsistency is an old topic in logics and AI. Many approaches have
been proposed to deal with inconsistency [5, 6, 19, 17]. The development of paracon-
sistent logics was initiated to challenge the ‘explosive’ problem of the standard logics.
Paraconsistent logics [6] allow theories that are inconsistent but non-trivial. There are
many different paraconsistent logics. Most of them are defined on a semantics which
allows both a letter and its negation to hold for an interpretation. Levesque’s limited
reference[18] allows the interpretation of a language in which a truth assignment may
map both a letterl and its negation¬l to true. Extending the idea of Levesque’s limited
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CHAPTER 1. INTRODUCTION 3

reference, Schaerf and Cadoli proposeS-3-entailment andS-1-entailment for approxi-
mate reasoning with tractable results. The main idea of Schaerf and Cadoli’s approach is
to introduce a subsetS of the language used, which can be used as a parameter in their
framework and allows their reasoning procedure to focus on a part of the theory while
the remaining part is ignored. We will refer to the subsetS as an approximation set. The
approximation setS can be extended to make their reasoning procedure more classical.
However, how to construct and extend the approximation sets is still an open question.

Based on Schaerf and Cadoli’sS-3-entailment, Marquis and Porquet present a frame-
work for reasoning with inconsistency by introducing a family of resource-bounded para-
consistent inference relations [19]. In Marquis and Porquet’s approach, consistency is
restored by removing variables from the approximation setS instead of removing some
explicit beliefs from the belief base, like the standard approaches do in belief revision.
Their framework enables some forms of graded paraconsistency by explicit handling of
preferences over the approximation setS. In [19], Marquis and Porquet propose sev-
eral policies, e.g., the linear order policy and the lexicographic policy, for the preference
handling in paraconsistent reasoning. In [9], Chopra, Parikh, and Wassermann incorpo-
rate the local change of belief revision and relevance sensitivity by means of Schaerf and
Cadoli’s approximation reasoning, and show how relevance can be introduced for approx-
imate reasoning in belief revision. Both approaches, Marquies’, and Chopra’s, depend on
syntactic selection procedures for extending the approximation set.

Our approach borrows some ideas from Schaerf and Cadoli’s approximation ap-
proach, Marquis and Porquet’s paraconsistent reasoning approach, and Chopra, Parikh,
and Wassermann’s relevance approach. However, our main idea is relativelysimple(It is
not a bad thing, isn’t?): given a selection function, which can be defined on the syntac-
tic or semantic relevance, like those have been used in computational linguistics, we can
always select some consistent sub-theory from an inconsistent ontology. Then we apply
standard reasoning on the selected sub-theory to find meaningful answers. If it cannot
give a satisfying answer, the selection function would loose the relevance degree to ex-
tend consistent sub-theory for further reasoning. We believe that our approach is intuitive
and efficient, just like human beings, who can deal with inconsistency very efficiently.
When we encounter inconsistency, we can always focus on the important and consistent
part of it, by ignoring other parts which may cause inconsistency. Then we apply standard
reasoning to the selected part to obtain the solutions. Moreover, we believe that the im-
portance here can always be measured, or exactly interpreted, as some degree of relevance
among the concepts. In general, the solution for reasoning with inconsistency is to use
nonstandard reasoning to deal with inconsistency.

This report is organized as follows: Chapter 2 overviews inconsistency in the Se-
mantic Web by examining several typical examples and scenarios. Chapter 3 proposes a
general framework of reasoning with inconsistent ontologies. Chapter 4 examines how
the selection function can be developed, based on the syntactic relevance approach. We
also discuss briefly how the semantic relevance approach can be developed for the task.
Chapter 5 presents a design for reasoning with inconsistent ontologies. In particular, an
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architecture which is based on the DIG interface for DL reasoning, is proposed. Chapter
6 discusses further work and concludes the report.



Chapter 2

Inconsistency in the Semantic Web

For the Semantic Web, inconsistencies easily occur, sometimes even in small ontologies.
Here are several scenarios which may cause inconsistencies:1

2.1 Inconsistency by Mis-presentation of Default Rules

When a knowledge engineer specifies an ontology statement, in particular a rule, she/he
has to check carefully that the new statement is consistent, not only with respect to exist-
ing rules, but also with respect to rules that may be added in the future, which of course
may not always be known at that moment. This makes it very difficult to maintain the
consistency in ontology specifications. Just consider a situation in which a knowledge
engineer wants to create an ontology about animals:

bird v animal (Birds are animals),
bird v fly (Birds are flying animals).

Although the knowledge engineer may realize that ‘birds can fly’ is not generally
valid, he still wants to add it if he does not find any counterexample in the current knowl-
edge base, because flying is one of the main features of birds. An ontology about birds
without talking about flying is not satisfactory.

Later on, one may want to extend the ontology with the following statements:

1By inconsistency we mean that the set implies a contradiction, i.e., the setΣ |= ⊥, given an entailment
relation ‘|=’. It is usually calledincoherence. We continue using the term ‘inconsistency’, because it is
common practice in the ontology community.
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CHAPTER 2. INCONSISTENCY IN THE SEMANTIC WEB 6

eagle v bird (Eagles are birds),
penguin v bird (Penguins are birds),
penguin v ¬fly (Penguins are not flying animals).

The conceptpenguin in that ontology of birds is already unsatisfiable, because it im-
plies penguins can both fly and not fly. That would lead to an inconsistent ontology. One
may remove the rule ‘birds can fly’ from the existing ontology to restore the consistency.
However, this approach is not reliable, because of the following reasons: a) It is hard to
check that the removal would not cause any significant information loss in the current on-
tology, b) One may not have the authority to remove statements which have been created
in the current knowledge base, c) It may be difficult to know which part of the existing
ontology can be removed if the knowledge base is very large. One would not blame the
knowledge engineer for the creation of the rule ‘birds are flying animals’ at the beginning
without considering future extensions, because it is hard for the knowledge engineer to
do so.

One may argue that the current ontology languages and their counterparts in the Se-
mantic Web cannot be used to handle this kind of problems, because it requires non-
monotonic reasoning. The statementBirds can flyhas to be specified as a default rule.
The ontology language OWL cannot deal with default rules. We have to wait for an ex-
tension of OWL to accommodate non-monotonic rules. It is painful that we cannot talk
about birds (that can fly) and penguins (that cannot fly) in the same ontology specification.
An alternative approach is to divide the inconsistent ontology specification into multiple
ontologies or modular ontologies to maintain their local consistency, like one that states
‘birds can fly’, but doesn’t talk about penguins, and another one that specifies penguins,
but never mentions that ‘birds can fly’. However, the problem for this approach is still the
same as other ones. Again, an ontology about birds that cannot talk about both ‘birds can
fly’ and penguins is not satisfactory.

2.2 Inconsistency Caused by Polysemy

Polysemy refers to the concept of words with multiple meanings. One should have a
clear understanding of all the concepts when an ontology is formally specified. Here is an
example of an inconsistent ontology which is caused by polysemy:
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marriedWoman v woman (a married woman is a woman),
marriedWoman v ¬divorcee (a married woman is not a divorcee),
divorcee v hadHusband u ¬hasHusband (a divorcee had a husband

and has no husband),
hasHusband v marriedWoman (hasHusband means married),
hadHusband v marriedWoman (hadHusband means married).

In the ontology specification above, the concepts ‘divorcee’ is unsatisfiable, because
of the misuse of the word ‘marriedWoman’. Therefore, one has to carefully check if there
is some misunderstanding with respect to concepts that has been used in the ontology.
Again, when an ontology is large, this kind of requirements may become rather difficult.

2.3 Inconsistency through Migration from Another For-
malism

When an ontology specification is migrated from other data sources, inconsistencies may
occur. As it has been found by Schlobach and Cornet in [23], the high number of unsat-
isfiable concepts in DL terminology for DICE is due to the fact that it has been created
by migration from a frame-based terminological system.2 In order to make the semantics
as explicit as possible, a very restrictive translation has been chosen to highlight as many
ambiguities as possible. In [23], Schlobach and Cornet show the following inconsistent
ontology specification:

brain v centralNervousSystem (a brain is a central nervous
system),

brain v bodyPart (a brain is a body part),
centralNervousSystem v nervousSystem (a central nervous system is a

nervous system),
bodyPart v ¬nervousSystem (a body part is not a nervous

system).

2.4 Inconsistency Caused by Multiple Sources

When a large ontology specification is generated from multiple sources, in paricular when
these sources are created by several authors, inconsistencies easily occur.

2DICE stands for “Diagnoses for Intensive Care Evaluation”. The development of the DICE terminology
has been supported by the NICE foundation.
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In [12], Hameed, Preece and Sleeman propose approaches of ontology reconciliation,
and discuss how the consistency should be maintained and how inconsistency may be
created from multiple sources. Accoring to [12], there are the following three possibilities
for ontology reconciliation: merging, aligning, or integrating:

Merging implies the creation of a new ontology by unifying several other ontologies into
a single one. The new ontology is created from two or more existing ontologies
with overlapping parts, and can be either virtual or physical. The ultimate goal
is to create a single consistent ontology that includes all information from all the
sources.

Aligning is to keep ontologies separately when sources must be made consistent with
one another. It involves bringing two or more ontologies into mutual agreement,
making them consistent.

Integrating is to build a new ontology by composing parts of other available ontologies.
Like merging, this process results in a new ontology.

No matter whether a new ontology is generated by merging or integrating multiple
sources, in both cases general consistency objectives are rather difficult to achieve.

Note that the above-mentioned categories don’t exclude each other. When we examine
an inconsistent ontology which is generated from multiple sources, we may find that
it contains several cases of polysemy, or some other inconsistency. The list above is
also not exhaustive. There are many other cases that may cause the inconsistency, like
inconsistency caused by ambiguities, inconsistency caused by lacking global checking,
etc. We do not discuss a complete list in this report.



Chapter 3

Reasoning with Inconsistent ontologies

3.1 Formal Definitions

This report aims at a proposal of a general framework for reasoning with inconsistent
ontologies. Therefore, we do not restrict ontology specifications to a particular language
(although OWL and its description logic are the languages we have in mind). In general,
an ontology language can be considered to be a set that is generated by a set of syntactic
rules. We use a non-classical entailment for inconsistency reasoning. In the following,
we use|= to denote the classical entailment, and use|≈ to denote some non-standard
inference relation, which may be parameterized to remove ambiguities.

In general, an ontology queryΣ can be expressed as ‘Σ |≈ φ?’, whereφ is a formula.
There are two standard answers to a query, either “yes” (Σ |≈ φ), or “no” (Σ 6|≈ φ). In the
next section, we will argue that it would be more suitable for an inconsistency reasoner
to extend the query answers to three possible answers: “positive” (Σ |≈ φ andΣ 6|≈ ¬φ),
“negative” (Σ |≈ ¬φ andΣ 6|≈ φ), or “unknown” (Σ 6|≈ φ andΣ 6|≈ ¬φ).

An inconsistency reasoner is one which is expected to be able to return meaningful
answers to queries, given an inconsistent ontology. In the following we propose several
formal definitions for inconsistency ontology reasoners.

Soundness:In the case of a consistent ontologyΣ, classical reasoning is sound, i.e., a
formulaφ deduced fromΣ holds in every model ofΣ. This definition is not prefer-
able for an inconsistent ontologyΣ as every formula follows from it using using
classical entailment. However, often only a small part ofΣ has been incorrectly
constructed or modelled, while the remainder ofΣ is correct. This leads us to the
following: an inconsistency reasoner should be considered correct if the formu-
las that follow from an inconsistent theoryΣ follow from a consistent subtheory
of Σ using classical reasoning. Therefore, we propose the following definition of

9
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soundness. An inconsistency reasoner|≈ is sound if the following condition holds:

Σ |≈ φ⇒ (∃Σ′ ⊆ Σ)(Σ′ 6|= ⊥ andΣ′ |= φ).

Note however, that in the previous definition the implication shouldnot holdin the
opposite direction. If the implication would also hold in the opposite direction it
would lead to an inconsistency reasoner, which returns inconsistent answers. For
example if{a,¬a} ⊆ Σ, then the inconsistency reasoner would return that both
a and¬a hold givenΣ, which is something we would like to prevent. Hence, the
inconsistency reasoner should not return answers that follow fromany consistent
subset ofΣ, but fromspecifically chosensubsets ofΣ. This ‘specific selection of
consistent subsets’ is part of the inconsistent reasoners strategy and will be dis-
cussed in more detail in Section 3.3.

Meaningfulness: An answer given by an inconsistency reasoner is meaningful iff it is
consistent and sound. Namely, it requires not only the soundness condition, but also
the following condition:

Σ |≈ φ⇒ Σ 6|≈ ¬φ.

Inconsistency reasoning is said to be meaningful iff all of the answers are meaning-
ful.

Local Completeness: Because of inconsistencies, global completeness is impossible.
We suggest the notion of local completeness: inconsistency reasoning is locally
complete with respect to a consistent sub-theoryΣ′ iff for any formulaφ, the fol-
lowing condition holds:

Σ′ |= φ⇒ Σ |≈ φ.

Alternatively, the condition can be represented as:

Σ 6|≈ φ⇒ Σ′ 6|≈ φ.

Therefore, local completeness can be considered as a complement to the soundness
property. An answer to a queryΣ |≈ φ? is said to be locally complete with respect
to a consistent setΣ′ iff the following condition holds:

Σ′ |= φ⇒ Σ |≈ φ.

Maximality : An inconsistency reasoner is maximal iff there is a maximal consistent
sub-theory such that its consequence set is the same as the consequence set of the
inconsistency reasoner:

∃(Σ′ ⊆ Σ)(Σ′ 6|= ⊥ ∧ (∀Σ′′ ⊃ Σ′ ∧ Σ′′ ⊆ Σ)(Σ′′ |= ⊥) ∧ ∀φ(Σ′ |= φ⇔ Σ |≈ φ)).

We use the same condition to define the maximality for an answer, like we do for
local completeness.
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Local Soundness: An answer to a query ‘Σ |≈ φ?’ is said to be locally sound/correct
with respect to a consistent setΣ′ ⊆ Σ, iff the following condition holds:

Σ |≈ φ⇒ Σ′ |= φ.

Namely, for any positive answer, it should be implied by the given consistent sub-
theoryΣ′ under the standard entailment.

From the definitions given above it follows that local soundness implies soundness and
meaningfulness. Moreover, it follows that maximal completeness implies local complete-
ness. Given a query, there might exist more than one maximal consistent subset. The
same also holds for local completeness. Therefore, arbitrary (maximal) consistent sub-
set may not be very useful for the evaluation of a query by some inconsistency reasoner.
The consistent subsets should be chosen on structural or semantical grounds indicating
the relevance of the chosen subset with respect to some query. Functions that will select
specific subsets of an ontologyΣ will be discussed in more detail in Chapter 4.

3.2 Pre-processing

With classical reasoning, a queryφ given an ontologyΣ can be expressed as an evaluation
of the consequence relationΣ |= φ. There are only two answers to that query: either “yes”
(Σ |= φ), or “no” (Σ 6|= φ). A “yes” answer means thatφ is a logical conclusion ofΣ. A
“no” answer, however, means thatφ cannot be deduced fromΣ, because we usually don’t
adopt the closed world assumption when using an ontology. Hence, a “no” answer does
not imply that the negation ofφ holds given an ontologyΣ.

The evaluation of the entailment relation is usually achieved by reducing it to the
satisfiablity of the formula setΣ ∪ {¬φ}, because of the following relation:

Σ |= φ iff Σ ∪ {¬φ} is not satisfiable.

If the ontologyΣ is inconsistent, it is never satisfiable. Hence, for any queryφ,
Σ ∪ {¬φ} is never satisfiable. Therefore, any queryφ is a conclusion of an inconsis-
tent ontology. Classical reasoning is said to beexplosive, i.e., any formula may be derived
from an inconsistent ontology. Hence, classical reasoning leads to completely meaning-
less answers when using an inconsistent ontology.

To make sure reasoning is reliable when it is unclear if an ontology is consistent or
not, we can use the decision tree that is depicted in Figure 3.1. For a queryφ we test
both the consequencesΣ |= φ andΣ |= ¬φ using classical reasoning. In case different
answers are obtained, i.e., both “yes” and “no”, the ontologyΣ must be consistent and the
answer toΣ |= φ can be returned. In case of two answers that are the same the ontology
is either incomplete, i.e., when both answers are “no”, or the ontology is inconsistent, i.e.,
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when both answers are “yes”. When the ontology turns out to be incomplete, either an
“unknown” answer can be returned or additional informationI can be gathered to answer
the queryΣ ∪ I |= φ, but this falls outside the scope of the project. When the ontology
turns out to be inconsistent some inconsistency reasoner can be called upon to answer the
queryΣ |≈ φ.

Σ |= φ?

?�� ��Σ |= φ
NoYes

?? �� ��Σ |= ¬φ
Yes No

? ?

�� ��Σ |= ¬φ
NoYes

??

Negative
answer:
Σ |= ¬φ

Postive
answer:
Σ |= φ

Inconsistent ontology:
Inconsistency reasoning

processing

Incomplete ontology:
Ontology extension

processing

Figure 3.1: Decision tree for obtaining reliable reasoning with an inonsistent ontology.

3.3 Inconsistency Processing

It is assumed that a selection function can be used by an inconsistency reasoner to de-
termine which consistent subsets of an inconsistent ontology should be considered in its
reasoning process. The definition of a selection function should be independent of the
general framework for reasoning with an inconsistent ontology as given in Figure 3.1.
The selection function can either be based on a syntactic approach, like Chopra, Parikh,
and Wassermann’s syntactic relevance [9], or based on semantic relevance like for exam-
ple in computational linguistics as in Wordnet. Selection functions will be discussed in
more detail in Chapter 4.

Note however that a selection function does not have to returnall subsets for con-
sideration at the same time. If a queryΣ |≈ φ can be answered after considering some
consistent subset of the ontologyΣ given by the selection function, other subsets don’t
have to be considered any more, becausethey will not change the answer of the inconsis-
tency reasoner.
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In this project we therefore always use an iterative approach. To answer a query
Σ |≈ φ, first start with a consistent subsetΣ′ of the ontologyΣ and try to answer the
queryΣ′ |= φ. If the answer is affirmative, the inconsistency reasoner returns “yes” to the
queryΣ |≈ φ. If the answer is not affirmative, call the selection function again to produce
the next consistent subset of the ontology and repeat until there are no more subsets that
can be used in the reasoning process. If there are no more consistent subsets to consider
the inconsistency reasoner will return “no” or “unknown” to the queryΣ |≈ φ.

Note that from a computational point of view it is better to use a “bottom-up” ap-
proach, i.e., first consider small subsets before considering larger subsets, because an-
swering a query is computationally easier using a small subset of an ontology.

3.3.1 Linear extension

In this section we describe in more detail selection functions that aremonotone:

Definition 3.3.1 A selection functionf is monotoneif the consistent subsets that it selects
S1, S2, S3, . . . monotonically increase or decrease, e.g.,S1 ⊆ S2 ⊆ S3 · · ·.

In this project we assume that a monotone selection function always returns increasing
subsets. An inconsistency reasoner that uses a monotone selection function will be called
an inconsistency reasoner that uses a linear extension strategy.

A linear extension strategy is carried out as shown in Figure 3.2. Given a queryΣ |≈ φ,
the initial consistent subsetΣ′ is set to be equal to the empty set∅. Then the selection
function is called to return a consistent subsetΣ′′ that subsumesΣ′, i.e.,Σ′ ⊂ Σ′′ ⊆ Σ. If
the setΣ′′ does not exist, the inconsistency reasoner returns the answer “unknown” to the
queryΣ 6|≈ φ. If the setΣ′′ exists, a classical reasoner is used to check ifΣ |= φ holds.
If the answer is ‘yes’, the inconsistency reasoner returns the positive answerΣ′′ |= φ. If
the answer is ‘no’, the inconsistency reasoner further checks the negation of the query
Σ′′ |= ¬φ. If the answer is “yes”, the inconsistency reasoner returns the negative answer
Σ |≈ ¬φ, otherwise the whole process is repeated by calling the the selection function for
the next consistent subset ofΣ which extendsΣ′′.

It is clear that the linear extension strategy may result in too many “unknown” an-
swers to queries when the selection function picks the wrong sequence of monotonically
increasing subsets. It would therefore be useful to measure the succesfulness of (linear)
extension strategies. Similarly with Marquis and Porquet’s work in [19], we use Belnap’s
four valued logic [4] to distinguish the following four epistemic status for the extension
measurements:
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Σ |≈ φ?

?

Initialize:Σ′ := ∅

?

Select a (minimal) consistent set
Σ′′ w.r.t. φ such thatΣ′ ⊂ Σ′′ ⊆ Σ

?�� ��Σ′′ exists
No

Yes?

?

�� ��Σ′′ |= φ
Yes No

?

?

�� ��Σ′′ |= ¬φ
Yes No

? ?

Negative
answer:
Σ |≈ ¬φ

Postive
answer:
Σ |≈ φ

Unknown
answer:
Σ 6|≈ φ

Σ′ := Σ′′

�

Figure 3.2: An inconsistency reasoner using the Linear Extension strategy.

Definition 3.3.2

• Over-determined:Σ |≈ φ andΣ |≈ ¬φ.

• Accepted:Σ |≈ φ andΣ 6|≈ ¬φ.

• Rejected:Σ 6|≈ φ andΣ |≈ ¬φ.

• Undetermined:Σ 6|≈ φ andΣ 6|≈ ¬φ.

In general, one should use an extension strategy that is not over-determined and not un-
determined. For the linear extension strategy, we can prove that the following properties
hold:

Proposition 3.3.1 (Linear Extension) An inconsistency reasoner using a linear exten-
sion strategy satisfies the following properties:

• never over-determined,
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• may be undetermined,

• always sound,

• always meaningful,

• always locally complete,

• may not be maximal,

• always locally sound.

Therefore, an inconsistency reasoner using a linear extension strategy is useful to cre-
ate meaningful and sound answers to queries. It is also locally complete with certain
consistent sets. Unfortunately it may not be maximal. We call this strategy alinear one,
because the selection function only follows one possible “extension chain” for creating
consistent subsets. The advantages of the linear strategy is that the reasoner can always
focus on the current working setΣ′. The reasoner doesn’t need to keep track of the exten-
sion chain. The disadvantage of the linear strategy is that it may lead to an inconsistency
reasoner that is undetermined. There exist other strategies which can improve the linear
extension approach, for example, by backtracking and heuristics evaluation. These kind
of techniques are frequently used in the search methods, which are traditional topics in ar-
tificial intelligence [21]. A better selection function would also be very useful to achieve
better results. We discuss this issue briefly in the next chapter.

3.4 Inconsistency Processing with Approximate Reason-
ing

In [22], Schaerf and Cadoli proposeS-3-entailment for approximate reasoning with
tractable results. The main idea of Schaerf and Cadoli’s approach is to introduce and
extend a subset of the language used to focus on a part of the language while discarding
other formulas.

Let L(Φ0) be a finite language which is generated on a primitive proposition setΦ0,
andS be a subset ofΦ0, called anapproximation set. A sentence in a propositional
language can always be rewritten as a formula with Negation Normal Form (NNF), in
which the negation occurs only on letters.

Definition 3.4.1 (S-3-interpretation) An S-3-interpretation ofL(Φ0) is a truth assign-
ment which maps every letter ofS and its negation into opposite values. Moreover, it
does not map both a letter ofΦ0/S and its negation into0.
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Definition 3.4.2 (S-3-satisfiability) A formula is S-3-satisfiable if an S-3-interpretation
I exists such thatI satisfies it. A formula setΣ is S-3-satisfiable iff an S-3-interpretation
I exists and for all the formulasφ ∈ Σ, Σ |=3

S φ holds.

Definition 3.4.3 (S-3-entailment)A formula setΣ S-3-entails a formulaφ, denoted by
Σ |=3

S, iff every S-3-interpretation that satisfiesΣ also satisfiesφ.

In [22], Schaerf and Cadoli show that S-3-entailment is sound and incomplete. The
S-3-entailments can be used to achieve the approximation entailment. Moreover, the S-
3-inference can tolerate the inconsistency by selecting the approximation set S. Thus, we
can extend the general framework of the inconsistency processing with S-3-entailment.
Ontology languages can be usually considered as some fragments of the first order logics.
In the following, we consider the Herbrand base of the first-order theory for the approx-
imation, similar with Schaerf and Cadoli’s work in [22], which extends the theory from
propositional logics to the first-order logic.

Let atom(φ) be the set of ground atoms ofφ, i.e., the set of atoms in the Herbrand
base of the formulaφ, which serves as the initial approximation set. In the processing, we
extend the atom set instead of the formula set. The procedure is shown in Figure 3.3.

In [22], Schaerf and Cadoli show that the approximation of classical reasoning can be
achieved via a simplification of the formula setΣ as follows:

Proposition 3.4.1 (Schaerf and Cadoli 1995)Let simplify − 3(Σ, S) be the result of
deleting all clauses ofΣ which contain an atom outsideS. Σ is S-3-satisfiable iff
simplify − 3(Σ, S) is classically satisfiable.

Therefore, the selection on atomic formula sets for S-3-entailment is equivalent to the
selection on the subset of a theory for the standard entailment. It is straightforward to
have the following proposition on the linear strategy with S-3-entailment, based on the
proposition 3.4.1 and the proposition 3.3.1.

Proposition 3.4.2 (Linear Extension with S-3-entailment)The linear extension of the
inconsistency reasoning with S-3-entailment is:

• never over-determined.

• may undetermined.

• always sound.

• always meaningful.

• always locally complete.
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Figure 3.3: Reasoning with Inconsistency: Linear Extension with S-3-Entailment.
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• may not maximal.

• always locally sound.

Reasoning about inconsistency with S-3-entailment is suitable for the selection func-
tion which is based on concept relevance. Moreover, it also reduces the complexity of the
reasoning[22]. Note that S-3-entailment ignores the inconsistency by excluding it from
the approximation set S. Sometimes it cannot deal with inconsistency properly. For in-
stance, in the bird example,{bird, fly, penguin} cannot be a subset of the approximation
set S, otherwise it would cause an inconsistency.

Schaerf and Cadoli’s S-3-approximation requires that formulas be the negation normal
forms (NNF). In [19], Marquis and Proguet propose a framework of approximation rea-
soning which combines S-3-approximation and a paraconsistent logicJ3 which is based
on 3-valued logic. Under Marquis and Proguet’s framework, there is no need to restrict
formulas to NNF.



Chapter 4

Selection Functions

As we have pointed out in Chapter 3, the definition of the selection function should be in-
dependent of the general procedure of the inconsistency processing. In the sequel report,
we are going to investigate how the selection functions can be developed formally. How-
ever, in this report, we would like to point out that there exist several alternatives which
can be used for an inconsistency reasoner. We discuss them in the following sections.

4.1 Syntactic Relevance

In [9], Chopra, Parikh, and Wassermann propose syntactic relevance to measure the rela-
tionship between two formulas in belief sets, so that the relevance can be used to guide
the belief revision based on Schaerf and Cadoli’s method of approximation reasoning.

Definition 4.1.1 (Direct relevance andk-relevance [9]) Given a formula setΣ, two
atomsp, q are directly relevant, denoted byR(p, q,Σ) iff there is a formulaα ∈ Σ such
that p, q appear inα. A pair of atomsp and q are k-relevant with respect toΣ iff there
existp1, p2, . . . , pk ∈ L such that:

• p, p1 are directly relevant;

• pi, pi+1 are directly relevant,i = 1, . . . , k − 1;

• pk, q are directly relevant.

The notions of relevance are based on propositional logics. However, ontology lan-
guages are usually written in some subset of first order logic. It would not be too difficult
to extend the ideas of relevance to those first-order logic-based languages by considering
an atomic formula in first-order logic as a primitive proposition in propositional logic. In
our sequel report, we investigate this extension of relevance definitions formally. How-
ever, in this report, we just adapt the idea informally.

19
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In inconsistency reasoning we can use syntactic relevance to define a selection func-
tion to extend the query ‘Σ |≈ φ?’ as follows: we start with the setatom(φ) as a departure
point for the selection based on syntactic relevance. First we consider the formulaψ ∈ Σ
such thatatom(ψ) ⊆ atom(φ) to see whether or not they are sufficient to give an answer
to the query, for we consider any letter to be most relevant to itself. If the reasoning pro-
cess can obtain an answer to the query, it stops. Otherwise the selection function increases
the relevance degree by adding to the selected formula set all formulas that are directly
relevant to it. The selection procedure can be described as two working setsΣ′ andΣ′′

as shown in the linear extension algorithm. At the beginning, the first working setΣ′ is
defined with respect to the queryφ and the formula setΣ as follows:

Σ′ = {ψ ∈ Σ|atom(ψ) ⊆ atom(φ)}.

The second working set is based on the first working setΣ′ as follows:

Σ′′ = {ψ ∈ Σ|∀p ∈ atom(ψ)∃φ ∈ Σ′ such that(∃q ∈ atom(φ)R(p, q,Σ))}.

Consider the bird ontology. Some example follow of the linear extension strategy with
a selection function based on the syntactic relevance approach.

We add a factpenguin(tweety) (Tweety is a penguin) into the A-box of the ontology.
Note that we need that fact to state that Penguin exists. LetΣ be the formula set of the bird
ontology, as defined in Chapter 2. Thus,Σ1 = Σ∪{penguin(tweenty)} is an inconsistent
formula set. For the query ‘Σ |≈ fly(tweety)?’ (can Tweety fly?), at the beginning,
the selection function would pick up the formula setΣ′′ = {bird v fly, penguin v
¬fly, penguin(tweety)}, based on the direction relevance to the letter set of the query,
i.e.,atom(fly(tweety)). We have

Σ′′ |= ¬fly(tweety).

Therefore, the inconsistency reasoner returns a negative answer to the query. Namely, we
get the intended answer:

Σ1 |≈ ¬fly(tweety).

The same result would also be valid for the query ‘¬fly(tweety)?’ (Can Tweety not
fly?). For the queries on other birds, i.e., not about penguins, the reasoning process would
always give the intended results, because the statementpenguin v ¬fly would never be
involved. Therefore, it would never lead to an inconsistency.

Now, consider the brain ontology example. Similarly, we add a factbrain(a) into the
A-box to state that the concept ‘brain’ is not empty. For the querynervousSystem(a)?
(Is the object ‘a’ an element of a nervous system?). Based on the direction relevance
to the setatom(nervousSystem(a)), the selection function would select the following
formula set at the beginning:

Σ3 = {centralNervousSystem v NervousSystem, bodyPart v ¬nervousSystem}.
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However, it is undetermined. The selection function would extend it into 1-relevance.
This would lead to all formulas in the example being selected. It is inconsistent. Thus,
it is over-determined. To solve this problem, the selection function would select only a
part of it. The setΣ4 is based on the extension on the atomcentralNervousSystem and
another oneΣ5 is based on the atombodyPart as follows respectively:

Σ4 = {brain v centralNervousSystem, brain(a)} ∪ Σ3,

Σ5 = {brain v bodyPart, brain(a)} ∪ Σ3.

The answer to the former is still undetermined, however, the latter can give an an-
swer. Therefore, the reasoning process can stop and return the negative answer
¬nervousSystem(a).

The notions of direction relevance andk-relevance are a syntactic approach. Two
formula sets which are logically equivalent may lead to different relevance results. For
example, the following two sets are logically equivalent:Σ1 = {p → q, q → r} and
Σ2 = {p → q, q → r, p → r}. For the setΣ1, p andr are 1-relevant, but for the setΣ2,
p andr are directly relevant. As we have shown above, the syntactic relevance approach
can give intuitive results for most cases, because we can consider the formulas that have
been stated in the ontologies to be explicit beliefs/knowledge, and the formulas that can
be derived from the existing formula sets to be implicit beliefs/knowledge. We can count
the relevance on the explicit knowledge, instead of the implicit knowledge. More cases
are needed to evaluate syntactic relevance approaches for reasoning with inconsistent on-
tologies.

In the next section, we briefly discuss semantic relevance approaches, which measure
the relevance on a semantic level instead of a syntactic level.

4.2 Semantic Relevance

The relevance of two concepts has been studied in computational linguistics for many
years [7, 8, 13, 16, 20]. Several notions have been proposed to measure semantic relevance
in computational linguistics.

• semantic relatedness: relatedness between two lexically expressed concepts;

• semantic similarity: similarity is measured by virtue of their likeness;

• semantic distance: distance is measured by virtue of their likeness/dislikeness.

However, as pointed out in [7], those three different terms used by different authors or
sometimes interchangeably by same authors. The termsemantic distancemay cause even
more confusion, as it can be used when talking about either similarity or relatedness.
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In [8], Budanitsky and Hirst compare the five different proposed measures of semantic
distance or similarity in WordNet [10] by examining their performance in a real-word
spelling correction system. Here are some proposed measures:1

• Hirst-St-Onge [13]: The semantic relateness of two concepts is measured by their
WordNet synsets’ connection of the path lengthpath and the number of change of
directiond in the path:

relHS(C1, C2) = C − path(C1, C2)− k × d(C1, C2),

whereC andk are constants.

• Resnik [20]: The similarity is measured by a corpus, namely, by “extent to which
they share information”. The similarity between two concepts in WordNet to be
the information content of their lowest super-ordinate (most specific common sub-
sumer)lso(C1, C2):

simR(C1, C2) = −logp(lso(C1, C2)).

• Jiang-Conrath [16]: The semantic distance is measured by extending Resnik’s ap-
proach as follows:

distJC(C1, C2) = 2log(p(lso(C1, C2)))− log(p(C1)) + log(p(C2))).

According to [8] Jiang and Conrath’s measure gives the best performance result. The
computational linguistic approaches based on WordNet offer us alternatives for relevance
measures. However, they rely on more additional background information on the relevant
concepts. In this document, we do not discuss the details of how the semantic relevance
approach can be used for reasoning with inconsistent ontologies.

1http://www.cogsci.princeton.edu/∼wn/



Chapter 5

Design of Reasoning with Inconsistent
Ontologies

5.1 General Consideration

Based on the general framework which is proposed in Chapter 3, we are going to im-
plement a DL reasoner which can support reasoning with inconsistent ontologies. The
reasoner is called RIO (a Reasoner for reasoning with Inconsistent Ontologies). As it has
been discussed above, the general strategy of reasoning with inconsistent ontologies will
be partially achieved by calling a standard DL reasoner. Therefore, a RIO reasoner would
rely on a standard DL reasoner, which can either be integrated, or called as an external
component. There exist several well-known DL reasoners, like Racer [11], which are sta-
ble and popular. RIO will be based on those external DL reasoners. Moreover, in order to
make it independent from any particular DL reasoner, RIO calls those DL reasoners via
their DIG interface.

The DIG description logic interface is designed as a simple API for a general descrip-
tion logic system [3]. The DIG interface uses a similar idea like SOAP (Simple Object
Access Protocol), which has builtin messaging protocols using XML on top of HTTP.
DIG clients communicate with a DIG server through the use of HTTP Post requests, ei-
ther a ‘tell’ request by which the clients can assert ontology statements to the knowledge
base in the server, i.e., the reasoner, or an ‘ask’ request by which the clients can make
queries on the knowledge base. The DIG server answers requests by returning an XML
encoded message.

A RIO should also serve as a DL reasoner via its own DIG interface. It is designed
to be a simple API for a general reasoner with inconsistent ontologies. It supports DIG
requests from other ontology applications or other ontology and metadata management
systems. Thus, the implementation of RIO will be independent from those particular
applications or systems.

23
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Figure 5.1: Architecture of RIO.
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5.2 Architecture

The architecture of a RIO is shown in Figure 5.1. A RIO has the following components:

• DIG Server: RIO’s DIG server deals with any request from other ontology appli-
cations. It supports an extended DIG interface. Namely, it supports not only the
standard DIG requests, like ‘tell’ and ‘ask’, but also additional reasoning process-
ing, like the identification or change of the selected selection functions.

• Main Control Component: The main control component realizes the main pro-
cessing, like query analysis, query pre-processing, and the extension strategy, by
calling the selection function and interacting with the ontology repositories.

• Selection-Functions: The selection function component defines the selection func-
tions that can be used in the reasoning process.

• DIG Client : RIO’s DIG client calls external DL reasoners which support the DIG
interface to obtain the standard DL reasoning capabilities.

• Ontology Repositories: As the name implies, the ontology repositories are used to
store the ontology statements which are provided by external ontology applications.

The main idea for this kind of architecture is to rely on the DIG description logic interface,
by which the applications will be independent from the implementations. Of course,
scalability and performance are also important issues that we will consider. However, as
a first year prototype for the SEKT project, we think this design is more suitable.

5.3 Implementation

We are going to implement the prototype of RIO by using SWI-Prolog.1 SWI-Prolog is
a free software Prolog compiler. Being free, small and mostly standard compliant, SWI-
Prolog has become very popular for education and research. We select a logic program-
ming language like Prolog as the tool for the implementation of the prototype, because
the logic programming language is convenient and powerful for symbolic processing and
list processing.

We are now working on the development of DIG description logic interface libraries
for Prolog, which can be used for the implementation of RIO, in particular, for the RIO’s
DIG client component and server component. A technical report on the DIG description
logic interface support for Prolog is available in [15].

1http://www.swi-prolog.org



Chapter 6

Discussion and Conclusions

In this report, we have overviewed the state-of-the-art of reasoning with inconsistencies in
logics and AI. In particular, we have examined the technologies in paraconsistent logics,
approximate reasoning, and belief revision. This part of the document can be considered
as a technology match overview on reasoning with inconsistencies.

We have proposed a general framework for reasoning with inconsistent ontologies.
We have introduced several formal definitions, such as soundness, meaningfulness, local
completeness, and maximal completeness for inconsistency reasoning. We have proposed
the pre-processing algorithm and the strategy of inconsistency reasoning processing based
on a linear extension strategy, and the strategy of linear extension withS-3-approximate
reasoning, and have shown that a linear extension strategy is useful to create meaning-
ful and sound answers to queries, although they may be undetermined and not always
maximal.

We have discussed how the selection function can be developed by means of a syntac-
tic relevance measure, and have shown several examples of how the syntactic relevance
approach can be used to obtain intuitive reasoning results. We have also discussed briefly
how the semantic relevance approaches, which are used in computational linguistics, can
also be developed for the task.

In addition, we have presented a design of the RIO system for reasoning with incon-
sistent ontologies. In particular, we have proposed an architecture of a RIO system, which
offers DIG interfaces for both the client side and server side. Thus, our RIO system can
support any reasoning request from any application or system via its DIG interface.

In sequel reports, we are going to investigate the formal properties of the selection
function, and develop an algorithm how the selection function can be integrated into the
inconsistency reasoning processing algorithm. Furthermore, we will implement a RIO
system based on the general framework that has been proposed in Chapter 3.
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