
EU-IST Integrated Project (IP) IST-2003-506826 SEKT

SEKT: Semantically Enabled Knowledge Technologies

D4.2.1 State-of-the-art survey on
Ontology Merging and Aligning V1

Jos de Bruijn (DERI)
Francisco Martı́n-Recuerda (DERI)

Dimitar Manov (SIRMA)
Marc Ehrig (UKARL)

Abstract.
EU-IST Integrated Project (IP) IST-2003-506826 SEKT
Deliverable D4.2.1 (WP4)
This deliverable contains a comprehensive state-of-the-art survey on Ontology Merging and
Aligning methods, tools and specification languages.
Keyword list: Ontology Mediation, state-of-the-art survey, ontology merging, ontology aligning,
ontology mapping

Copyright c© 2004 Digital Enterprise Research Institute, University of Innsbruck

WP4: Ontology Mediation

Nature of the Deliverable: Report Dissemination level: PU

Contractual date of delivery: 2004-06-30 Actual date of delivery: 2004-07-22

SEKT Consortium

This document is part of a research project partially funded by the IST Programme of the Commission of the European
Communities as project number IST-2003-506826.

British Telecommunications plc.
Orion 5/12, Adastral Park
Ipswich IP5 3RE
UK
Tel: +44 1473 609583, Fax: +44 1473 609832
Contactperson: John Davies
E-mail: john.nj.davies@bt.com

Empolis GmbH
Europaallee 10
67657 Kaiserslautern
Germany
Tel: +49 631 303 5540, Fax: +49 631 303 5507
Contactperson: Ralph Traphöner
E-mail: ralph.traphoener@empolis.com

Jozef Stefan Institute
Jamova 39
1000 Ljubljana
Slovenia
Tel: +386 1 4773 778, Fax: +386 1 4251 038
Contactperson: Marko Grobelnik
E-mail: marko.grobelnik@ijs.si

University of Karlsruhe , Institute AIFB
Englerstr. 28
D-76128 Karlsruhe
Germany
Tel: +49 721 608 6592, Fax: +49 721 608 6580
Contactperson: York Sure
E-mail: sure@aifb.uni-karlsruhe.de

University of Sheffield
Department of Computer Science
Regent Court, 211 Portobello St.
Sheffield S1 4DP
UK
Tel: +44 114 222 1891, Fax: +44 114 222 1810
Contactperson: Hamish Cunningham
E-mail: hamish@dcs.shef.ac.uk

University of Innsbruck
Institute of Computer Science
Techikerstraße 13
6020 Innsbruck
Austria
Tel: +43 512 507 6475, Fax: +43 512 507 9872
Contactperson: Jos de Bruijn
E-mail: jos.de-bruijn@deri.ie

Intelligent Software Components S.A.
Pedro de Valdivia, 10
28006 Madrid
Spain
Tel: +34 913 349 797, Fax: +49 34 913 349 799
Contactperson: Richard Benjamins
E-mail: rbenjamins@isoco.com

Kea-pro GmbH
Tal
6464 Springen
Switzerland
Tel: +41 41 879 00, Fax: 41 41 879 00 13
Contactperson: Tom B̈osser
E-mail: tb@keapro.net

Ontoprise GmbH
Amalienbadstr. 36
76227 Karlsruhe
Germany
Tel: +49 721 50980912, Fax: +49 721 50980911
Contactperson: Hans-Peter Schnurr
E-mail: schnurr@ontoprise.de

Sirma AI EOOD (Ltd.)
135 Tsarigradsko Shose
Sofia 1784
Bulgaria
Tel: +359 2 9768, Fax: +359 2 9768 311
Contactperson: Atanas Kiryakov
E-mail: naso@sirma.bg

Vrije Universiteit Amsterdam (VUA)
Department of Computer Sciences
De Boelelaan 1081a
1081 HV Amsterdam
The Netherlands
Tel: +31 20 444 7731, Fax: +31 84 221 4294
Contactperson: Frank van Harmelen
E-mail: frank.van.harmelen@cs.vu.nl

Universitat Autonoma de Barcelona
Edifici B, Campus de la UAB
08193 Bellaterra (Cerdanyola del Vallès)
Barcelona
Spain
Tel: +34 93 581 22 35, Fax: +34 93 581 29 88
Contactperson: Pompeu Casanovas Romeu
E-mail: pompeu.casanovasquab.es

Changes

Version Date Author Changes

0.1 2004-01-03 Jos creation
0.2 2004-02-08 Jos update to SEKT style
0.3 2004-04-07 Jos updates the evaluation framework
0.4 2004-06-03 Jos updates evaluation framework and adding scenarios

and use cases
0.5 2004-06-09 Jos updates several descriptions of approaches
0.6 2004-06-17 Jos major update introduction and refinement of the de-

scriptions of approaches
0.7 2004-06-25 Jos incorporating contributions from Sirma and UKARL
0.9 2004-06-28 Jos Version for QA
1.0 2004-07-19 Jos incorporated reviewer comments and proof-reading

Executive Summary

This report provides a state-of-the-art survey of Ontology Merging and Aligning methods,
tools and techniques.

We provide a framework for the evaluation of these approaches, as well as a catego-
rization of approaches for ontology merging and aligning.

We categorize the approaches in methods and tools, integration systems and specific
techniques. We compare the approaches according to the evaluation framework and to a
set of generic use cases for ontology mediation in order to evaluate the applicability of
the approach to the ontology mediation problem on the Semantic Web.

Contents

1 Introduction 3
1.1 Terminology. 5
1.2 The Ontology Mapping Process. 8
1.3 Ontology Mismatches. 10

1.3.1 Ontology-level Mismatches. 10
1.3.2 Language-level mismatches. 12

1.4 One-to-one integration vs. Global integration. 13
1.5 Wrappers and Mediators. 14

2 Motivational Use Cases 16
2.1 Generic Use Cases. 16

2.1.1 Use Cases for Instance Mediation. 17
2.1.2 Ontology Merging . 20
2.1.3 Creating Ontology Mappings. 21

3 The Evaluation Framework 22

4 The Survey 25
4.1 Methods and Tools. 26

4.1.1 MAFRA . 26
4.1.2 RDFT. 34
4.1.3 PROMPT. 37
4.1.4 GLUE. 44
4.1.5 Semantic Matching. 46
4.1.6 OntoMap . 50
4.1.7 RDFDiff . 54

4.2 Integrated Systems. 57
4.2.1 InfoSleuth. 57
4.2.2 ONION . 61
4.2.3 OBSERVER . 65
4.2.4 MOMIS . 70

4.3 Specific Techniques. 74
4.3.1 QOM Quick Ontology Mapping. 75

1

CONTENTS 2

5 Comparison of the Methods 77
5.1 Ontology Languages. 77
5.2 Mapping Language. 79
5.3 Mapping Patterns. 81
5.4 Automation Support. 81
5.5 Applicability to Use Cases. 81
5.6 Implementation. 83
5.7 Experiences. 83

6 Conclusions 86

Bibliography 89

Chapter 1

Introduction

This report presents a state-of-the-art survey on ontology mapping and merging methods
and tools with an emphasis on ontology mapping and inter-operability on the Semantic
Web.

The issue of inter-operability between information systems has already existed for
many years. With the recent advent of the Semantic Web [BLHL01], the issues have only
increased, because of the abundance, heterogeneity and independence of the various data
sources.

Traditional data integration systems focus on inter-operability between data sources
and applications within enterprises. Within enterprises a certain coherence between data
sources can be expected, although data integration within enterprises still faces many
challenges which remain to be resolved.

We focus on information integration on the Semantic Web. This means that we not
only take into account data integration within organizations1, but also explicitly address
integration across organizational boundaries. Between organizations, even more hetero-
geneity between the data sources can be expected.

Fortunately, ontologies [Fen03], the backbone of the Semantic Web, can help us with a
part of the integration problem. Because ontologies areexplicit andformal specifications
of knowledge, they help in disambiguating data and can help in finding correspondences
between data sources because of the explicit specification of the knowledge in an ontol-
ogy.

On the Semantic Web, data is annotated using ontologies. Concepts (also called
classes)2 in ontologies give meaning to data on the Web. Because ontologies areshared
specifications, the same ontologies can be used for the annotation of multiple data sources,
not only limited to Web pages, but also collections of xml documents, relational databases,

1Arguably, the intranet of an organization is an isolated part of the Web and could be part of the Semantic
Web in the near future

2We use the wordsconceptandclassinterchangeably in this document.

3

CHAPTER 1. INTRODUCTION 4

etc. This already enables a certain degree of inter-operation between these data sources,
because of their shared terminology3. However, it cannot be expected that all individuals
and organizations on the Semantic Web will ever agree on using one common terminol-
ogy or ontology. It can be expected that many different ontologies will appear and, in
order to enable inter-operation, mediation is required between these ontologies.

As was argued in [VC98, Usc00], it is very hard to create standard ontologies. In fact,
even inside organizations the standardization of a terminology is not feasible, because
of the lengthy process of standardization and because the use of a big standard impedes
changes in the organization (any change would require consensus among a large group
of people, which is hard to achieve). Across organizations this problem becomes more
severe, because the group of people which need to reach consensus is much bigger and
conflicts of interest are more likely to occur. Therefore, it is likely that there will be many
different heterogeneous ontologies on the Semantic Web and in order to enable inter-
operability between applications on the Semantic Web,mediationis required between
different representations (ontologies) of knowledge in the same domain.

This report presents a survey on the state of the art of ontology mapping, merging and
mediation. It includes both well-known approaches in database integration and recent ap-
proaches specifically addressing ontology mapping on the Semantic Web. The Semantic
Web has a number of distinguishing features when compared to older data integration
systems:

• The Semantic Web relies heavily onstandardizationof both the protocols for the
transport of data (HTTP) and the syntax for the specification of data and knowledge
(RDF [LS99] and OWL [DS04]).

• In contrast to the database schemas in many data integration systems, the semantics
of the data are made explicit through a logic-based language.

• Ontologies capture knowledge in a way understandable to both humans and ma-
chines. Furthermore, ontologies ideally represent aconsensualview of a particular
domain, which is shared among a larger group of people.

These features help in the task of ontology mediation. For example, because of the
standardization of the languages on the Semantic Web, syntax does not play a big role, so
the mediation can focus on the semantics of the data.

Note that Semantic Web technologies can not only be put to use on a world-wide Web.
They can also be employed within company intranets in order to achieve inter-operability
between applications within an organization.

3Note that this is not the end of the story. For many applications it is necessary to detect whether pieces
of data, coming from different data sources annotated with the same ontology, actually refer to the same
thing. This is a challenge we also address in the course of the SEKT project; it is described in more detail
in Section2.1.1of this report.

CHAPTER 1. INTRODUCTION 5

This chapter is further structured as follows. We first clarify the terminology used in
this survey in Section1.1. In Section1.2 we explain theontology mapping processas
we see it, which is used during the survey to identify the use of certain methods in this
process. Then, we present a list of mismatches, which can occur between ontologies,
in Section1.3. In Section1.4 we summarize different ways to achieve integration of
multiple heterogeneous data sources, namely throughone-to-oneandglobal integration.
We conclude with a few remarks about the wrapper/mediator architecture, which is used
in several of the approaches in this survey, in Section1.5.

1.1 Terminology

This section provides some clarification on the terminology used in this survey. We deem
this necessary, because there exist many different understandings of the terminology in
the literature.

Ontology An ontologyO is a 4-tuple〈C,R, I, A〉, whereC is a set of concepts,R is a
set of relations,I is a set of instances andA is a set of axioms. Note that these four
sets are not necessarily disjoint (e.g. the same term can denote both a class and an
instance), although the ontology language might require this.

All concepts, relations, instances and axioms are specified in some logical language.
This notion of an ontology coincides with the notion of an ontology described in
[RLK04, Chapter 2] and is similar to the notion of an ontology in OKBC [CFF+98].
Concepts correspond with classes in OKBC, slots in OKBC are particular kinds of
relations, facets in OKBC are a kind of axiom and individuals in OKBC are what
we call instances4.

In an ontology, concepts are usually organized in a subclass hierarchy, through the
is-a (or subconcept-of) relationship. More general concepts reside higher in the
hierarchy.

Instance BaseAlthough instances are logically part of an ontology, it is often useful to
separate betweenan ontologydescribing a collection of instances andthe collection
of instancesdescribed by the ontology. We refer to this collection of instances as the
Instance Base. Instance bases are sometimes used to discover similarities between
concepts in different ontologies (e.g. [SM01], [DMDH04]). An instance base can
be any collection of data, such as a relational database or a collection of web pages.
Note that this does not rule out the situation where instances use several ontologies
for their description. However, most approaches in this survey which make use of
instances assume a collection of instances described byoneontology.

4We use the terms instance and individual interchangeably throughout this document. Note that an
instance is not necessarily related to a class.

CHAPTER 1. INTRODUCTION 6

Ontology Language The ontology language is the language which is used to represent
the ontology. Popular ontology languages for the Semantic Web are RDFS [BG04]
and OWL [DS04]. Semantic Web ontology languages can be split up into two
parts: the logical and the extra-logical parts. Thelogical part usually amounts to a
theory in some logical language, which can be used for reasoning. The logical part
basically consists of a number of logical axioms, which form the class (concept)
definitions, property (relation) definitions, instance definitions, etc.

The extra-logical part of the language typically consists of non-functional prop-
erties (e.g. author name, creation date, natural language comments, multi-lingual
labels) and other extra-logical statements, such as namespace declarations, ontol-
ogy imports, versioning, etc.

Non-functional properties are typically only for the human reader, whereas many of
the other extra-logical statements are machine-processable. For example, names-
paces can be resolved by the machine and the importing of ontologies can be
achieved automatically by either (a) appending the logical part of the imported on-
tology to the logical part of the importing ontology to create one logical theory or
(b) using amediator, which resolves the heterogeneity between the two ontologies
(see also the definition of Ontology Mediation below).

Ontology Mediation Ontology mediation is the process of reconciling differences be-
tween heterogeneous ontologies in order to achieve inter-operation between data
sources annotated with and applications using these ontologies. This includes the
discovery and specification ofontology mappings, as well as the use of these map-
pings for certain tasks, such as query rewriting and instance transformation. Fur-
thermore, themerging of ontologiesalso falls under the term ontology mediation.

Ontology Mapping An ontology mappingM is a (declarative) specification of the se-
mantic overlap between two ontologiesOS andOT . This mapping can be one-way
(injective) or two-way (bijective). In an injective mapping we specify how to ex-
press terms inOT using terms fromOS in a way that is not easily invertible. A
bijective mapping works both ways, i.e. a term inOT is expressed using terms of
OS and the other way around.

Mapping Language The mapping language is the language used to represent theon-
tology mappingM . It is important here to distinguish between a specification of
the similarities of entities between ontologies and an actual ontology mapping. The
specification of similarities between ontologies is usually a level of confidence (usu-
ally between 0 and 1) of the similarity of entities, whereas an ontology mapping
actually specifies the relationship between the entities in the ontologies. This is typ-
ically an exact specification and typically far more powerful than simple similarity
measures. Mapping languages often allow arbitrary transformation between on-
tologies, often using a rule-based formalism and typically allowing arbitrary value
transformations.

CHAPTER 1. INTRODUCTION 7

Mapping Pattern Although not often used in current approaches to ontology mediation,
patterns can play an important role in the specification of ontology mappings, be-
cause they have the potential to make mappings more concise, better understandable
and reduce the number of errors (cf. [PGM98]). A mapping patterncan be seen
as a template for mappings which occur very often. Patterns can range from very
simple (e.g. a mapping between a concept and a relation) to very complex, in which
case the pattern captures comprehensive substructures of the ontologies, which are
related in a certain way.

Matching We defineontology matchingas the process of discovering similarities be-
tween two source ontologies. The result of a matching operation is a specifica-
tion of similarities between two ontologies. Ontology matching is done through
application of theMatch operator (cf. [RB01]). Any schema matching or on-
tology matching algorithm can be used to implement theMatch operator, e.g.
[DMDH04, GSY04, MBR01, MRB03].

We adopt here the definition ofMatchgiven in [RB01]: “[Match is an operation],
which takes two schemas [or ontologies] as input and produces a mapping between
elements of the two schemas that correspond semantically to each other”.

The specification of similarities typically serves as an input to the ontology mapping
or merging activity (see also Section1.2).

For the definitions of merging, aligning and relating ontologies, we adopt the defini-
tions given in [DFKO02]:

Ontology Merging Creating one new ontology from two or more ontologies. In this
case, the new ontology will unify and replace the original ontologies. This often
requires considerable adaptation and extension.

Note that this definition does not say how the merged ontology relates to the orig-
inal ontologies. This is intentionally left open because not all approaches merge
ontologies in the same way. The most prominent approaches are theunionand the
intersectionapproaches. In the union approach, the merged ontology is the union of
all entities in both source ontologies, where differences in representation of similar
concepts have been resolved5. In the intersection approach, the merged ontology
consists only of the parts of the source ontology which overlap (c.f. theintersection
operator in ontology algebra [Wie94]).

Ontology Aligning Bringing the ontologies into mutual agreement. Here, the ontologies
are kept separate, but at least one of the original ontologies is adapted such that the
conceptualization and the vocabulary match in overlapping parts of the ontologies.

5In terms of ontology algebra [Wie94] this amounts to: the target ontology is theunion of (a) the
intersectionO0 of both source ontologiesO1 andO2, (b) thedifferencebetweenO1 andO0: O1 −O0 and
(c) thedifferencebetweenO2 andO0: O2 −O0.

CHAPTER 1. INTRODUCTION 8

However, the ontologies might describe different parts of the domain in different
levels of detail.

Relating Ontologies Specifying how the concepts in the different ontologies are related
in a logical sense. This means that the original ontologies have not changed, but
that additional axioms describe the relationship between the concepts. Leaving the
original ontologies unchanged often implies that only a part of the integration can
be done, because major differences may require adaptation of the ontologies.

The term “Ontology Mapping” was defined above as a specification of the relationship
between two ontologies. We can also interpret the word “Mapping” as a verb, i.e. the
action ofcreatinga mapping. In this case the term corresponds with the term “Relating
Ontologies”:

Mapping Ontologies Is the same as relating ontologies, as specified above.

Note that most disagreement in the literature is around the termalignment. We do not
use the term alignment as such, but we do use the termontology aligning. In most litera-
ture (e.g. [NM99]), alignment is what we (and [DFKO02]) refer to asrelating ontologies
or mapping ontologies.

1.2 The Ontology Mapping Process

In order to clarify the role of many of the methods, tools and techniques in this survey,
we will explain in this section what we see as theontology mapping process. Many of
the tools and techniques in this survey form a part of the overall mapping process and the
integration systems typically form a superset of the mapping process, i.e. they typically
incorporate the complete mapping process, but also offer additional functionality, such as
the use of the mapping to perform the actual querying and data integration.

First, we have to note that for simplicity we assume only two6 different ontologiesO1

andO2, which describe the same or similar domains, as input to the mapping process.
The outcome of the mapping process is either a mappingM , which describes howO1 and
O2 are related, or a new ontologyOM , which is the merge ofO1 andO2.

Figure1.1 depicts the different phases in the generic mapping process as we see it.
Not all phases are necessarily incorporated in every mapping tool and several phases in
the process are optional. We distinguish the following phases (in temporal order) in the
mapping process:

1. Import of ontologiesOntologies can be specified in different languages, which in-
dicates a need to convert them to a common format in order to be able to specify

6It is straightforward to scale up this approach to more than two ontologies.

CHAPTER 1. INTRODUCTION 9

specifiying
mapping/merging

find
similarities

import
ontologies

O2

O1

mapping /
merged ontology

Figure 1.1:The Ontology Mapping Process

the mapping. Furthermore, the ontologies need to be imported in the tool, which is
used to specify the mapping.

2. Finding SimilaritiesMany systems use theMatchoperator to (semi-)automatically
find similarities between schemas or ontologies. For any two source ontologies,
the Match operator returns the similarities between the ontologies. We distinguish
this phase in the mapping process only when the similarities are determined in
an automatic fashion. If the mapping process is completely manual, this phase is
skipped.

3. Specifying Mapping/MergingAfter (potential) similarities between ontologies have
been found, the mapping between the ontologies needs to be specified. This spec-
ification is usually a manual process, but it can be aided by a tool. PROMPT
[NM00b], for example, comes up with concrete proposals for merge operations,
so that for many operations the user only needs to say “execute”, instead of having
to specify the complete operation.

In many cases (e.g. PROMPT), there is a feedback loop from this phase to the
previous phase. Typically, the tool can offer more precise similarity measures when
the user has already specified part of the mapping. Many matching algorithms
do not include this feedback loop. However, these algorithms can often be readily
applied in an overall algorithm which executes the match algorithm in each iteration
in the process.

The three phases of the mapping process are specified at a very high level. Many of
the approaches in this survey provide a more detailed description of (part of) this mapping
process (e.g. PROMPT, Section4.1.3, MOMIS, Section4.2.4).

CHAPTER 1. INTRODUCTION 10

1.3 Ontology Mismatches

Different types of mismatches can occur between different ontologies. It is important
to identify which kind of mismatches can and do occur between ontologies, in order to
resolve these mismatches in the mapping or the merge of ontologies. The classification
of ontology mismatches is also important to denote which kind of mismatches can be
resolved with a particular mapping formalism (language) and which kind of mismatches
can be detected with a particular matching algorithm.

Klein [Kle01] identifies two levels of mismatches between ontologies. The first level
is the ontology language or meta-model level. These mismatches include syntactic mis-
matches, differences in the meaning of primitives in the different languages, and differ-
ences in the expressivity of the languages. We will describe these mismatches in more
detail in Section1.3.2. The second level of mismatches is the ontology or model level,
which is described below.

1.3.1 Ontology-level Mismatches

Where mismatches at the language level include differences in encoding and meaning of
language constructs, mismatches at the ontology level include mismatches in the meaning
or encoding of concepts in different ontologies. Klein follows the basic types of ontology
mismatches identified in [VJBCS97]:

• Conceptualization mismatchesare mismatches between different conceptualiza-
tions of the same domain.

• Explication mismatchesare mismatches in the way a conceptualization is specified.

[Kle01] distinguishes two different conceptualization mismatches:

Scope mismatchTwo classes have some overlap in the extension (the set of instances),
but the extensions are not exactly the same. [VJBCS97] call this aclass mismatch
and work it out further for classes and relations.

Model coverage and granularity This mismatch is a difference in the part of the domain
that is covered by both ontologies or the level of detail with which the model is
covered.

Klein furthermore distinguishes different types of explication mismatches. First, there
are two mismatches in the style of modeling:

Paradigm These mismatches occur when different paradigms are used for the explica-
tion of the same concept. For example, one ontology might represent time using
intervals, while another ontology might use points to represent time.

CHAPTER 1. INTRODUCTION 11

Concept description Mismatches in the way a concept is described. For example, dif-
ferences in the way the is-a hierarchy is built or when in one ontology several sub-
classes are defined for groups of instances, while in the other ontology subclasses
are created for these different groups.

Then there are the terminological mismatches:

Synonym terms Two terms are equivalent when they are semantically equivalent, but
are represented by different names. It is possible to use dictionaries or thesauri to
resolve this problem, but one should be aware of possible scope differences (see the
first conceptualization mismatch above).

Homonym terms This problem occurs when semantically different concepts have the
same name.

Finally, the last type of difference:

Encoding Values in different ontologies might be encoded in a different way. For exam-
ple, one ontology might define distance in kilometers, while another uses miles.

Inter-ontology relationships [MIKS00] takes a slightly different approach. This paper
identifies different types of inter-ontology relationships (based on relationships identified
in [HM93]) that should be taken into account by ontology mapping systems:

Synonym Two terms in different ontologies have the same semantics. This corresponds
to the synonym terms mismatch mentioned above.

Hyponym A term is less general than another one in a different ontology. This is a special
kind of scope mismatch and can also be seen as a concept description mismatch.

Hypernym A term is more general than another one in a different ontology. This is
a special kind of scope mismatch and can also be seen as a concept description
mismatch.

Overlap There is an intersection in the abstraction represented by two terms. This cor-
responds to the scope mismatch.

Disjoint There is no intersection in the abstraction represented by two terms.

Covering The abstraction represented by a term in one ontology is the same as the ab-
straction represented by the union of other given abstractions which are subsumed
individually by the term. This corresponds to the granularity mismatch identified
by Klein.

CHAPTER 1. INTRODUCTION 12

1.3.2 Language-level mismatches

Typically, ontology mappings require the source and target ontologies to be represented
in the same language. This translation may already resolve most of the language issues,
which can occur. Typical language level mismatches aresyntax, logical representation,
semantics of primitivesandlanguage expressivity[Kle01]. Most systems presented in this
survey do such a translation but do not say if and how the issues surrounding language
level mismatches are resolved in the translation to the internal representation.

Also, many methods and tools for matching and mapping require the source ontologies
to be expressed in a certain representational format. Although there typically exists a
translation from any ontology language into this particular representation, the preservation
of semantics can still not be guaranteed.

We will now go over the above mentioned language level mismatches and describe
what the (potential) issues are with the current systems and techniques:

• Certainly, differences insyntaxwould be resolved by any such translation to an
internal representation, since both ontologies then use the same syntax.

• Differences inlogical representationoccur when syntactically different, but logi-
cally equivalent statements are used to represent the same thing. An example of this
is the way disjointness is expressed in the OWL Lite species of the Web Ontology
Language OWL [MvH04], compared to the way disjointness is usually expressed
in the OWL DL species7.

Arguably, this is not really an issue with the language itself, but rather an issue with
the use of the language. However, when a language allows the user to model the
same thing in different ways, it is easy for a user to mistakenly model certain things
in an inconvenient way and it is harder for a user to understand the model created
by a different user or indeed created by him/herself in the past. When the ontology
language used by the technique/tool/system allows such different logical represen-
tations of equivalent statements, this mismatch still needs to be taken into account
in the ontology mapping process. In order to overcome these issues, one could think
of a normalization step before the start of the mapping process or reasoning during
the mapping process in order to detect equivalence in logical expressions.

• When thesemantics of primitivesis different in different ontology languages, i.e. a
syntactically equivalent construct has a different meaning in the different languages,
the translation to the common representation needs to take this into account. For-
tunately, this problem can be resolved in the translation to the common representa-
tion. If both ontologies already use the common representation and this common
representation does not allow ambiguous statements, this mismatch does not occur.

7The OWL Lite statementClass(owl:Nothing complete A B) , although also valid in OWL
DL, is usually modeled asDisjointClasses(A B) in OWL DL

CHAPTER 1. INTRODUCTION 13

• Differences inexpressivity of the languagesare resolved in the translation to the
common representation language. However, if the expressivity of the common rep-
resentation language is not a superset of the language of the source ontology, some
semantics might get lost in the translation, as was pointed out in [MWK00].

As we can see, the issues with language mismatches are less severe if there is a trans-
lation to a common representation. However, all ontology mismatches mentioned previ-
ously need to be taken into account when creating any mapping between ontologies.

1.4 One-to-one integration vs. Global integration

In any data (or ontology) integration system it is interesting to see how different ontologies
are actually related to each other. We distinguish two distinct cases. In the first case,
there is a one-to-one relationship between the ontologies, i.e. each pair of ontologies to
be integrated has a mapping between them, whereas in the second case, integration is
achieved through a global ontology, which is mapped to all the local ontologies:

One-to-one mapping of ontologies.Mappings are created between pairs of ontologies.
Problems with this approach arise when many such mappings need to be created,
which is often the case in organizations where many different applications are in
use. The complexity of the ontology mapping for the one-to-one approach isO(n2),
wheren is the number of ontologies. An example of the one-to-one approach is OB-
SERVER [MIKS00] (see also Section4.2.3), where the Inter-ontology Relationship
Manager (IRM) contains the mappings between each pair of distinct ontologies.

Using a global ontology.Each ontology is mapped to the central ontology. Drawbacks
of using a global ontology are similar to those of using any standard [VC98]. For
example, it is hard to reach a consensus on a standard shared by many people (it
is always a lengthy process), who use different terminologies for the same domain
and a standard impedes changes in an organization (because evolution of standards
suffers from the same problems as the development of standards). An example of
the global ontology approach is MOMIS [BCVB01] (see also Section4.2.4).

Note that many methods, tools and techniques in the survey do not have a bias for
either one-to-one mapping or the use of a global ontology. The approaches can often be
used in both scenarios, although an ontology merging tool such as PROMPT [NM00b]
does seem to have a bias towards using a shared ontology.

The more comprehensive integration systems typically prescribe which paradigm
should be used. MOMIS [BCVB01], for example, prescribes the use of a global merged
ontology for the integration of data sources, whereas OBSERVER [MIKS00] prescribes
loosely coupled component ontologies with mappings between the ontologies.

CHAPTER 1. INTRODUCTION 14

1.5 Wrappers and Mediators

In the wrapper/mediator architecture, the main components arewrappers; there typically
exists one wrapper for each data source, and one (or more)mediator(s), which mediate
between the differences in the individual data sources. In the global integration paradigm,
there is typically one mediator, which is accessed by the user for querying and infor-
mation retrieval. In this case the mediator typically has one global schema along with
mappings to all the local schemas, where each data source has one local schema. Each
data source has a wrapper associated with it, which provides the translation between the
representation of the data source and the system representation (this is typically between
a database representation and the ontology representation) and translates queries from the
system representation to the data source representation (typically, ontology queries would
be translated to SQL queries to be executed on the individual database). An example
of this approach is MOMIS [BCVB01] (see also Section4.2.4). This wrapper/mediator
approach with one global mediator is illustrated in Figure1.2.

wrapper wrapperwrapper

mediator

Figure 1.2:The wrapper/mediator architecture in the case of global integration

In a one-to-one integration scheme, there are typically several mediators, which me-
diate between the representations in the individual sources. The setting here is similar
to a peer-to-peer setting, where each peer could have a number of data sources and an
ontology, which describes the data of the source. The user would be one peer and would
use that peer’s ontology. If the user wants to query a different peer, the mediator has to
mediate the differences between the ontologies. One example of this case is OBSERVER
[MIKS00] (see also Section4.2.3), where each peer has its own mediator, which does
the query rewriting and querying of other peers, although one central mediator (called
the Inter-ontology Relationship Manager IRM) still keeps track of the relationships be-
tween the ontologies. This central mediator is queried by other mediators to find out about
related peers and the differences in representation.

CHAPTER 1. INTRODUCTION 15

Figure 1.3 illustrates the use of wrappers and mediators in the case of one-to-one
integration. Note that in this case, all mediators need to be aware of all other mediators in
order to perform query rewriting and to achieve effective query answering.

wrapper wrapper

wrapper

mediator

mediatormediator

Figure 1.3:The wrapper/mediator architecture in the case of one-to-one integration

This report is further structured as follows. Chapter2 presents the use cases which
we have identified as crucial for ontology mediation on the Semantic Web. These use
cases are later used to identify if and how the approaches in the survey would fit into
a Semantic Web context. The framework we use for evaluating the approaches in this
survey is presented in Chapter3. The survey itself is presented in Chapter4. Chapter5
compares the approaches in the survey and Chapter6 presents some conclusions.

Chapter 2

Motivational Use Cases

In this chapter we present a number of generic use cases which capture the functionality
required for ontology mediation on the Semantic Web. Any application of ontology me-
diation is expected to use all these use cases to some extent. Therefore it is interesting to
see to what extent each of the approaches in this survey supports these use cases in order
to evaluate their applicability to the ontology mediation problem on the Semantic Web.

2.1 Generic Use Cases

This section describes the core technical use cases which need to be supported by the
Ontology Mediation framework. We distinguish three use cases, which are detailed in the
remainder of this section:

• Instance Mediation

• Ontology Merging

• Creating Ontology Mappings

The first use case, Instance Mediation, addresses the tasks of instance transformation,
unification and query rewriting. The second use case, Ontology Merging, addresses the
way two source ontologies can be merged into one target ontology. The third use case,
Creating Ontology Mappings, is about actually finding similarities between ontologies
and creating mappings between the ontologies.

The generic use cases correspond to three orthogonal dimensions in ontology media-
tion. Each application scenario can make use of all three use cases to some extent.

16

CHAPTER 2. MOTIVATIONAL USE CASES 17

O2O1
mapping

i2i1

o1

transformation

Figure 2.1:Instance Transformation

2.1.1 Use Cases for Instance Mediation

The following use cases are the typical use cases for instance mediation, where the em-
phasis is on instance transformation and unification.

Definition 1 We defineinstance mediationas the process of reconciling differences be-
tween two instance bases, each described by an ontology. This includes the discovery and
specification of ontology mappings, as well as the use of these mappings for certain tasks,
such as query rewriting and instance transformation.

As we can see in the definition, instance mediation also requires the discovery and
specification of ontology mappings. This makes apparent the inter-dependencies between
the different use cases. We do not describe the discovery and specification of ontology
mappings here; instead, these use cases are discussed later, because of their use in differ-
ent other areas of ontology mediation.

Instance Transformation

For the instance transformation use case we assume two separate applications with sepa-
rate instance stores both described by ontologies. The task to be performed is the transfor-
mation of an instance of a source ontology, sayOS, to an instance of the target ontology
OT . Figure2.1 illustrates the process of instance transformation. An instancei1, which
refers to ontologyO1, is transformed into instancei2, which refers to ontologyO2. What
is important to note here is that the transformation itself is derived from the mapping
between the two ontologies, and that both the original and the transformed instance pro-
vide information about the same real-world object. Note that a real-world object in not
necessarily a physical object, but can also be, for example, a date, an event or a message.

This kind of transformation needs to be supported by the ontology mapping in the
sense that the ontology mapping specifies the relationship between instances of the source
ontologyOS and instances of the target ontologyOT .

CHAPTER 2. MOTIVATIONAL USE CASES 18

Different application scenarios have different requirements on the precision and cov-
erage of the transformation. Withprecisionin this context we mean the degree to which
the intended meaning of the instance is preserved in the transformation. Withcoverage
we mean the fraction of instances that are intended to be transformed, which are actually
transformed. The requirements of the application determine what these measures look
like.

When an instance has been translated fromOS toOT , it is often necessary to detect
whether the transformed instance corresponds to an existing instance in the instance store
of the target application in order to avoid duplication of information and in order to find
out more about the instances in the knowledge base. We discuss this issue below.

Instance Unification

The instance unification problem can be summarized as follows:

Say we have an ontologyO, and two instancesI1 andI2 of that ontology. We want to
check whetherI1 andI2 refer to the same real-world object. In this case we need to unify
I1 andI2 into a newly created instanceI0, which is the union ofI1 andI2

1. Therefore,
the instance unification task can be decomposed into (1) the identification of instances
referring to the same real-world object and (2) taking the union of the two instances in
order to obtain the unified instance.

If the instancesI1 and I2 have been identified as referring to the same real-world
object, but contain contradictory information, it is not possible to create a unified instance
and the user should be informed of the inconsistency.

Figure2.2 illustrates the process of instance unification. Two instances (i1 andi2) of
the same ontologyO1, which refer to the same real-world objecto1, are unified into one
new instance,i0, which is the union of both instances, is also an instance of the ontology
O1 and also describes to the same real-world objecto1.

We identify two general means of detecting whether two instances refer to the same
real-world object:

• In the ‘exact’ case, the ontology mapping specifies precise, exact conditions which
unambiguously specify in which cases two instances refer to the same object and
in which cases they refer to different objects. In other words, in which cases the
instances are unifiable.

• In the ‘probabilistic’ case, a similarity measure is created on the basis of the ontol-
ogy mapping. The similarity measure expresses the probability that both instances
refer to the same object. A threshold could be used to decide whether to unify the

1Note thatI0 could coincide with eitherI1 or I2, which would be a less general case of the one described
here.

CHAPTER 2. MOTIVATIONAL USE CASES 19

i2i1

o1

O1

i0

Figure 2.2:Instance Unification

instances. Another possibility is to have the user decide about the unification, which
is clearly undesirable in the general case, but could be useful in some specific cases
when dealing with very few instances.

Instance transformation and instance unification are often required in a querying sce-
nario where an applicationA queries another applicationB and the query results (con-
sisting of instances) are transformed to the representation ofA and unified with instances
in the instance base ofA.

In order to be able to query a data source which uses a different (unknown) ontology,
the query originally formulated in terms of the application’s ontology needs to be rewritten
in terms of the other ontology. The next section describes the generic query rewriting use
case.

Query Rewriting

An operation occurring very frequently in Knowledge Management applications is query-
ing of information sources. We want to allow an application to query different heteroge-
neous information sources without actually knowing about all the ontologies. In order to
achieve this, a query written in terms of the application’s ontology needs to be rewritten
using the terms in the target data source’s ontology.

Say, we have an applicationA, which uses an ontologyOA for its information repre-
sentation. Say now that this application wants to query a different data source, which uses
ontologyOB, butA does not know about the structure of this ontology. The application
A now formulates a queryQA in terms of ontologyOA. In order to execute this query

CHAPTER 2. MOTIVATIONAL USE CASES 20

O2O1
mapping

rewriting
query1 query2

Figure 2.3:Query Rewriting

on the target data source, it needs to be rewritten onto queryQB, which is formulated in
terms of ontologyOB. This rewriting process is illustrated in Figure2.3.

After execution of the query, the results are transformed back to theOA representation
and unified with the local instances using the techniques for instance transformation and
unification described above.

2.1.2 Ontology Merging

Besides the instance transformation and unification and query rewriting, we see another
major use case for ontology mediation: Ontology Merging.

In the case of Ontology Merging [NM00b], two source ontologies shall be merged
into one target ontology based on the source ontologies. In the general case, the source
ontologies would disappear and only the target (merged) ontology remains. A special
case is when the source ontologies remain, along with mappings to the merged ontology.
Note that the target (merged) ontology could coincide with one of the source ontologies.

In the case where the source ontologies disappear after the merge, the complete in-
stance stores of the source ontologies have to be merged. In the latter case, the source
ontologies can maintain their instance stores and during run-time of the application, pro-
cesses of instance transformation and instance unification (cf. the previous subsection) are
necessary. We can compare these two distinct cases with notions developed in the field
of database integration, namely, the notions ofmaterialisedandvirtual views [Hul97]
respectively.

Of course, when the source ontologies do not have instance stores associated with
them, these problems do not occur. However, in the general case an ontology will have
one or more instance stores associated with it. In special cases, such as the (distributed)
development of ontologies, there will not be instance stores.

CHAPTER 2. MOTIVATIONAL USE CASES 21

2.1.3 Creating Ontology Mappings

In order to be able to support any of the previously mentioned use cases, a mapping
needs to be created between the source and the target ontology2. Note that in the case
of Ontology Merging where the source ontologies remain, a mapping needs to be created
between each source ontology and the merged ontology.

We split the ”Creating Ontology Mappings” use case into two distinct use cases: find-
ing similarities between ontologies and specifying mappings between ontologies.

Finding Similarities

In order to find out which mappings need to be created, similarity between concepts,
relations, etc. . . needs to be established. The similarity between ontologies can either be
established manually or automatically using the so-calledMatch operator (cf. [RB01]).
TheMatchoperator takes as input two ontologies and returns as output a list of similarities
between entities in the two source ontologies. These similarities can now be used as a
starting point to semi-automatically create a mapping between the ontologies or to merge
the two ontologies (cf. [NM00b]).

Specifying Mappings

After having defined the similarities between entities in the different ontologies, a map-
ping needs to be specified between the similar entities of the ontologies. The requirements
of this mapping depend on the application scenario (cf. the various scenarios described in
the next section) and in general the requirements of ontology mediation, as mentioned in
the introduction.

2This does not apply to the case of ontology merging where the source ontologies do not remain. Be-
cause the source ontologies disappear, there needs to be no ontology mapping between these sources and
the new merged ontology. However, the techniques for finding concepts to be merged in different ontologies
and finding mappings between concepts in different ontologies are the same, since they are both based on
the similarity of concepts. In fact, a mapping between two ontologies can be used as a basis for the merged
ontology.

Chapter 3

The Evaluation Framework

This chapter presents the framework used for evaluating and comparing different ap-
proaches in ontology merging and aligning, as well as data integration using ontologies.
This framework is set up in such a way that it enables us to evaluate the applicability of
the approaches to an ontology mediation setting in the Semantic Web context. Each of
the approaches in the survey is described according to these criteria. If one of the criteria
is not applicable to the approach, it will be omitted.

Summary of the approach We first summarize the approach to give the reader a feeling
for what the approach is all about.

Ontology LanguagesFor each tool or method we describe which ontology languages are
supported as sources and targets of the mapping between ontologies. Furthermore,
we describe how the ontology languages relate to the mapping language employed
by the approach. In many cases the same language is used for both the ontologies
and the mappings. In some cases, this can have drawbacks if the ontology language
is not expressive enough to capture all the required ontology mappings.

Mapping language An important aspect in ontology mediation is the mapping language
which is used to actually specify the mapping. The mapping language determines
to some extent the complexity of creating mappings and also the possibilities of au-
tomation in creating the mappings and in transforming and unifying instances. The
most important aspects of an ontology mapping language are its expressivity (i.e.
what kind of relations between the ontologies can be expressed) and its usability.

An important aspect of a mapping language is the types of mappings that are sup-
ported, in other words the expressivity. We can distinguish several types of map-
pings here. The following is an (incomplete) list of types of mappings:

• Class mappings

• Property (i.e. relation) mappings

22

CHAPTER 3. THE EVALUATION FRAMEWORK 23

• Instance mappings

• Axioms / rules / constraints

• Value transformations (for properties)

• Conditional mapping

As was pointed out in Section1.3, there are several mismatches between ontologies,
both on the language and the ontology level. A mapping language needs to take
these mismatches into account. These mismatches mostly concern the ontology
level, although there are still some issues remaining on the language level, as was
pointed out in Section1.3.

Two notes about the mapping language with respect to the approach in the survey
are in order here. Firstly, an ontology merging tool (e.g. PROMPT [NM00b]) does
not produce a mapping and therefore does not need a mapping language. Secondly,
we describe several methods and tools for ontology matching in this survey. These
approaches typically do not produce a mapping, but rather a specification of simi-
larities between entities in the ontologies.

Mapping Patterns One of the major goals of Work Package 4 in the SEKT project is to
investigate the use of patterns for the creation of ontology mappings. One of the
tasks is to find such patterns. Therefore, it would be interesting to see if and how
existing approaches cope with this and how mapping patterns could be integrated.
This issue is very closely related to the mapping language.

Automation support We describe the type of automation that is supported and the de-
gree to which it is supported during creation of the ontology mapping. Ontology
mapping can not be fully automated; the mapping process will always be an inter-
active one.

One important aspect in the automation support is the use of external information
sources, such as domain-specific lexicons or existing ontologies or data schemas.

Applicability to use cases In order to see if and how an approach can be applied to our
setting of ontology mediation in the Semantic Web we analyze the applicability of
each approach to the use cases presented in Chapter2. More specifically, we relate
each approach to the following use cases:

• Instance Transformation

• Instance Unification

• Query Rewriting

• Ontology Merging

We will not treat the applicability of each of the approaches to each of the use cases
in detail, but rather give an indication about the (in)applicability to each of the use
cases.

CHAPTER 3. THE EVALUATION FRAMEWORK 24

Implementation For each approach we describe the tool support developed for the par-
ticular method. We distinguish the following two categories of tools:

• Tools that support the user in creating the mappings (and merging the ontolo-
gies). These tools fall in two categories: (1) components that implement the
Matchoperator to find similarities between ontologies and (2) GUI tools that
aid the user in specifying the mappings between the ontologies.

• Tools that do the run-time mediation. These tools take care of query-rewriting,
data transformation, etc. . .

An important aspect of the implementation is the maturity of the tool(set). An
academic prototype that has just been built to support a PhD thesis would be less
stable and less usable than a product that has undergone much development over
the years and is exploited by a commercial organization.

Experiences with the approachWe summarize the experiences that have been reported
in the literature for each approach. These experiences are very valuable, because
they show the applicability of the methods to real ontology mapping and informa-
tion integration problems. They also show the usability and limitations of the tools
that have been developed for the method.

We structure the description of each of the approaches in the survey in Chapter4
according to this evaluation framework. Furthermore, we provide a comparison of the
approaches in the survey based on the presented evaluation framework in Chapter5.

Chapter 4

The Survey

This chapter presents the actual survey on ontology merging and aligning approaches. We
evaluate the approaches according to the criteria identified in the evaluation framework in
Chapter3.

In order to structure the survey, we have grouped the approaches into three categories:

• Methods and Tools. We describe several special-purpose methods and tools.
The purpose of the approaches in this section ranges from ontology matching
(GLUE, Semantic Matching) to ontology merging (PROMPT) and ontology map-
ping (MAFRA, RDFT). Sometimes the lines between the purpose of the approaches
becomes blurred, because, for example, the authors of MAFRA [MMSV02] also
describe a way to do ontology matching. Also, in the case of PROMPT we
not only describe the ontology merging tool, but also related tools in the area of
matching (even PROMPT itself has a matching algorithm) and ontology versioning
(PROMPTDiff).

• Data Integration Systems. We describe four approaches to data integration using
ontologies, namely InfoSleuth, ONION, MOMIS and OBSERVER. These integra-
tion systems are all comprehensive in the sense that they typically have different
types of functionality. For example, both ONION and MOMIS have matching tools,
which aid in creating mappings between ontologies. All data integration systems
described in this survey support querying of the underlying data sources based on
querying posed against an ontology; they typically implement the wrapper/mediator
architecture, which was described in Section1.5.

• Specific Techniques. We briefly describe a few specific techniques, which we do
not evaluate according to the criteria in the evaluation framework. FCA-Merge is a
method for ontology merging, based on formal concept analysis. OntoMorph is a
system for syntactic and semantic rewriting of ontologies. QOM (Quick Ontology
Mapping) is a method and tool for the discovery of ontology mapping, based on a
combined similarity measure.

25

CHAPTER 4. THE SURVEY 26

4.1 Methods and Tools

4.1.1 MAFRA

Summary MAFRA (MApping FRAmework for distributed ontologies) [MMSV02,
SaR03b] is a framework defined for mapping distributed ontologies on the Semantic Web
based on the idea that complex mappings and reasoning about those mappings is the best
approach in a decentralized environment like the Web. MAFRA has been implemented
as a plug-in of KAON1 and introduces two interesting new concepts: Semantic Bridges
and service-centric approaches. Semantic bridge is defined as “a declarative representa-
tion of a semantic relation between source and target ontologies entities” [SaR03b]. A
Semantic bridge provides the necessary mechanisms to transform instances and property
fillers of a particular source ontology into instances and property fillers of a particular
target ontology. Semantic Bridges are similar to the notion of articulation structures (“the
points of linkage between two aligned ontologies”) in [Kle01] and articulation ontologies
in ONION [MWK00, MW01] (also Section4.2.2).

The other novelty is the service-centric approach that the MAFRA Toolkit introduces
[SaR03b]:

Each semantic bridge has an associated transformation service that deter-
mines the transformation procedure and the information the user must pro-
vide to the transformation engine. Each service is characterized by a set of
arguments, which in turn are characterized by name, type, optionality and lo-
cation (whether it is a source, target or condition argument). Services are not
only responsible for the transformation capabilities but also for the validation
of argument values and semi-automatic mapping.

The service oriented approach complements the semantic bridges mechanism provid-
ing the transformation services necessary to perform the mapping transformations. Silva
and colleagues proposed a decentralized solution where independent transformation mod-
ules are attached to the system. An overview of the architecture of the MAFRA toolkit can
be seen in Figure4.1, where some transformation modules are included (copy instance,
copy relation, concatenate, split, etc.).

Figure4.2outlines the conceptual architecture which synthesizes the main ideas that
are behind the MAFRA System Architecture. In the conceptual architecture a set of main
phases is identified and organized along two dimensions. Horizontal modules correspond
to five fundamental phases in the ontology mapping process (Lift & Normalization, Sim-
ilarity, Semantic Bridging, Execution and Postprocessing). The vertical modules (Evo-
lution, Domain Knowledge & Constraints, Cooperative Consensus building and GUI)
interact with the horizontal phases during the entire ontology mapping process.

1KAON is an Ontology Management tool developed by the University of Karlsruhe,
http://kaon.semanticweb.org/

CHAPTER 4. THE SURVEY 27

Figure 4.1:MAFRA Toolkit System Architecture [SaR03b]

CHAPTER 4. THE SURVEY 28

Figure 4.2:MAFRA Conceptual Architecture [MMSV02]

The horizontal dimension is subdivided into the following five modules:

• Lift & NormalizationDefines a uniform representation (in RDF(S)) in order to nor-
malize the ontologies we want to map. In this step, differences (like special charac-
ters, upper case letters and acronyms) are eliminated and the semantic differences
are slightly reduced.

• Similarity It is a multi-strategy process that calculates similarities between ontol-
ogy entities using different approaches. The combination of all of the matchers
proposed by Maedche and colleagues allow the system to obtain better results in
this phase.

• Semantic BridgingSemantically relate entities (i.e. classes, relations, attributes)
from the source and target ontologies, encapsulating all necessary information to
transform instances of an entity in the source ontology into instances of one (or
more) target ontology entity. The result is close to the notion ofarticulation ontol-
ogy in ONION[MWK00] (see also Section4.2.2).

• ExecutionThis module actually transforms instances from the source ontology rep-
resentation into the representation of the target ontology by evaluating the semantic
bridges which have been defined in the previous phase. There are two possible op-
erational modes: offline (all the transformations are executed one time) and online
(the transformations are continuously executed, and modifications in the source or
target ontologies are immediately reflected).

CHAPTER 4. THE SURVEY 29

• PostprocessingTake the results of the execution module to check and improve the
quality of the transformation results (e.g. object identity: recognize that two in-
stances represent the same real-world object).

The vertical dimension comprises the following modules:

• Evolution Synchronize the changes in the source and target ontologies with the
semantic bridges defined by the Semantic Bridge module.

• Cooperative Consensus BuildingFrom multiple alternative possible mappings the
tool helps to set up a consensus between the various proposals of people involved
in the mapping task.

• Domain constraints and Background KnowledgeThe tool allows users to include
extra information (e.g. lexical ontologies like Wordnet can help in the identification
of synonyms) in order to improve the quality of the mapping.

• GUI Visualization of the elements of the source and target ontologies makes the
mapping task a lot easier in the same way as do the semantic bridges established to
represent the mapping between entities.

The main goal in MAFRA is to transform instances of the source ontology into in-
stances of the target ontology. Semantic Bridges specify how to perform these trans-
formations and categorize them between concept bridges and property bridges. Concept
bridges define the transformations between source instances and target instances, whereas
property bridges specify the transformations between source properties and target prop-
erties. The Semantic Bridge phase defines in the following steps the necessary structures
to describe the mapping between two ontologies:

1. Based on the analysis of similarities that were discovered in the Similarity phase,
the first step is to select the pairs of entities, which could be concepts, relations
and attributes, to be bridged that correspond with concept bridges. MAFRA allows
relations of different cardinality between source and target entities. Thus, a source
or target entity can belong to one or more semantic bridges.

2. The property bridging step specifies matching properties for each concept bridge.
The authors of MAFRA distinguish two types of properties: attributes and relations.
In the case that the type of source and target properties is different the transforma-
tion specification information is required, and the domain expert is asked to supply
this information. Note that an attribute defines a relation between a concept and a
data type value and a relation defines a relation between two concepts.

3. This step (together with the next one) is part of a refinement process to improve the
matching results, and focuses on looking for mapping alternatives where there is

CHAPTER 4. THE SURVEY 30

no target entities. If it is not possible to find a target entity for a source entity, the
algorithm analyzes the hierarchy of the source ontology and proposes an equivalent
mapping of some of the parents of the unmapped source entity. So the source entity
is mapped to the same target entities as some of its parents.

4. As a part of the refinement process mentioned previously, in this step the system
tries to improve the quality of bridges between source sub/concepts and target con-
cepts. It can be viewed as a complementary routine to the similarity phase.

5. Associate transformation procedures with the mapping relations identified in previ-
ous phases. Although one of the main goals of the authors of MAFRA is to provide
an elevated level of automation in the mapping procedure, they recognize that in
this step the intervention of an expert is highly recommended.

Figure 4.3:Semantic Bridging Ontology (SBO) in UML [MMSV02]

Another interesting idea that the MAFRA framework includes is the formalism that
is used to describe the Semantic Bridges. To do this, the authors provide an ontology
specified in DAML+OIL, called the Semantic Bridging Ontology (SBO), which includes
the following concepts (see Figure4.3):

CHAPTER 4. THE SURVEY 31

• Classes Concepts, Relations and AttributesRepresent the main type of entities that
can be found in the source and target ontologies.

• Class Semantic BridgeThis is the most generic bridge and defines the relations
between source and target entities. It allows for the definition of Abstract Semantic
Bridges, which allow users to define common characteristics that can be used in the
definition of other (concrete) semantic bridges. Abstract Semantic Bridges does not
define concrete relations between source and target entities.

• Class ServiceThese are reference resources that are responsible to connect to or to
describe transformations.

• Class RuleRepresent constraint specifications and relevant information for a trans-
formation.

• Class TransformationThis class specifies a transformation procedure for each se-
mantic bridge, and it is obligatory (except in abstract semantic bridges).

• Class ConditionRepresent the conditions that should hold before a semantic bridge
can be executed.

• Composition modeling primitivesAllow each semantic bridge to aggregate several
different bridges that will be processed one by one when the transformations of the
parent semantic bridge are executed. This modeling primitive belongs to the class
Semantic Bridge.

• Alternative modeling primitivesSupported by the class SemanticBridgeAlt; its
function is to group several mutually exclusive semantic bridges.

To finish this brief description of MAFRA, we present an example from [MMSV02]
(see Figure4.4). The goal of this exercise is to map two ontologies: the source ontology
(o1) describes the structure of a family and its events are categorized in family events
(marriage and divorce) and individual events (birth date, death date); and the target ontol-
ogy (o2) characterizes individuals as Man and Woman. A Concept Bridge is defined to
mapo1 : Individual with o2 : Individual. All the attribute bridges are mapped using
property/attribute bridges except foro1 : Individual - sex. This attribute is mapped us-
ing an alternative semantic bridge with two concept bridges that mapo1 : Individual -
sex with o2 : Man ando2 : Woman.

Ontology Languages MAFRA needs the Lift & Normalization module to translate the
ontologies that participate in the mapping process into RDF (S). Precisely, the terminol-
ogy specification is transformed to RDF Schema and the instances to RDF.

CHAPTER 4. THE SURVEY 32

Figure 4.4:UML representation of the semantic bridge defined to map the ontologies of
the example [MMSV02]

Mapping Language Semantic Bridges (SBs) in conjunction with transformations mod-
ules services provide all the functionality that a mapping language requires. Also the se-
mantic of this mapping formalism is unambiguously specified through the SBO (Semantic
Bridging Ontology).

Another important characteristic of MAFRA is that it supports several types of map-
ping like Class mappings, Property (i.e. relation) mappings and Instance mappings.

Mapping Patterns MAFRA does not support the use of mapping patterns in ontology
mappings. However, one could see a Semantic Bridge as an elementary mapping pattern
and a specific combination of a number of Semantic Bridges can be seen as a mapping
pattern. Therefore, it should be possible to incorporate the use of mapping patterns into
MAFRA.

Automation Support One of the main goals of the designers of MAFRA is to get a
high level of automation support. Unfortunately, the papers that describe the tool do not
indicate precisely which steps are automatic and which are not. Also MAFRA gives the
user the opportunity to define semantic bridges manually. The modules that are directly
involved in the mapping process (horizontal dimension) present the following level of
automation:

• Lift & Normalization is probably a module that can work independently from users
to provide a uniform representation of the ontologies that will be mapped.

CHAPTER 4. THE SURVEY 33

• The calculation of similarities inside a multi-strategy process looks like it is fully
automatic.

• The generation of semantic bridges is partially automated. The specification of
mappings between properties (property bridging step) and the association of trans-
formation procedures with mapping relations require the participation of a domain
expert.

• The execution engine, implemented in Java, is fully automated, and achieves the
transformations defined in the semantic bridges.

• The postprocessing module is not further elaborated in the papers that described
MAFRA, and the level of automation is not specified.

The moduleDomain and Background Knowledgeprovides mechanisms to include
background knowledge and domain constraints by using for example glossaries or lexi-
cal ontologies. This features can considerably improved the quality of the results of the
similarity module and the semantic bridge module.

Applicability to Use Cases One of the goals of MAFRA is to support instance trans-
formation through transformation procedures that are associated to semantic bridges. The
postprocessing module tries to provide support for instance unification (recognizing that
two instances represent the same real word object), but the authors recognized that it is
a very challenging task and do not guarantee that it is fully implemented. On the other
hand, Semantic Bridges define explicitly mappings between entities of two ontologies,
and MAFRA provides a semantic specification for these mechanisms.

Finally, in the papers [SaR03a] and [SaR03b], the authors outline a mechanism is
close to the idea of query rewriting to retrieve all the instances of a query that are stored
in several ontologies which have mapping specifications between each other.

Implementation As we mentioned in the summary description of this tool, the MAFRA
toolkit was implemented as plug-in of KAON. Silva and colleagues continuous with
the development of this mapping system, and the latest versions can be founded at
http://mafra-toolkit.sourceforge.net. Also some examples and documentation are avail-
able on this site. MAFRA’s current approach is being used and tested under the Har-
monise project2. Harmonise intends to overcome the interoperability problems occurring
between tourism operators due to the use of different information representation stan-
dards. The MAFRA Toolkit was adopted as the representation and transformation engine
core technology for the Harmonise project. Harmonise uses an “Interoperability Mini-
mum Harmonisation Ontology” (IMHO) as lingua franca between agents. The MAFRA
Toolkit is responsible for the acquisition, representation and execution of the ontology
mapping between each agent specific ontology and IMHO [SaR03a].

2http://www.harmonise.org

CHAPTER 4. THE SURVEY 34

Experiences Silva and colleagues provided an informal evaluation in their papers
([SaR03a, SaR03b]) of the performance of MAFRA and they compare their results with
OntoMerge [DMQ02], a tool for mapping and merge.

4.1.2 RDFT

Summary Omelayenko and Fensel [OF01] present an approach to the integration of
product information over the web by exploiting the data model of RDF [LS99], which
is based on directed labeled graphs. In their approach, Omelayenko and Fensel assume
product catalogs from different organizations specified in XML documents. The prob-
lem they sketch is different organizations using different representations for their product
catalogs. They intend to mediate between these different representations with the use of
RDF triples3.

The approach to the integration of product catalogs is called two-layered because the
product information itself is represented in XML, whereas the transformation between
different representations is done in RDF. The general idea is that an XML document,
whose structure is described by a DTD (Document Type Definition) or XML Schema, is
(1) abstractedto an RDF graph, which in turn is described by an ontology, which could
be specified using the RDF Schema [BG04] ontology language. The RDF document is
then (2)transformedinto a target representation, which is also described by an ontology.
Then, the target RDF is (3)refinedto the target XML representation, which can be used
by applications at the target vendor. All three transformation steps are performed with the
XML transformation language XSLT [Cla99]. The process of abstraction, transformation
and refinement is illustrated in Figure4.5.

[Ome02b] proposes a mapping meta-ontology for describing the transformation be-
tween RDF documents. This mapping meta-ontology, called RDFT (RDF Transforma-
tion) is specified using RDF Schema [BG04] and is used to describe the mapping between
two RDFS ontologies. We describe this ontology and its use in more detail below.

[Ome02a] describes a technique for discovering semantic correspondence between
different product classification schemes based on a Naive-Bayes classifier. The mappings
between the different product classifications are represented using the bridges from the
RDFT meta-ontology.

Ontology Languages Omelayenko [Ome02b] not only describes a way to map between
different RDF Schema ontologies, but also describes the way to transform XML docu-
ments to RDF using RDFT, thereby effectively specifying the way to perform the abstrac-
tion step.

3An RDF triple consists of asubject, apredicateand anobject. Subjects and objects form the nodes of
the graph, whereas predicates form the edges. An object in a triple can also occur as a subject or an object
of a different triple.

CHAPTER 4. THE SURVEY 35

target

RDF Triples

source

RDF Triples

target

XML Catalog

source

XML Catalog

refine

transform

abstract

target

Ontology

source

Ontology

describes describes

Figure 4.5:Two-layered integration of XML catalogs using RDF

RDFT can be used to express mappings between arbitrary ontologies specified in the
RDF Schema ontology language. Furthermore, it can be used to specify the transforma-
tion between XML documents and the RDF representation.

Mapping language We will now give a short overview of the RDFT mapping meta-
ontology.

The RDFT meta-ontology is used to describe three types of mappings denoted by
classes in RDFT:

• An EventMap is used to specify the relationship between different events. Events
in this context correspond to activity occurrences, such as sending or receiving a
message. These events can be used, for example, to connect descriptions of two
web services, described using the Web Service Definition Language WSDL4.

• A DocumentMap specifies the relationship between an XML and an RDF repre-
sentation of a catalog.

• A VocabularyMap specifies the actual relationships between two ontologies.

For our purposes, the most interesting type of mapping is thevocabulary mapping
(VocabularyMap).

A mapping between two ontologies (vocabularies) is expressed using a number of
bridges. Bridges in RDFT are subclasses of theRDFBridge class. RDFT distin-
guishes two types of RDF bridges, namelyClass2Class andProperty2Property

4http://www.w3.org/TR/wsdl

CHAPTER 4. THE SURVEY 36

bridges.Class2Class bridges are used to describe the mapping between two classes
and the transformation of instances of these classes. The instance transformation is spec-
ified using XPath [CD99] expressions.Property2Property bridges are used to de-
scribe the mapping between two properties in the ontologies. Again, XPath can be used
to specify instance transformations.

The types of mappings in RDFT (class-to-class and property-to-property) are proba-
bly sufficient in the domain of e-Marketplaces, which was the original target application
domain [OF01], because ontologies can be expected to have a similar level of granular-
ity and the goals of the different ontologies are similar. However, if ontologies are more
diverse, different types of mappings, e.g. classes-to-instances, classes-to-properties, etc.
will be necessary.

In the approach taken by Omelayenko (cf. [OF01, Ome02b]), the steps ofabstraction,
transformation, andrefinementall use the XML Transformation language XSLT [Cla99]
for specifying the transformations between XML and RDF documents, as well as trans-
formations between different RDF representations. While certainly XSLT is expressive
enough to express arbitrary transformations between XML documents, and can therefore
also transform RDF documents represented in the RDF/XML [Bec03] serialization into
a different representation, it is not well-suited for the specification of RDF transforma-
tions, because it does not take the data model of RDF, which isgraph basedinto account,
whereas the data model of XML istree based. Therefore, the RDF data model needs to
be in a sense encoded in the tree based XML model in each single XSLT transformation.

Automation Support [Ome02a] describes a way to discover similarity between classes
based on the instance information for this class, using a machine-learning approach. In the
use case, the class was a product classifier and the instance data consisted of the product
descriptions.

The RDFT meta-ontology was presented as the preferred way to specify mappings be-
tween ontologies, based on the similarities discovered by a matching tool, but no explicit
support is provided for this.

Applicability to Use Cases RDFT tackles the use case ofinstance transformation
through the XPath specifications attached to the RDF Bridges. RDFT does not offer a
solution for instance unification, nor for query rewriting, although the declarative map-
ping between classes and properties could be used for this purpose. The scope of RDFT
is limited to the transformation of XML documents between different representations.

The use case of ontology merging is not addressed, although a specification of rela-
tionships between ontologies in terms of the RDFT meta-ontology could help in merging
different ontologies, because it specifies the relationship between classes.

CHAPTER 4. THE SURVEY 37

Implementation A prototype tool was created to create mappings based on the RDFT
meta-ontology.

Experiences RDFT as well as the classification method proposed in [Ome02a] have
been used for the discovery and specification of mappings between product classification
schemes in the course of the GoldenBullet [DKO+02] project.

4.1.3 PROMPT

Summary The PROMPT suite consists of a set of tools that have had an important im-
pact in the area of merging, alignment and versioning of ontologies. A relevant result
of this development is the definition of a global strategy that looks to take advantage of
the synergies that have been generated by the combination of tools that in the past where
considered independent. The PROMPT suite [NM03b] includes an ontology merging
tool (iPROMPT, formerly known as PROMPT [NM00b]), an ontology tool for finding
additional points of similarity between ontologies for other tools like iPROMPT (An-
chorPROMPT, [NM00a]), an ontology versioning tool (PROMPTDiff, [NM03a]), and a
tool for factoring out semantically complete subontologies (PROMPTFactor, [NM03b]).
The work of Natasha Noy and colleagues proves that in multiple ontology management,
tasks like looking for differences between versions of an ontology or looking for similari-
ties between two ontologies in a merging process are closely interrelated and share several
components and heuristics (see Figure4.6). Thus tools for supporting some of the tasks
in the context of multiple ontology management can benefit greatly from their integration
with others [NM03a]5.

The key components of the PROMPT suite have been developed as extensions (plug-
ins) of the Prot́eǵe 2000 ontology development environment6. We can distinguish the
following components:

• iPROMPT is an interactive ontology merging tool, which helps users in the ontol-
ogy merging task by providing suggestions about with elements can be merged, by
identifying inconsistencies and potential problems and suggesting possible strate-
gies to resolve these problems and inconsistencies.

• AnchorPROMPT extends the performances of tools like iPROMPT determin-
ing additional points of similarities between ontologies that are not identified by
iPROMPT.

5Noy and colleagues [NM03b] define multiple ontology management as a set of concrete tasks for
dealing with multiple ontologies such as maintaining libraries of ontologies, import and reuse og ontolo-
gies, translating ontologies to other formalism, ontology versioning support, ontology merging-mapping-
alignment support, inference across multiple ontologies and query across multiple ontologies

6http://protege.semanticweb.org/

CHAPTER 4. THE SURVEY 38

Figure 4.6:The PROMPT suite infrastructure and interactions between tools [NM03b]

CHAPTER 4. THE SURVEY 39

• PROMPTDiff compares two version of an ontology and identifies structural differ-
ences between different versions of the same ontology.

• PROMPTFactor is a tool that enables users to create a new ontology factoring out
part of an existing ontology. In this process, the tool guarantees that the terms
of the resulting subontology are well-defined (for instance, every concept of the
subontology includes as appropriate the superconcepts/subconcepts required for its
specification).

One of the major contributions to the development of PROMPT suite was the identi-
fication of an important overlap in the functionality of its tools and the implementation of
an integrated approach where all these tools benefit from each other. For instance, some of
the components that were originally created for the interface of iPROMPT were reused in
the implementation of the interfaces of the other tools of the suite. In addition, the initial
sets of related terms between two ontologies that AnchorPROMPT requires as a starting
point for a deeper analysis of similarities can be provided by iPROMPT. In return, An-
chorPROMPT can supply an additional set of related terms that can be used by iPROMPT
to improve the results of the merging process. A final example of this integrated approach
can be found in the design of PROMPTDiff and iPROMPT. PROMPTDiff uses some
of the heuristics that were initially developed in iPROMPT for comparison of concept
names, slots attached to concepts, domains and range of slots and so on.

As mentioned above,iPROMPT [NM00b] is an interactive tool implemented as an
extension of Prot́eǵe 2000. iPROMPT guides users in the process of merging two on-
tologies (see an example of the user interface in Figure4.7). The tool was originally
developed to handle ontologies specified in OKBC [CFF+98], but there are at the mo-
ment significant efforts to adapt the tool in order to support7 the OWL ontology language
[DS04]. The central element of iPROMPT is the algorithm that defines a set of steps for
the interactive merging process, see also Figure4.8. The first step is to identify potential
merge candidates based on class-name similarities. The result is presented to the user as
a list of potential merge operations. The second step is initiated by the user who chooses
one of the suggested operations from the list or specifies the operation directly. The sys-
tem performs the requested action and automatically executes additional changes derived
from the action. It then makes a new list of suggested actions for the user based on the
new structure of the ontology, determines conflicts introduced by the last action, finds
possible solutions to these conflicts and displays these to the user.

Initially, PROMPT identified a set of ontology merging operations (merge classes,
merge slots, merge bindings between a slot and a class, etc) and a set of possible conflicts
for these operations (name conflicts, dangling references, redundancy in the class hier-
archy and slot-value restrictions that violate class inheritance). These lists of ontology
merging operations and possible conflict operations have been extended by the authors of
the tool as a part of an evolution process in the design of the system.

7Based on personal correspondence with Natasha Noy, 19-05-2004

CHAPTER 4. THE SURVEY 40

Figure 4.7:An example of ontology merging in iPROMPT

Figure 4.8:The flow of the iPROMPT algorithm [NM00b]

CHAPTER 4. THE SURVEY 41

The goal ofAnchorPROMPT [NM00a] is to augment the results of methods that
analyze only local context in ontology structures, such as Chimaera [MFRW00] and
iPROMPT [NM00b], by finding additional possible points of similarity between ontolo-
gies. To do this AnchorPROMPT requires that the other tool or the user provides an initial
set of related terms. Following a graph perspective, the tool establishes a set of paths that
connects the terms of an ontology that are related with the terms of the other one. The
algorithm takes two pairs of related terms as input and analyzes the elements that are in-
cluded in the path that connect the elements of the same ontology with the elements of
the equivalence path of the other ontology. So, we have two paths (one for each ontology)
and the terms that compound these paths. The analysis looks for terms along the paths
that might be similar to the terms of the other path, which belongs to the other ontology,
assuming that the elements of those paths are often similar as well. These new poten-
tially related terms the algorithm discovers are marked with a similarity score that can
be modified during the evaluation of other paths in which these terms are also involved.
Terms with high similar scores will be presented to the user to improve the set of possible
suggestions in, for example, a merging process in iPROMPT.

If the two ontologies that we compare present important differences in the number of
levels of their hierarchy or in the number of relations between classes, the algorithm does
not work well.

The third element of the suite isPROMPTDiff [NM03a], which is used to compare
the structure of two versions of a particular ontology and which identifies the frames
(i.e. classes, slots or instances) that have no changes, frames with only changes in their
properties, and frames that have also changed in other parts of their definitions. The name
of the tool, PROMPTDiff, is influenced by tools like CVS, which is a version control
system that is used to maintain the history of program source code files. This tool includes
facilities to discover changes between versions of a document (finding a diff).

The last element of the PROMPT suite we will describe here is the toolPROMPT-
Factor [NM03b] which allows users to extract from a larger ontology the elements that
the user is interested in, in a way that also copies all the terms required for preserving
the semantics of the descriptions. The authors of the tool call this process “factoring
subontologies”.

During the analysis of the PROMPT suite, we concluded that the tool has some limi-
tations in the area of ontology versioning and evolution. We present a summary of some
of the most relevant conclusions of our study (some of them where confirmed by Natasha
Noy):

• PROMPTDiff only detects differences between two versions using a structural diff.
In [Kle04], we can find several complementary alternatives (change logs, concep-
tual relations and transformation set) that can give us a richer description of the
changes that the original ontology has undergone.

CHAPTER 4. THE SURVEY 42

• The description of the differences between two versions of an ontology that
PROMPTDiff offers is limited. For this reason, Klein extended PROMPTDiff to
support richer semantic descriptions of changes. He introduced a more complex
classification of type of changes (implicitly-changed, directly-changed, changed,
isomorphic and unchanged, see [Kle04]) and provides a high level description of
the changes based on the idea of minimal transformation set and on an ontology of
changes (again see, [Kle04]).

PROMPTDiff can find difference between ontologies but it does not mean that there
is explicit support for versioning. PROMPTDiff does not allow the user to identify
versions or to indicate that there is a versioning relationship between ontologies.
Therefore, the user has to find a way to manage different versions of an ontology
and to identify that a particular ontology is a version of another ontology.

Ontology Languages The knowledge model underlying PROMPT is the Open Knowl-
edge Base Connectivity (OKBC) protocol [CFF+98]. OKBC is frame-based: frames are
the main elements in this knowledge model for building ontologies, and three types of
frames can be distinguished: classes, slots and instances. A class is a set of entities, and
the elements of a set are called instances. Slots define binary relations between classes or
between a class and a primitive object (such as a string or a number). Also there has been
a considerable effort to provide RDF and OWL support through the Protéǵe OWL plug-
in8. Natasha Noy guaranteed in one of her emails to the protege-owl mailing lists9 that
PROMPT is able to merge many OWL ontologies, and only a small number of features
of OWL are not supported: “. . . There are indeed a small number of OWL features that it
does not support, but it supports a large fraction of them. . . ”

Mapping Language iPROMPT and AnchorPROMPT do not include language that
specifies the mapping. We understand that there should exist an internal representation of
the mapping results because there is a strong interaction between the tools of the suite, and
they need to share these results, but the related bibliography does not describe this pos-
sible formalism. Michel Klein (see [Kle04]) implemented an extension of PROMPTDiff
that provides a language for change specification that characterizes differences between
two ontologies. This language was originally defined using OKBC and then translated
and extended in OWL.

iPROMPT in combination with AnchorPROMPT can map classes, properties and in-
stances using linguistic and structural similarity techniques.

Mapping Patterns Currently there is no support for mapping patterns in the PROMPT
suite.

8http://protege.stanford.edu/plugins/owl/
9http://protege.stanford.edu/mailarchive/msg09344.html

CHAPTER 4. THE SURVEY 43

Automation Support iPROMPT is an interactive merging tool that guides users in the
process of merging two ontologies. iPROMPT proposes to the user a set of ontology
merging operations and a set of possible conflicts for these operations. Then, the user has
two choices: select one of the suggestions generated by the tool, or specify the desired op-
eration directly. After that, iPROMPT performs the operation and automatically executes
additional changes that the operation requires. Finally the previous list of suggestions is
modified as a result of the changes that the executed operation produced. This cycle is
repeated until the merging process finishes, or the user decides to abort it.

Applicability to Use Cases The PROMPT suite is a set of tools that provides several so-
lutions for ontology mediation, versioning and factoring. iPROMPT covers the complete
merging process, and can also generate a list of initial similarities that AnchorPROMPT
improves in generating a new list of related terms on which the mapping could be based.

Implementation All the tools of the PROMPT suite are plug-ins or extensions to the
Prot́eǵe-2000 ontology development environment. Protéǵe-2000 provides an intuitive
graphical user interface for ontology development, a rich knowledge model based on two
important standards like OKBC and OWL, and an extensible architecture that provides
API access both to the Protéǵe-2000 knowledge bases and to its user interface compo-
nents [NM03b].

The PROMPT suite is clearly user oriented where the main goal is to support the
user in creating the mappings (and merging the ontologies).The suite of tools provides a
common user interface that follows the schema of Protéǵe-2000 GUI, and components
that implement the Match operator to find similarities between ontologies.

The PROMPT suite was developed and improved in the context of several projects
during the last 5 years, with the collaboration of many users who continuously evaluate
and exploit the tools providing valuable feedback for the developers.

Experiences The papers that describe iPROMPT [NM00b], AnchorPROMPT [NM00a]
and PROMPTDiff [NM03a] include evaluation tests to show the accuracy of these tools.

In the case of iPROMPT [NM00b], the authors tested the tool using two ontologies
with 134 class and slot frames in total. The first ontology was developed for the unified
problem solving method development language (UPML) [FMvH+03] and the second on-
tology for the method description language (MDL) [GGM98]. The evaluation showed
that human experts followed 90% of iPROMPT’s suggestions and 75% of the conflict
resolution strategies. The users performed 74% of the operations suggested by iPROMPT
during the merging process.

AnchorPROMPT was also tested in [NM00a]. The results show that the accuracy of
AnchorPROMPT is directly proportional to the length of the paths considered. For exam-
ple with path length 2 the accuracy is 100% and with path length 4 the accuracy decreases

CHAPTER 4. THE SURVEY 44

to 67%. Noy and colleagues also tested AnchorPROMPT with the same ontologies as
iPROMPT. They discovered an important limitation of the tool: the algorithm does not
provide good results when the structures of the ontologies differ considerably. The UPML
ontology has a large number of classes distributed on many different levels. On the other
hand, the MDL ontology has a simpler structure with fewer classes and with only two
levels in the hierarchy.

Finally, the accuracy of PROMPTDiff [NM03a] was evaluated using several versions
of two ontologies of two different projects: EON project and PharmGKB project. The
tool identified 96% of the possible matches (recall) and 93% of the identified matches
were correct (precision).

4.1.4 GLUE

Summary GLUE [DMDH04] is a system which employs machine learning technolo-
gies to semi-automatically create mappings between heterogeneous ontologies, where an
ontology is seen as a taxonomy of concepts. With GLUE, the authors port their previ-
ous work on matching database schemas (called LSD) [DMDH02] to the Semantic Web
domain. GLUE focuses on finding 1-to-1 mappings between concepts in taxonomies, al-
though the authors say that extending matching to relations and attributes and involving
more complex mappings (such as 1-to-n and n-to-1 mappings) is the subject of ongoing
research.

The similarity of two conceptsA andB in the two taxonomiesO1 andO2 is based on
the sets of instances that overlap between the two concepts. In order to determine whether
an instance of conceptB is also an instance of conceptA, first a classifier is built using
the instances of conceptA as the training set. This classifier is now used to classify the
instances of conceptB. The classifier then decides for each instance ofB, whether it is
also an instance ofA or not.

Based on these classifications, four probabilities are computed, namelyP (A,B),
P (A,B), P (A, B) and P (A, B), where, for example,P (A, B) is the probability that
an instance in the domain belongs toA, but not toB. These four probabilities can now
be used to compute thejoint probability distributionfor the conceptsA andB, which is a
user supplied function, using these four probabilities as parameters. [DMDH04] describes
two possible functions for the joint probability distribution. The first example is theJac-
card coefficient, where the similarity measure is computed by dividing the probability
that an instance is in the intersection of two concepts by the probability that an instance
is in the union of the concepts (P (A ∩ B)/P (A ∪ B)), which intuitively corresponds to
the function of relevant instances, which are both inA andB. The second example is the
“most-specific-parent”, where the similarity measure is positive (i.e. the measure is not
0) for any parentB of A and it is the highest for the most specific parent, i.e. the concept
BMSP , which represents the smallest superset ofA.

The general architecture of the GLUE system is as follows:

CHAPTER 4. THE SURVEY 45

• TheDistribution Estimatortakes as input the two taxonomiesO1 andO2, together
with their instances and applies machine learning to compute the four aforemen-
tioned probabilitiesP (A,B), P (A,B), P (A, B) andP (A, B). Currently, the dis-
tribution estimator uses a content learner, which learns a classifier based on the
textual context of the instances, and a name learner, which learns a classifier based
on the name of the instance. It is possible to plug in different learners for differ-
ent aspects using a meta-learner which uses a certain function to incorporate the
predictions from all learners into an overall prediction.

• The Similarity Estimatorapplies a user supplied function, such as the mentioned
Jaccard coefficient or the most-specific-parent, and computes a similarity value for
each pair of concepts〈A ∈ O1, B ∈ O2〉.

• The Relaxation Labelertakes as input the similarity values for the concepts from
the taxonomies and searches for the best mapping configuration, exploiting user
supplied domain specific constraints and heuristics.

All in all, GLUE can be seen as an implementation of theMatchoperator and can be
fit into the overall mapping process as illustrated in Section1.2.

Ontology Languages The GLUE matcher uses two taxonomies, in which the nodes cor-
respond to concepts, and edges correspond tois-a relationships in the ontologies. Clearly,
such a taxonomy can be easily extracted from an ontology represented in any ontology
language, although a lot of the relationships in the ontology are not taken into account.
This, though, is not such a big problem for the approach, since the matching is mostly
based on instance information.

Mapping Language The result of the matching done in GLUE is not a mapping be-
tween the two ontologies, but rather a set of similarity measures, stating which concepts
in one ontologyO1 are similar to concepts in the other ontologyO2.

Mapping Patterns Mapping patterns are not an issue in GLUE, since it is only con-
cerned with discovering similarities between concepts based on their instances. GLUE
could also not be used for matching patterns with an ontology, since a pattern does not
have instances.

Automation Support GLUE has a semi-automatic algorithm for specifying the map-
ping between two ontologies. Ontologies are seen as taxonomies and the problem of
matching is reduced to: “for each concept node in one taxonomy, find themost similar
node in the other taxonomy”.

CHAPTER 4. THE SURVEY 46

The input from the user in the matching process consists of the function to be used for
computing the overall similarity value, based on the joint distribution of the concepts, and
the domain specific constraints and heuristics, which are used for the relaxation labeling
process.

GLUE takes a one-shot approach at determining the similarities between taxonomies,
which means that there is no user interaction during the matching process. The user has to
use the outcome of the matching process as-is and use it as a basis for creating a mapping
between the ontologies. In other words, GLUE implements the “find similarities” step in
the mapping process (Section1.2), but does not provide support for the iteration step.

Applicability to Use Cases GLUE aids in creating mappings between ontologies in the
sense that it makes the work of the human user easier by finding similarities between
concepts in two ontologies based on their instances.

Implementation A prototypical implementation of GLUE was created and the perfor-
mance of each of the components in the architecture was evaluated. The main components
to be evaluated were the different types of learners used for the classification and the re-
laxation labeler, which applied domain constraints and heuristics in order to come up
with better matches. It turned out that the combination of several combined classifiers to-
gether with domain heuristics can achieve significant performance enhancement in terms
of accuracy, which can go up to 97% in some domains.

Experiences [DMDH04] reports only on small evaluations of the performance of their
system for taxonomies in the domain of (university) course catalogs and company pro-
files. The matching accuracy for their chosen examples was typically between 70 and 90
percent. However, experiments on a broader scale need to be done to see if GLUE works
in other domains and to evaluate the scalability of the approach.

4.1.5 Semantic Matching

Summary Semantic Matching [GS04] is an approach to matching classification hier-
archies. The problem addressed by Semantic Matching is the following: say you have
two different classification hierarchies, where each hierarchy is used to describe a set of
documents, i.e. each term in the classification hierarchy describes a set of documents.
How do the terms in one hierarchy relate to the terms in the other hierarchy?

Semantic Matching can also be seen as an implementation of theMatchoperator. The
authors defineMatch as follows: “Match is an operator that takes two graph-like struc-
tures (e.g. database schemas or ontologies) and produces a mapping between elements of
the two graphs that correspond semantically to each other”. This definition is similar to
the definition provided in Section1.1. However, in Semantic Matching the definition is

CHAPTER 4. THE SURVEY 47

limited to the graph representation format for ontologies. This distinction is fundamental
to the Semantic Matching approach, since it performs matching based on the nodes and
the edges between the nodes in a graph.

Until now Semantic Matching has been mostly developed and tested for the task of
matching classification hierarchies. A property of classification hierarchies is that there is
only one type of relationship, which is a weak, informal variant of theis-a relationship.
It is currently not clear if and exactly how Semantic Matching can be applied to the
problem of ontology matching, because most ontologies typically have different types of
relationships between concepts and theis-arelationship in ontologies is typically a formal
relationship, interpreted often as a strict logical implication or a subset relationship (as is
the case for the semantics of Description Logics).

Of course, an ontology can usually be rewritten as a graph with labeled edges, al-
though some information (e.g. axioms) might be lost in the rewriting. Concepts could be
the nodes and relationships between concepts could be the (labeled) edges; the label of
the edge would denote the type of the relationship. This is similar to the labeled graphs
used in ONION (see Section4.2.2). There is currently work underway to incorporate the
semantics of therelationshipsin the Semantic Matching algorithm, but this work is still
in the early stages.

The authors of [GS04] have argued that almost all earlier approaches to schema and
ontology matching have beensyntacticmatching approaches, as opposed tosemantic
matching. In syntactic matching, the labels and sometimes the syntactical structure of
the graph is matched and typically some similarity coefficient[0, 1] is obtained, which
indicates the similarity between the two nodes. Semantic Matching computes a set-based
relation between the nodes, taking into account the meaning of each node. The possible
relations returned by the Semantic Matching algorithm areequality (=), overlap (∩),
mismatch(⊥), more general(⊆) or more specific(⊇). The correspondence of the symbols
with set theory is not a coincidence, since each concept in the classification hierarchies
represents a set of documents.

We will now briefly sketch the Semantic Matching (alsoS-Match) algorithm for graph
matching.

Two levels of granularity for matching are distinguished in S-Match, namelyelement-
level matching andstructure-levelmatching. At the element level, which is concerned
with individual nodes, the authors distinguish techniques withweak semanticsand tech-
niques withstrong semantics. Techniques with weak semantics correspond to the syn-
tactic matching which has been proposed in most previous literature (for an overview
see [RB01]). Element-level matching with strong semantics is done using thesauri (e.g.
WordNet [Fel99]), which typically contain synonym and hypernym relations between
terms. These relations can be used to find semantic relations between nodes in the graphs.

In the next phase, thestructure-levelmatching, the matching problem, i.e. the two
graphs together with themapping queryare translated into a propositional formula and
then checked for validity (i.e.satisfiability). A mapping query is a pair of nodes and a

CHAPTER 4. THE SURVEY 48

semantic relationship between the pair of nodes. If the propositional sentence is valid, we
know that the semantic relationship between the two nodes in the query holds and thus
can be added to the mapping result.

A potential problem with this algorithm is that the propositional satisfiability check
(which is known to have nondeterministic polynomial complexity) has to be performed
for every pair of nodes from the two graphs. Clearly, this does not scale for large graphs.

Ontology Languages Currently, the semantic matching can work with classification
hierarchies, but also directed acyclic graphs (DAGs) in general. Ontologies can often be
translated to classification hierarchies by treating classes in the ontology as nodes and the
is-a relationships as edges, but all other relationships are lost in the translation. This of
course does not rule out the use of the result of the algorithm as the input to a mapping
process for the complete ontologies. Also, there is work underway to extend the semantic
matching to work with labeled graphs, taking the semantics of the different relationships
into account.

This does not mean that the algorithm in its current form is useless, on the contrary.
There are currently many classification schemes around, such as dmoz10, Yahoo11, and
many other (specialized) classification hierarchies are in use. However, for arbitrary on-
tology matching on the Semantic Web, it has not been shown that the algorithm performs
well. This has only been shown for the case of classification hierarchies withis-a rela-
tionships with very weak semantics. Ontologies typically have more formal and stricter
semantics for theis-a relationship (i.e. the is-a relationship typically denotes a proper
subset relationship between the extensions of the concepts) and many other types of rela-
tionships.

Mapping Language S-Match is a matching algorithm and as such does not have a
language for the actual specification of the mappings, only for the specification of the
similarities, although in this case the specification of similarities comes close to a real
mapping specification.

As we have mentioned earlier, the specification of the similarity of concepts is done
using set-based primitives, denoting the relationships of equality, disjointness, overlap
and sub/superset. In later work (e.g. [GSY04]), the authors use the symbols commonly
found in description logics, i.e.〈A,B,u〉 for overlap,〈A,B,v〉 for subset,〈A,B,w〉
for superset and〈A,B,⊥〉 for disjointness of the concepts. These relations could be
translated to Description Logic [BCM+03] axioms, i.e.> v AuB, A v B, B v A, and
A uB ≡ ⊥.

10http://www.dmoz.org/
11http://www.yahoo.com/

CHAPTER 4. THE SURVEY 49

Mapping Patterns Currently, there is no use of mapping patterns in Semantic Match-
ing. It might be worthwhile to see if mapping patterns can help to find similarities, al-
though this is not a straightforward task. Perhaps it is possible to match ontologies against
mapping patterns in order to find out if a certain mapping pattern might be applicable, but
the authors do not give any hints as to if and how we can incorporate mapping patterns
into the matching algorithm.

Automation Support Clearly, the proposed algorithm is an automatic one-pass (i.e.
no user interaction) algorithm, which returns all similarities it can find between the two
graphs. There is no user interaction during the execution of the matching.

It cannot be assumed that the mapping returned by the algorithm is either correct
or complete. Therefore, the result of the S-Match algorithm can serve as a first step in
the overall ontology mapping process. It can serve as the input for the next phase in
the mapping process, in which the user validates the result of the matching and corrects
any mistakes and does the necessary additions in order to make the mapping correct and
complete12.

Applicability to Use Cases For the purpose of ontology mediation on the Semantic
Web, the role which can be played by S-Match could be in the discovery phase of the
mappings between ontologies. Since S-Match provides an implementation of theMatch
operator, it fits into the “find similarities” step in the mapping process.

Implementation [GSY04] presents S-Match, an algorithm and implementation of Se-
mantic Matching. It also compares the performance of the S-Match implementation
in terms of speed, precision and recall with available implementations of existing ap-
proaches in syntactic matchings COMA [DR02], Cupid [MBR01] and Similarity Flood-
ing [MGMR02], which was implemented in the RONDO system [MRB03].

It turned out that for most applications, S-Match outperformed the other systems in
terms of precision and recall. However, the other systems typically outperformed S-Match
in terms of time required to perform the actual matching. One possible explanation is that
the S-Match implementation has not really been optimized. However, the S-Match im-
plementation uses a propositional SAT solver, which can not be efficiently implemented,
because the problem is known to beNP-Hard. Currently, there are no known algorithms
that require less than exponential time for satisfiability checking.

Experiences Semantic matching has so far only been tested with some toy examples.
However, the results presented in [GSY04] do look promising with respect to the precision

12Of course, it can also never be guaranteed that the outcome of the human mapping will be either correct
or complete.

CHAPTER 4. THE SURVEY 50

and recall achieved by the system compared to other existing matchers. Furthermore, S-
Match is currently in the early stages of its development; there are plans to apply S-Match
in other settings, which will show whether S-Match works for real-world problems on the
Semantic Web.

4.1.6 OntoMap

OntoMap ([KSD01a]) is a knowledge representation formalism, reasoner, and web por-
tal13 for upper-level ontologies and lexical semantics. The project was developed by On-
totext Lab. in cooperation with the Bulgarian Academy of Sciences. The portal pro-
vides access to the most popular upper-level ontologies and lexical resources, together
with hand-crafted mappings between them. It facilitates the evaluation and comparison
of upper-level ontologies and lexical knowledge bases. The portal is based on a unified
representation of the resources, a proprietary inference engine, and a mapping method-
ology. It includes a number of alternative viewers: HTML, DHTML, a stand-alone GUI
application.

In order to provide a uniform representation of the ontologies and the mappings be-
tween them, OntoMap introduces a relatively simple meta-ontology called OntoMapO.
The knowledge representation language is more complex than RDF(S) and similar to
OWL Lite− [dBPF04], but it also includes specific primitives for ontology-mapping.

The following upper-level ontologies are hosted:

• Upper Cyc Ontology

• EuroWordnet Top Ontology

• EuroWordnet Meta-Ontology

• WordNet Meta-Ontology

• WordNet Tops (the top 41 classes)

• MikroKosmos Top (the top 13 classes)

• OntoMap Meta-Ontology

• Protege Meta-Ontology

• Simple Ontology of Business Entities

• SENSUS Top (the top 257 classes)

13http://ontomap.ontotext.com/

CHAPTER 4. THE SURVEY 51

Mappings between EuroWordnet Top and the other ontologies were created. There are
almost no direct mappings between the other ontologies, but the equivalence and sub-
sumption relations are automatically propagated through the mapping to EuroWordnet
Top.

Mapping Language The full description of the OntoMapO could be found in
[KSD01b]. Here we present just its mapping primitives, as follows:

• MuchMoreSpecific- the 1st concept is much more specific than the second one;
transitive relation. Inverse ofMuchMoreGeneraland a specialization ofChildOf;

• MuchMoreGeneral- the 1st concept is much more general than the second one;
transitive relation. Inverse ofMuchMoreSpecificand a specialization ofParentOf;

• TopInstance- the 1st concept is the most general instance of the second one, which
is a meta-concept. Inverse of ExactClass and a specialization ofInstanceOf;

• ExactClass- the 1st concept is a meta-concept, the second concept is the most
general instance of the first one. Inverse ofTopInstanceand a specialization of
ClassOf;

• ParentAsInstance- the 1st concept is more general than all the instances of the
second one which is a meta-concept. Inverse ofChildAsClass;

• ChildAsClass- the 1st concept is a meta-concept (class), all its instances are more
specific than the second concept. Inverse ofParentAsInstance.

Automation support OntoMap does not automatically create mappings. It assumes
that either a mapping exists or it may be created manually. Although it may seem that
automatic mapping may reduce the efforts, in the case of upper-level ontologies the typical
heuristics involved for domain ontologies can play a very limited role. This is explained
in detail in [KSD01b]. Once a mapping to one of the ontologies it supports is created,
OntoMap could automatically create a mapping to any of the other ontologies.

Applicability to use cases OntoMap could be used for (semi-)automatic creation of
Ontology Mappings between other domain ontologies and existing ones, but it requires
that a mapping exists to one of the supported ontologies. The different upper-level ontolo-
gies are suited for different purposes, thus, a domain ontology may naturally map to one
of these, and then OntoMap will automatically provide a mapping to the rest. Although
OntoMap does not directly address the use-case of instance transformation, the mappings
it creates could be used for such tasks. It is important to mention that OntoMap handles
classes and instances in an uniform fashion and thus could transform instances to classes
and vice-versa (viaParentAsInstanceandChildAsClassmapping primitives).

CHAPTER 4. THE SURVEY 52

Tool support

• The OntoMap web portal (http://ontomap.ontotext.com) requires the users to reg-
ister (it is free) and then it allows the browsing of ontologies via a handy DHTML
Tree View. The search for concepts throughout one or more ontologies is also sup-
ported. The portal allows the export of the ontologies to DAML+OIL.

• CYC to EWN-Top mapping. An online service, hosted at http://demo.ontotext.com,
allows the browsing of the EuroWordnet Top ontology and its mapping into Upper
Cyc Ontology. The corresponding Cyc concepts are represented with: their glosses,
direct and indirect super-classes (#$genls), direct and indirect classes (#$isa). The
mapping itself is expressed in terms of a CycL microtheory encoding of the Eu-
roWordNet Top Ontology on top of the publicly available part of the Cyc knowledge
base. This approach was chosen because such a mapping is impossible by means of
equivalence and subsumption relations only. However, a simplified relational view
that is sufficient for many purposes, is also provided. More theoretical details can
be found in [KS00].

• The OntoMap Viewer is a standalone java application, which represents
the main functionality of the OntoMap web portal. OntoMap Viewer is
distributed for all popular platforms: Windows, Linux, Solaris, MacOS
(http://www.ontotext.com/projects/OntoMapViewer/install.htm). All of the previ-
ously mentioned ontologies are encoded into OntoMapO language. The viewer
allows the browsing and searching by concepts from any ontology. An example,
shown in Figure4.9, illustrates the supported mappings between the upper-level on-
tologies. The user chooses an ontology and then selects a concept from it, e.g.Per-
sonfrom SENSUS Top ontology. Then the viewer shows any equivalence, super-
and sub-concepts from all ontologies including the current one, but also the others,
if there are equivalence and/or subsumption relations (in this case the concept is
equivalent toHumanfrom EuroWordnet Top andPersonfrom UpperCyc).

Summary OntoMap provides a mapping model for upper-level ontologies, and a few
of the most popular ones are encoded in it. Using the mapping to the EuroWordnet Top
ontology and a reasoner to support the knowledge representation language, a mapping
between all of the ontologies is available. Thus, a new mapping from a domain ontology
to one of the supported upper-level ontologies could be automatically mapped to each of
the other ones. However, OntoMap is focused on the evaluation and the comparison of
the ontologies, which are encoded into OntoMapO, rather than on Ontology mapping or
instance transformation services.

CHAPTER 4. THE SURVEY 53

Figure 4.9:OntoMap Viewer - concept “Person” in different upper-level ontologies

CHAPTER 4. THE SURVEY 54

4.1.7 RDFDiff

RDFDiff (formerly known as OntoView) is an algorithm and a tool, developed jointly
by VU Amsterdam and Ontotext Lab. It aims to detect and visualize changes in RDF-
encoded knowledge (such as ontologies encoded in RDF(S), DAML+OIL, and OWL).
Basically, it is a CVS-like diff, tuned for RDF(S), which compares XML-serializations,
ignores the differences, preserving the graph, and resembles the original text representa-
tion (the order of statements and the formatting from the original files). Finally, RDFDiff
utilizes change-classification rules, which are intended to serve as a basis for a further
semantic and structural analysis of the differences, for example:

• robust categorization of the changes

• evaluation of the compatibility between the versions

• data-transformation or mapping

The change detection in RDFDiff includes:

• Matching anonymous resources and their descriptions

• Detection of renamed resources, based on the definition of the resource

• Detection of renamed resources, based on the usage of the resource (detecting of
sub-graphs, which do not change, given that you had substituted the old ID/URI
with the new one)

The tool is similar to PROMPTDiff [NM03a] for the following:

• change detection based on graphs

• an extensible set of rules to classify a change (called “heuristics” in PROMPTDiff)

It differs due to the fact that it compares XML-serializations of the RDF(S), it detects
changes using the RDF-graph model, but it presents the results in a diff-like way (tex-
tual), while trying to preserve the order of the statements in the XML serialized files. It
is focused on RDF(S) and thus it handles its specifics well (e.g. anonymous resource
matching).

RDFDiff algorithm overview Essentially, the algorithm takes as input two XML-
encoded RDF files, compares them, and produces a list of changes, organized into added,
changed and deleted items.

It is important to mention that RDFDiff has no deep semantics and it does not make a
distinction between ontology and instance data. It does not need to be run on two ontolo-
gies (it could compare any RDF-graphs) but it was developed to aid ontology comparison.

CHAPTER 4. THE SURVEY 55

In its first version RDFDiff was perceived as a diff for an old and a new version of an on-
tology, and thus the description of the algorithm, as well as the user interface of the tool
implementing it, refer to the two ontologies being compared as ”old” and ”new”. How-
ever, except for the visualization of the results, RDFDiff does not depend on the fact that
the RDF graphs are two versions of the same graph and therefore it could well be used for
any two ontologies.

The algorithm treats an RDF-encoded ontology as a sequence of resource definitions,
where a definition of resource R is assumed to be the list of all statements where R is a
subject. This grouping of the statements into resource definitions is optional, because for
many purposes the original grouping from the source file is important for the reader. In
the case where the statements are not grouped into ”resource definitions”, they will be
handled as grouped in first level XML elements. The resource definitions are ordered like
in the new file, considering the position of the first statement from the definition.

Statements are considered to be changedif and only if the subject and the predicate
in both versions match unambiguously, but the values are different, i.e. when there is a
single statement with such a subject and such a predicate in both versions.

Mapping language The change-classification rules are defined via a simple RDFS
schema, which contains two classes and a few properties. The classes areRuleandTriplet.
Each rule is a set of triplets defining relationships between some triples via common vari-
ables used in place of ’subject’, ’predicate’ or ’object’. The main task is to find all the
possible solutions (read possible bindings of the variables used in the triplets) where there
exist triples that match the patterns of the whole set of triplets. Then all solutions found
with the older version of the resource definition are compared against those found in its
newer version, and the equal pairs are removed.

Each instance of a Rule class can be connected with several instances of the Triplet
by the propertyuse, which is defined as:

<rdfs:Property rdf:about="&rule;use" />

These are the properties that indicate which variable is to be observed for possible
changes and what label should be emitted in addition, removal or change:

<rdfs:Property rdf:about="&rule;checkVar" /> <rdfs:Property
rdf:about="&rule;onChanged" /> <rdfs:Property
rdf:about="&rule;onAdded" /> <rdfs:Property
rdf:about="&rule;onRemoved" />

The instances of the Triplet class can be connected with predicates specifying a sub-
ject, a predicate and an object of a triple for matching. Each value of these predicates,
starting with ”$”, can be treated as a name of a variable, and the others as resource URIs
or literals.

CHAPTER 4. THE SURVEY 56

<rdfs:Property rdf:about="&rule;theSubj" /> <rdfs:Property
rdf:about="&rule;thePred" /> <rdfs:Property
rdf:about="&rule;theObj" />

The solutions are compared by the values bound to the used variables: if a value is a
resource, by its URI, if it is a literal, lexically, and in the case of an anonymous resource,
by the object value of the triple with a predicate ”daml:onProperty”. If there is at least
one such solution in any of the versions, the rule is applicable and its ‘label’ is added.

If there are solutions which only differ by the value of the ’checkVar’ variable: the
generated ’label’ is the one prepared by the literal, connected with a ’rule:onChanged’
property to that rule instance. If there are no solutions in the older version, then for
each ’extra’ solution that is left unmatched in the newer version, a ’label’ is generated
from the literal, connected with a ’rule:onAdded’ property to the rule. And in the case of
unmatched solutions left from the older version, the rule label is generated with the literal
connected to the rule with a rule:onRemoved property.

An example rule to detect the change of the parent class follows:

<rule:Rule rdf:about="&rule;ruleSubClassOf">
<rule:use>

<rule:Triplet>
<rule:theSubj>$X</rule:theSubj>
<rule:thePred rdf:resource="&rdfs;subClassOf" />
<rule:theObj>$Z</rule:theObj>

</rule:Triplet>
</rule:use>
<rule:checkVar>$Z</rule:checkVar>
<rule:onChanged>subClassOf.changed to $Z</rule:onChanged>
<rule:onAdded>subClassOf.added to $Z</rule:onAdded>
<rule:onRemoved>subClassOf.removed to $Z</rule:onRemoved>

</rule:Rule>

Application to use-cases When applied to two ontologies, RDFDiff will find structural
similarities. It does not utilize semantic (S-Match) or linguistic (PROMPT) similarities.
The change-classification rules could be a powerful declarative syntax for the automatic
detection of changes or for the automatic creation of a mapping between two ontologies.
Instance transformation is also possible, but all of the applications require extensions of
the allowed actions in the rules.

Tool support The RDFDiff tool is web-based and it is available online at
http://dell.sirma.bg/RDFDiff/index.htm. It implements the RDFDiff algorithm, and in
addition it allows one to specify some handy compare-options:

CHAPTER 4. THE SURVEY 57

• pairs of namespaces treated as equal;

• an ignore-list of properties (e.g. ignoringrdf:Comment).

Figure 4.10:RDFDiff - an example

Summary RDFDiff is a diff-like tool oriented to the comparison of XML-serialized
RDF(S) graphs. It could be used for change detection between two versions of an on-
tology, or for a comparison of two arbitrary ontologies. Although not directly suited for
mediation use-cases, its change classification rules allow for applications for automatic
creation of mappings or instance transformation.

4.2 Integrated Systems

4.2.1 InfoSleuth

InfoSleuth [FNPB99, NFK+00] is an agent-based system, which supports construction of
complex ontologies from smaller component ontologies so that tools tailored for one com-
ponent ontology can be used in many application domains. The purpose of the system is
to provide an interface to very dynamic data sources which can appear and disappear from
the system at any given time. Examples of reused ontologies include units of measure,
chemistry knowledge, geographic metadata, and so on. Mapping is explicitly specified
among these ontologies as relationships between concepts in one ontology and related
concepts in other ontologies.

CHAPTER 4. THE SURVEY 58

Figure 4.11:The InfoSleuth architecture

All mappings between ontologies are maintained by a special class of agents known
as resource agents. A resource agent encapsulates a set of information about the ontol-
ogy mapping rules, and presents that information to the other agents in concepts of one
or more ontologies (calleddomain ontologies). All mapping is encapsulated within the
resource agents. Ontologies are represented in OKBC (Open Knowledge Base Connec-
tivity) [CFF+98] format and stored in an OKBC server by a special class of agents called
ontology agents, which provide ontology specifications to users (for request formulation)
and to resource agents (for mapping).

The InfoSleuth architecture [NFK+00] (Figure4.11) consists of a number of different
types of agents. User agents and resource agents are the main agents in the system.
User agents request information to fulfil the user’s information needs and resource agents
provide that information. The remaining agents in the system provide the “glue” (or
mediation) between the two.

• Theuser agentsact on behalf of the user and maintain the user’s state. They provide
a system interface that enables users to communicate with the system.

• Theresource agentswrap and activate databases and other repositories of informa-
tion. They translate queries and data stored in external repositories between their
local forms and their InfoSleuth forms. There are resource agents for different types
of data sources, including relational databases, flat files, and images.

CHAPTER 4. THE SURVEY 59

• Service agentsprovide internal information to the operation of the agent system.
Service agents includeBroker agents, which collectively maintain the information
the agents advertise about themselves,Ontology agents, which maintain a knowl-
edge base of the different ontologies used for specifying requests, andMonitor
agents, which monitor the operation of the system.

• Query and analysisagents fuse and/or analyze information from one or more re-
sources into single (one-time) results. Query and analysis agents includeMulti-
resource query agents, which process queries that span multiple data sources,De-
viation detection agents, which monitor streams of data to detect deviations, and
other data mining agents.

Multi-resource query agents query multiple heterogeneous resources. The queries
posed to the agent are specified in terms of some domain ontology. In InfoSleuth,
applications can use several domain ontologies. However, a query is always posed
over one domain-specific ontology.

• Planning and temporal agentsguide the request through some processing which
may take place over a period of time, such as a long-term plan, a workflow, or the
detection of complex events. Planning and temporal agents includeSubscription
agents, which monitor how a set of information (in a data source) changes over
time,Task planning and execution agentsplan the processing of user requests in the
system, andSentinel agentsmonitor the information and event stream for complex
events.

• Value mapping agentsprovide value mapping among equivalent representations of
the same information.

InfoSleuth uses as its query language a variant of SQL, where a query consists of ase-
lect, fromandwhereclause. Functions are allowed in theselectandwhereclauses and the
syntax is consistent with that used in popular relational database management systems.
For the user queries, a layer on top of this query language has been developed, called
Template-based Query Markup Language (TQML), which uses templates and material-
ized views to aid the user in creating queries.

When agents come online they advertise their capabilities to a specific broker agent
in terms of the “infosleuth” ontology. This ontology is a special ontology used for adver-
tisement and querying of agents. When a query is posed to a broker agent, the brokering
process is initiated. First, syntactic matching is done to, for example, determine which
resource agents speak the desired language. The semantic matching is done in order to
find out which resources contain information about the desired concepts. Finally, prag-
matic matching is done to restrict the set of resources to those that, for example, have the
correct access permissions.

CHAPTER 4. THE SURVEY 60

Resource agents in InfoSleuth function as a wrapper of the underlying data source. A
resource agent advertises the part of the overall domain ontology that it supports, adver-
tises its query capabilities and does the query rewriting and transforms the retrieved data
to facts of the domain ontology.

Mappings between different value domains are encapsulated invalue mapping agents,
which perform simple and complex mappings between domains. Examples of complex
mappings are sophisticated functions (e.g. differences in time intervals) and incorporating
values from (multiple) external ontologies.

The execution of queries is done by thequery agent. This query agent decomposes
a query into a number of subqueries, one for each resource agent involved in the query.
Furthermore, it creates a number of global queries for fusing the results of the subqueries
in order not to have redundancy in the overall query result.

Ontology Languages Ontology agents which provide an OKBC interface to the knowl-
edge base can all be connected to the InfoSleuth agent system. All ontologies within
InfoSleuth are expressed using the OKBC knowledge model. Each resource agent must
wrap an external information source and provide a mapping with the domain ontologies
currently in use in the InfoSleuth system.

Mapping Language [NFK+00] reports no mapping between ontologies in InfoSleuth.
In fact, this was seen as future work. However, because InfoSleuth is mostly a data inte-
gration system, it is more relevant that a mapping between data sources and the domain
ontologies is possible. InfoSleuth does not provide a mapping language, but does provide
a number of Java templates, which can be used for the development of wrappers, which
contain a procedural mapping between the data schema and the domain ontologies in the
agent system. An important point here is that it is possible to map to multiple domain
ontologies and it would be very interesting to combine this with actual mappings between
ontologies, as is done in ONION [MWK00], for example.

Mapping Patterns Although some aid in the creation of mappings through the use of
Java templates is offered to the user, there is no concept of mapping patters in InfoS-
leuth. In fact, we expect that it would be hard to use mapping patterns in such procedural
mappings as exist in InfoSleuth between data schemas and ontologies. Extensions of In-
foSleuth, which would enable mapping between ontologies, would benefit from the use
of mapping patterns. However, we are not aware of any continuation of the work on
InfoSleuth after the work reported in [NFK+00].

Automation Support There is no automation support in creating mappings between
data schemas and ontologies. However, the query rewriting and data fusion is completely
automated, based on the mappings between the data schemas and the ontology. A query

CHAPTER 4. THE SURVEY 61

written in terms of a domain ontology is automatically decomposed in terms of the re-
sources, and after execution the results are automatically fused by a different decomposi-
tion of the original query.

Applicability to Use Cases As stated above, the resource agents take care of transform-
ing data from the underlying sources to the ontology representation of the system and also
of rewriting the query in terms of the data schema.

The querying agent fuses query results from different sources in order to remove re-
dundancies. The fusion of query results is based on a different decomposition of the user
query, which defines a union of the query results and eliminates any redundancy in the
results.

Implementation The InfoSleuth agent system has been implemented in two prototype
projects.

There are Java templates available to make the development of new agents easier. To
create a resource agent using such a template, it is generally sufficient to just supply a
configuration and a mapping file to complete the agent [NFK+00]. It is possible to use
different ontologies in an InfoSleuth system. Each OKBC-compliant Knowledge Base
can be used in InfoSleuth by wrapping it using anontology agent.

Experiences [NFK+00] reports the use of InfoSleuth in two prototype projects. The
first is the EDEN (Environmental Data Exchange Network) project. The aim of the EDEN
project was to provide integrated access to environmental information resources over the
Web. EDEN posed many challenges in the area of the integration of legacy databases and
mappings of values of different representations of similar information.

Another prototype project in which InfoSleuth was applied is MCC’s Competitive
Intelligent [NFK+00].

4.2.2 ONION

Summary ONION (ONtology compositION) [MWK00, MW01] is an architecture
based on a sound formalism to support a scalable framework for ontology integration
that uses a graph-oriented model for the representation of the ontologies.The special fea-
ture of this system is that it separates the logical inference engine from the representation
model (the graph representation) of the ontologies as much as possible. This allows for
the accommodation of different inference engines in the architecture.

In ONION there are two types of ontologies, individual ontologies, referred to as
source ontologiesandarticulation ontologies, which contain the concepts and relation-
ships expressed as articulation rules (rules that provide links across domains). Articu-

CHAPTER 4. THE SURVEY 62

lation rules are established to enable knowledge inter-operability, and to bridge the se-
mantic gap between heterogeneous sources. They indicate which concepts individually
or in conjunction, are related in the source ontologies [MWK00]. SKAT (the Semantic
Knowledge Articulation Tool) [MWJ99] uses the structure of these graphs together with
term-matching and other rules to propose articulation rules for the articulation ontologies.
The source ontologies are reflected in the system by the use of wrappers.

The mapping between ontologies is executed by ontology algebra [Wie94, MW01].
Such algebra consists of three operations, namely, intersection, union and difference. The
objective of ontology algebra is to provide the capability for interrogating many largely
semantically disjoint knowledge resources, given the ontology algebra as input. The de-
scription of the algebra operators is as follows:

• The intersectionproduces an ontology graph, which is the intersection of the two
source ontologies with respect to a set of articulation rules, generated by an artic-
ulation generator function. The nodes in the intersection ontology are those that
appear in the articulation rules. The edges are those edges between nodes in the
intersection ontology that appear in the source ontologies or have been established
as an articulation rule. The intersection determines the portions of knowledge bases
that deal with similar concepts.

• The union operator generates a unified ontology graph comprising the two origi-
nal ontology graphs connected by the articulation. The union presents a coherent,
connected and semantically sound unified ontology.

• The differenceoperator, to distinguish the difference between two ontologies
(O1−O2) is defined as the concepts and relationships of the first ontology that have
not been determined to exist in the second. This operation allows a local ontology
maintainer to determine the extent of one’s ontology that remains independent of
the articulation with other domain ontologies so that it can be independently ma-
nipulated without having to update the articulation.

ONION tries to separate as much as possible the logical inference engine from the
representation model of the ontologies, allowing the accommodation of different infer-
ence engines. It also uses articulations of ontologies to inter-operate among ontologies.
These articulation ontologies can be organized in a hierarchical fashion. For example, an
articulation ontology can be created for two other articulation ontologies that unify differ-
ent source ontologies. The ontology mapping is based on the graph mapping, and at the
same time, domain experts can define a variety of fuzzy matching.

Ontology Language Before ontologies are integrated in the ONION system, they are
translated to the ONION graph-based conceptual model. An ontologyO = (G,R) is
represented as a directed labeled graphG and a set of rulesR. The graphG = (V,E)

CHAPTER 4. THE SURVEY 63

Figure 4.12:The components of the ONION system

consists of a finite set of nodesV and a finite set of edgesE. Nodes in the graph corre-
spond toconceptsin the ontology. Edges correspond tosemantic relationshipsbetween
the concepts.

In the ONION conceptual model, there are several semantic relationships with a built-
in meaning, namely{SubClassOf, PartOf, AttributeOf, InstanceOf, V alueOf}.
Furthermore, the user can create user-defined semantic relationships. The user then has
to axiomatize the meaning of the relationship. The better the meaning of the relationship
is axiomatized, the more accurate the articulation will be. A more detailed description of
the meaning of the built-in semantic relationships can be found in [MW01].

An ontology graph can be represented in the Semantic Web language RDF [LS99],
because RDF has a graph-based data model. The set of logical rulesR are expressed as
Horn clauses.

An ontology in any source language can be translated to the graph-based model using
a custom wrapper. It could happen that during the translation to the ONION conceptual
model, some semantic information is lost. This information can no longer be used for the
articulation of relationships with other ontologies, however, the user can still access this
information by querying the underlying ontology directly.

Mapping Language Inter-operation in ONION is achieved through the use ofarticula-
tion ontologies. An articulation ontology denotes the semantic intersection of two source
ontologies. The intersection is an operation in the so-calledontology algebra[Wie94].

CHAPTER 4. THE SURVEY 64

The articulation ontology is constructed based on so-calledarticulation rules. An ar-
ticulation rule specifies the relationship between concepts in the source ontologies. An
articulation rule is a rule of the formP ⇒ Q, which can be intuitively read as “P se-
mantically implies Q”. In other words,P is a specialization of Q, or “Pis subsumed by
Q”.

ONION distinguishes between simple and compound rules. A simple articulation
rule, which specifies the relationship between nodes in two ontology graphs, is of the
form O1.A ⇒ O2.B, whereA depicts a node in ontologyO1 andB depicts a node in
ontologyO2. The rule specifies the fact thatA is a specialization ofB. This rule trans-
lates to the simplest semantic bridge, thesemantic implication bridge, which is an edge
(A, “SIBridge”, B), connecting the two nodes. Compound rules incorporate conjunction
and/or disjunction in the rule. Such rules are modeled by adding one or more nodes to the
articulation ontology and creating the appropriate semantic implication bridges between
the nodes in the source ontologies and the new node in the articulation ontology. For more
information, see [MWK00].

In order to allow for value transformations, ONION offers the possibility of associat-
ing a function with an edge in the articulation ontology. Examples of such functions are
currency conversion and conversion between different distance measures.

Automation Support The articulation rules are created in a semi-automatic process
with SKAT [MWJ99] (Semantic Knowledge Annotation Tool), which proposes articula-
tion rules to the expert and the expert can either accept or decline these proposals and also
specify rules which are not proposed by the tool.

SKAT does matching of the two source ontologies using both term matching and
structural matching.

Applicability to use cases ONION is a system for the unification of heterogeneous
ontologies through the use of articulation ontologies with the purpose of query processing.
The resulting articulation ontology is presented to the user and is used (together with the
source ontologies) by the user for querying. The ONION query system translates query
on the articulation ontology to the actual source ontologies and executes the query on the
underlying ontologies. The results are then translated back to the representation of the
articulation ontology.

ONION does not propose a strategy for unifying instances. The ontology obtained
from applying the union operator can be seen as the result of a merge operation.

The complete mapping process is included in ONION. In fact, the mapping is just
one aspect of ONION, because ONION also provides the run-time environment for data
integration.

CHAPTER 4. THE SURVEY 65

Implementation The ONION architecture [MWK00, MW01] (Figure4.12, taken from
[MW01]) consists of four components:

• The ONION data layer.This layer contains the wrappers for the external sources
and the articulation ontologies that form the semantic bridges between the sources.

• The ONION viewer.This is the user interface component of the system. The viewer
visualizes both the source and the articulation ontologies.

• The ONION query system.The query system translates queries formulated in term
of an articulation ontology into a query execution plan and executes the query.

• The Articulation Engine.The articulation generator takes articulation rules pro-
posed by SKAT [MWJ99], the Semantic Knowledge Articulation Tool, and gener-
ates sets of articulation rules, which are forwarded to the expert for confirmation.

The different components in the architecture have been implemented as a research
prototype to support a PhD thesis.

Experiences [MWK00, MW01] do not show any real experiences with the application
of ONION besides toy examples described in the papers.

4.2.3 OBSERVER

Summary OBSERVER (Ontology Based System Enhanced with Relationships for Vo-
cabulary hEterogeneity Resolution) [MIKS00] is a system which aims to overcome prob-
lems with heterogeneity between distributed data repositories by using component on-
tologies and the explicit relationships between these components. OBSERVER presents
an architecture consisting of component nodes, each of which has its own ontology, and
the Inter-ontology Relationship Manager (IRM), which maintains mappings between the
ontologies at the different component nodes. Besides the ontology, each component node
contains a number of data repositories along with mappings to the ontology, to enable
semantic querying of data residing in these repositories. When other components need to
be queried, the IRM provides mappings to ontologies of other component nodes in order
to enable querying. The user views the data in the system through it’s own local ontology,
located at the user’s component node.

OBSERVER uses a component-based approach to ontology mapping. It provides
brokering capabilities across domain ontologies to enhance distributed ontology querying,
thus avoiding the need to have a global schema or collection of concepts.

OBSERVER uses multiple pre-existing ontologies to access heterogeneous, dis-
tributed and independently developed data repositories. Each repository is described by
means of one or more ontologies expressed using the Description Logic (DL) system

CHAPTER 4. THE SURVEY 66

CLASSIC. The information requested from OBSERVER is expressed according to the
user’s domain ontology, also expressed using DL. DL allows matching the query with the
available relevant data repositories, as well as translating it to the languages used in the
local repositories.

The system contains a number of component nodes, one of which is the user node.
Each node has an ontology server that provides definitions for the terms in the ontology
and retrieves data underlying the ontology in the component node. If the user wants to
expand his query over different ontology servers, the original query needs to be translated
from the vocabulary of the user’s ontology into the vocabulary of another’s component
ontology. Such translation can not always be exact, since not all the abstractions repre-
sented in the user ontology may appear in the component ontology. If this is the case the
user can define a limit in the amount ofLoss of Information. The user can always set this
parameter to 0, thereby specifying no loss at all. The loss of information threshold is used
by the query processor, which discards queries exceeding the threshold.

An Inter-ontology Relationship Manager (IRM) provides the translations between the
terms among the different component ontologies. The IRM effectively contains a one-
to-one mapping between any two component ontologies. This module is able to deal
with (intentional)Synonym, Hyponym, Hypernym, Overlap, Disjoint andCoveringinter-
ontology relationships. Furthermore, the IRM is also able to deal with extensional rela-
tionships between ontologies through the use of so-calledtransformer functions.

The user submits a query to the query processor in its own component node (in fact,
each component node has a query processor). The query processor first uses the local
ontology server to translate the query into queries on the local data repositories and then
execute them, after which the user can choose to incrementally increase the query to
multiple ontologies. The query processor then uses the IRM to translate the query into
terms used by the other component ontologies and retrieve the results from the ontology
servers at the other component nodes.

Querying in OBSERVER consists of the following three steps:

1. The userconstructs the queryusing terms from the user’s ontology.

2. The query processor uses the ontology server toaccess the underlying dataat the
user’s node. The query is executed against the local data repositories.

3. In a process ofcontrolled query expansion to new ontologiesthe user can specify
whether he/she is satisfied with the query results or whether the query should be ex-
panded to other component ontologies. In this case, the inter-ontology relationships
retrieved from the IRM are used to rewrite queries and to transform query results.

The ontology server can be queried in two ways. Information about the ontology itself
can be retrieved and the ontology server can answer queries formulated over an ontology
using the mappings to the different data sources and the wrappers available for each data

CHAPTER 4. THE SURVEY 67

Figure 4.13:The general OBSERVER architecture

CHAPTER 4. THE SURVEY 68

source. The query capabilities of each data source are consulted by the ontology server,
which creates a query plan and invokes the wrappers to retrieve the data from the sources.

In principle, only the local ontology server is queried initially. The user can then
choose to incrementally expand the query over multiple ontologies in order to retrieve
more results for the query.

Ontology Languages Ontologies, as well as mappings between ontologies are specified
using the Description Logic system CLASSIC.

Ontologies are DL expressions organized in a lattice and can be considered as “seman-
tically rich metadata capturing the information content of the underlying data repository”.

Mapping Language In OBSERVER, there exist two types of mappings, namely the
mappings between data repositories and ontologies and the mappings between the on-
tologies. We will first describe the mappings between data repositories and ontologies,
after which we describe the specification of the inter-ontology relationships.

A data source is seen as consisting of entities and attributes (in the Entity-Relationship
[Che79] sense of the terms). Mapping between data sources and the ontology is repre-
sented by associating each term in the ontology with a number of Extended Relation
Algebra (ERA) expressions. ERA is used as an intermediate language between the De-
scription Logic expressions of the ontology and the underlying data repositories. The
wrapper is responsible for the translation between ERA and the data repository itself,
which is straightforward if the data source is a relational database. It is interesting to
note that in the mapping to roles in the ontology, ERA allows functions, which typically
represent value transformations.

OBSERVER deals with a number of types of inter-ontology relationships in order to
enable inter-operability:

• Synonym. Two synonymous terms have the same semantics, i.e. the sameintended
meaning. This does not guarantee that they have the same extension.

• Hyponym. A term is a hyponym of another term if it is less general, i.e. a term in
one ontology subsumes a term in another ontology.

• Hypernym. A term is a hypernym of another term if it is more general, i.e. a term
in one ontology is subsumed by a term in another ontology.

• Overlap. This means the two terms have an overlap, i.e. a non-empty intersection.
In OBSERVER, the overlap between ontologies is usually indicated with a percent-
age, which can be used to estimate the loss of information in a query translation.

• Disjoint. This means there is no intersection between the two terms.

CHAPTER 4. THE SURVEY 69

• Covering. When a term in one ontology corresponds to a union of terms in the other
ontology, i.e. the meaning of the term in one ontology iscoveredby the union of
terms from the other ontology. There does not exist an object represented by the
term in the one ontology, which is not represented by the union of the given children
terms.

The above mentioned inter-ontology relationships explicate the intentional relation-
ship between terms in two ontologies. However, when an intentional relationship between
terms is true, it does not mean that this relationship holds also for the extensions (i.e. sets
of instances) of the ontologies. For the extensional level, a set oftransformer functions
between roles in different ontologies is used. These functions are used for both instance
transformation and instance unification.

The Inter-ontology Relationship Manager can be used to discover sets of related com-
ponent ontologies, to retrieve related terms between ontologies and to perform value trans-
formations from one ontology representation to the other.

Automation Support There seems to be no automation in creating the mappings be-
tween ontologies and/or data sources. However, known matching algorithms could be
easily used to identify similarities between ontologies.

The query processing, on the other hand, is completely automated, with the exception
that the user is still required in the incremental querying process in the sense that the user
needs to specify whether other component nodes need to be queried.

Applicability to Use Cases Instance transformation and instance unification are both
performed in the querying process. The query processor is responsible for transforming
and correlating query results from the target ontology into the user ontology.

The emphasis in OBSERVER is really on query rewriting. The relationships between
the ontologies, expressed using Description Logics, are used to rewrite the queries from
the user’s ontology to the component ontology.

If the query can not be fully translated, the query processor estimates the loss of
information and discards a query if this loss is beyond a certain threshold.

Query rewriting is done in the following way: the source and target ontologies are
integrated, after which all terms in the query for which a synonym exists in the target
ontology, are replaced by this synonym and all other terms are replaced by the intersection
of their immediate parents or the union of their immediate children.

OBSERVER is a data integration system and as such provides no explicit support for
ontology merging, although in the query processing ontologies are automatically inte-
grated based on the inter-ontology relationships retrieved from the IRM.

CHAPTER 4. THE SURVEY 70

Implementation The OBSERVER architecture, depicted in Figure4.13 (taken from
[MIKS00]), consists of a number of component nodes and the IRM node. A component
node contains anOntology Serverwhich provides for the interaction with the ontologies
and the data sources. It uses a repository of mappings to relate the ontologies and the data
sources and to be able to translate queries on the ontology to queries on the underlying
data sources. The architecture contains one Inter-Ontology Relationship Manager (IRM),
which enables semantic inter-operation between component nodes by maintaining the
relationships between the ontologies.

OBSERVER has been implemented as a prototype for the access of distributed het-
erogeneous data sources in the area of bibliographic data.

Experiences The authors have reused different existing ontologies in the area of biblio-
graphic data and represented them in CLASSIC for integration in the OBSERVER archi-
tecture. Real-life ontologies and data repositories were used in the prototype. It turned
out that the time required to access the distributed data repositories was the bottleneck for
the prototype.

4.2.4 MOMIS

Summary MOMIS (Mediator envirOnment for Multiple Information Sources) ap-
proach [BCV99, BCVB01] is an approach to the integration of heterogeneous data sources
using a global ontology, which is the result of a merge of the local data schemas.

The goal of MOMIS is to give the user a global virtual view (cf. [Hul97]) of the
information coming from heterogeneous information sources. MOMIS creates a global
mediation schema (ontology) for the structured and semi-structured heterogeneous data
sources, in order to provide to the user a uniform query interface to these sources.

The first step in the creation of the global mediation schema is the creation of the
Common Thesaurus from the disparate data sources. To do this, first a wrapper is created
for each data source in the ODLI3 language. ODLI3 is an object-oriented language with
an underlying Description Logic language OLCD, which enables making inferences (e.g.
subsumption) about the classes expressed in that language.

Using the disparate schemas, a Common Thesaurus is created, which describes intra-
and inter-schema knowledge about ODLI3 classes and attributes of source schemas. The
Common Thesaurus is built in an incremental process in which relationships (between
classes) are added based on the structure of the source schemas, lexical properties of the
source classes and attributes (e.g. WordNet [Fel99] can be used to identify possible syn-
onyms), relationships supplied by the designer, and relationships inferred by the inference
engine.

Once the Common Thesaurus has been created, a tree of affinity clusters is created,
in which concepts are clustered based on their (name and structural) affinity. The name

CHAPTER 4. THE SURVEY 71

affinity coefficient is calculated based on the terminological relationships between two
classes. The structural affinity coefficient between two classes is calculated based on the
level of matching of attribute relationships in the Common Thesaurus. The sum of these
two coefficients is the global affinity coefficient, which is used to construct the affinity
tree, in which concepts with a high affinity are clustered together.

For each cluster in the affinity tree, a global class is (interactively) created. For each
global class a mapping (expressed in ODLI3) is maintained to all the source classes.

If we compare MOMIS with OBSERVER we can say that OBSERVER takes a min-
imalist approach to the specification of inter-ontology relationships, specifying only the
bare minimum required for query processing, whereas MOMIS tries to identify all possi-
ble relationships between a set of ontologies, integrating them in one global ontology.

Ontology Languages A wrapper translates each data schema to the ODLI3 represen-
tation. MOMIS also deals with semi-structured data by extractingobject patterns, which
are used as schema information for the source to generate the corresponding ODLI3 de-
scription.

ODLI3 is an object-oriented language with a translation to the OLCD Description
Logic languages in order to allow inferencing. OLCD is a KL-ONE [BS85] like ontology
language, which allows classes (types), binary roles (attributes), disjunction, negation and
also has a number of base data types (integer, string, Boolean, real).

Mapping Language Source schemas and object patterns are first translated into ODLI3

descriptions. This translation is performed by a wrapper. Then, aCommon Thesaurusis
created based on the ODLI3 class descriptions and attributes. The Common Thesaurus
consists of four kinds of relationships, which are added to the thesaurus in the following
phases:

1. Schema-derived relationshipsIn this phase, only intra-schema relationships are
considered. Relationships within one particular schema are extracted, e.g. by
exploiting foreign and primary key relationships in order to infer related and
broader/narrower term relationships.

2. Lexical-derived relationshipsLexical relationships between names in different
schemas are exploited to extract inter-schema relationships. WordNet [Fel99] is
used to extract synonyms and hypo/hypernyms. Furthermore, synonymous terms
are also extracted from attributes with similar names.

3. Designer-supplied relationshipsIn this phase, the designer can supply relationships
between schemas. A Description Logic reasoner, such as ODB, can be used to
check the relationships for inconsistency.

CHAPTER 4. THE SURVEY 72

4. Inferred relationshipsDescription Logic reasoning is used to infer new relation-
ships between ODLI3 classes, based on relationships specified in the previous
phases.

In each of the phases, intentional relationships are added to the Common Thesaurus.
The designer can strengthen these intentional relationships by creating extensional rela-
tionships, thereby enabling subsumption reasoning and consistency checking. An inten-
tional relationship can be seen as saying “there exists in general a relationship between
these terms”, whereas an extensional relationship can be seen as saying “this relationship
holds for these particular data sources”.

MOMIS employs hierarchical clustering based on an affinity measure, which indicates
the similarity between classes in a cluster. The affinity measure is based on both the name
and structural similarity.

The clusters in the hierarchy are used to interactively create new classes for the merged
ontology. Generally, a union is taken of all classes in a particular cluster in order to come
up with the new global class. During the process of creating the global class, mapping
rules between the attributes in the local classes and the global class are established and
stored in the global ontology for later use. Because the global ontology is created on the
basis of the local ontologies, MOMIS takes the global-as-view approach [Lev00], which
means that the global schema is created as aviewover the local schemas and all queries
to the global schema can be easily translated to the local representation because of the
presence of mapping rules.

It is not clear how new sources can really be integrated once the system is in place. It
seems that the global schema has to be re-created from the local schemas, although the
computed affinity clusters can of course be reused and if the classes in the new schema to
be integrated fit inside the existing affinity clusters, only the mapping rules between the
new schema and the global schema need to be created.

Automation Support Automation support in the ontology merging task is provided by
the ARTEMIS tool [CdA99]. The ARTEMIS tool provides support in the matching task
by determining the (name and structural) affinity between terms in the ontologies.

Applicability to Use Cases In MOMIS, the Query Manager does query rewriting based
on the mapping rules in the global ontology. The wrapper of each data source rewrites
the query from its ODLI3 representation to the representation of the data source and also
transforms the query results back to the ODLI3 representation. The query manager then
uses the mapping rules to translate the query results back to the global representation in
order to present the results to the user. It is not exactly clear if and how the Query Manager
fuses the query results from the different sources in case of overlap in the result sets.

CHAPTER 4. THE SURVEY 73

Implementation A number of components are used to enable the MOMIS architecture.
These components are (see Figure4.14, taken from [BCVB01]):

• A wrapperperforms the translation of the individual data source into the ODLI3

language (and translates the queries back).

• The mediatorconsists of the query manager (QM) and the global schema builder
(GSB). The QM component breaks up global ODLI3 queries into sub-queries for
the different data sources. Therefore, the GSB is an offline component, which aids
in ontology merging and the QM is a run-time component, which performs the
queries.

• TheARTEMIStool environment performs the classification (affinity and synthesis)
of classes for the synthesis of the global classes.

• TheODB-tools engineperforms schema validation and inferences for the genera-
tion of the Common Thesaurus, as well as query optimization for the Query Man-
ager.

Figure 4.14:Architecture of the MOMIS system

The architecture in Figure4.14shows the main tools used to support the overall archi-
tecture. A disadvantage is that there is no integrated tool environment. Any data source
can be connected to the architecture, as long as an ODLI3 wrapper is created.

CHAPTER 4. THE SURVEY 74

Experience As far as we are aware, MOMIS has not been used in any major indus-
trial project and is mainly an academic research activity, with toy examples. However,
[CAdV01] reports the application of ARTEMIS in a research project in the Italian Public
Administration domain.

4.3 Specific Techniques

FCA-Merge FCA-Merge [SM01] is a method for merging ontologies based onFormal
Concept Analysis[GW99]. The FCA-Merge approach is a bottom-up approach, which
means that it is based on application-specific instances of the two ontologies that need
to be merged. A set of documents that are relevant to both ontologies are provided as
input. Using linguistic analysis, instances are extracted from the documents for both
ontologies. Now a pruned concept lattice is generated using the similarity in instances for
both ontologies. These first two steps (lexical analysis and generating the concept lattice)
are carried out fully automatically. In the third and last step of the method, the merged
target ontology is created interactively (i.e. semi-automatically).

OntoMorph The OntoMorph system aims to facilitate ontology merging and the rapid
generation of knowledge base translators [Cha00]. It combines two powerful mechanisms
to describe KB transformations. The first of these mechanisms is syntactic rewriting
via pattern-directed rewrite rules that allow the concise specification of sentence-level
transformations based on pattern matching, and the second mechanism involves semantic
rewriting which modulates syntactic rewriting via semantic models and logical inference.
The integration of ontologies can be based on any mixture of syntactic and semantic
criteria.

In the syntactic rewriting process, input expressions are first tokenized into lexemes
and then represented as syntax trees, which are represented internally as flat sequences
of tokens and their structure only exists logically. OntoMorph’s pattern language and
execution model is strongly influenced by Plisp [Smi90]. The pattern language can match
and de-structure arbitrarily nested syntax trees in a direct and concise fashion. Rewrite
rules are applied to the execution model.

For the semantic rewriting process, OntoMorph is built on top of the PowerLoom14

knowledge representation system, which is a successor to the Loom system. Using se-
mantic import rules, the precise image of the source KB semantics can be established
within PowerLoom (limited only by the expressiveness of first-order logic).

14http://www.isi.edu/isd/LOOM/PowerLoom/

CHAPTER 4. THE SURVEY 75

4.3.1 QOM Quick Ontology Mapping

The tool represents an approach that considers both the quality of mapping results as well
as the run-time complexity. The hypothesis is that mapping algorithms may be stream-
lined such that the loss of quality (compared to a standard baseline) is marginal, but
the improvement of efficiency is so tremendous that it allows for the ad-hoc mapping of
large-size, light-weight ontologies. To substantiate the hypothesis, a number of practical
experiments were performed.

The goal is to present an efficient mapping algorithm. The outcome is QOM — Quick
Ontology Mapping. It is defined by the steps of a process model as shown in Figure4.15.
Mapping one ontology onto another means that for each entity (conceptC, relationR, or
instanceI) in ontologyO1, one tries to find a corresponding entity, which has the same
intended meaning, in ontologyO2.

Search Step

Selection

Similarity

Computation

Similarity

Aggregation

Iteration

2 3 4

6

Feature

Engineering

Inter-

pretation

1 5Input Output
Search Step

Selection

Similarity

Computation

Similarity

Aggregation

Iteration

2 3 4

6

Feature

Engineering

Inter-

pretation

1 5InputInput OutputOutput

Figure 4.15:QOM Mapping Process

1. Firstly, QOM uses RDF triples as features.

2. Second, instead of comparing all entities of the first ontology with all entities of the
second ontology, QOM uses heuristics to lower the number of candidate mappings,
which is a major problem for run-time complexity. In this dynamic programming
approach we only choose promising candidate mappings.

3. The actual similarity computation is done by using a wide range of similarity func-
tions [ES04]. An entity is described by the kind of appearance that is found to
hold for this entity for characteristics like: identifiers such as URIs, RDF/S prim-
itives such as subclass and instance relations, or domain specific features e.g. a
hashcode-of-filein a file sharing domain. These features of ontological entities are
compared usingString SimilarityandSimSetfor set comparisons. For efficiency
reasons the similarity computation was disburdened by removing extremely costly
feature-measure combinations such as the comparison of all subclasses of two con-
cepts.

4. These individual measures are all input to the similarity aggregation. Instead of
applying linear aggregation functions, QOM applies a sigmoid function, which em-
phasizes high individual similarities and de-emphasizes low individual similarities.

5. From the similarity values we derive the actual mappings. A threshold to discard
spurious evidence of similarity is applied. Further mappings are assigned based on
a greedy strategy that starts with the largest similarity values first.

CHAPTER 4. THE SURVEY 76

6. Through several iteration rounds the quality of the results rises considerably. Even-
tually, the output returned is a mapping table representing the relationmapO1,O2.
The table is represented in a proprietary format, but can easily be transformed into
a standardized format.

The evaluation was very promising. Depending on the scenario QOM reaches high
quality mapping levels very quickly. QOM is on a par with other good state-of-the-art
algorithms concerning the quality of proposed mappings, while outperforming them with
respect to efficiency — in terms of run-time complexity (O(n · log(n)) instead ofO(n2))
and in terms of the experiments we have performed (by a factor of 10 to 100).

Chapter 5

Comparison of the Methods

5.1 Ontology Languages

We compare the ontology languages supported by the approaches included in this survey.
Because many of the systems included in the survey are database integration systems, the
ontology language is not the only language that counts. For these systems, it also matters
which database schema language(s) is (are) supported.

One additional note about these integration systems is called for here. The data
schema is often lifted to the ontology level before the actual integration takes place.
Therefore, for the core mapping task we are usually only concerned with the ontology
languages. This lifting process often employed in database integration systems indicates
the need for a comparison of lifting methods employed by the different systems. In this
small sub-comparison we must evaluate to what extent the schema is actually translated
to the ontology. In other words, what we need to know is: (1) is the translation sound?,
i.e. is the translation from the schema to the ontology correct and semantics preserving?
and (2) is the translation complete?,i.e. is the schema translated completely?

Table5.1enumerates the ontology languages supported by the various approaches. It
turns out that integration systems typically do not focus on inter-operability with other
ontology tools. This makes sense, because all tasks (mainly querying) are performed
in a closed environment. In a Semantic Web setting, use of standards is very important
to enable inter-operability. We can see that tools created especially for the Semantic
Web (e.g. MAFRA, RDFT, PROMPT, OntoMap) support RDFS and PROMPT supports
OWL. On the other hand, matchers such as GLUE and S-Match use their own internal
representation. Usually it is not a problem to convert an ontology in any language to such
a representation, which is typically also done in more comprehensive tool environments
such as PROMPT.

77

CHAPTER 5. COMPARISON OF THE METHODS 78

Approach Ontology Language Remarks

Methods and Tools
MAFRA RDFS
RDFT RDFS
PROMPT Prot́eǵe-2000 supported Includes support for RDFS, OWL,

etc. . .
GLUE taxonomies
S-Match DAGs
OntoMap similar to OWL Lite− supports export to RDFS
RDFDiff RDF

Integration Systems
InfoSleuth OKBC wrappers are used to integrate data

sources
ONION Directed labeled graphs and

Horn rules
source schemas are translated using
wrappers

OBSERVER Description Logics (CLAS-
SIC)

The ontology server maintains map-
pings between data schemas and on-
tologies

MOMIS ODLI3 relational and semi-structure sources
are translated to ODLI3 using custom
wrappers

Table 5.1:Ontology Languages

CHAPTER 5. COMPARISON OF THE METHODS 79

5.2 Mapping Language

Table5.2 enumerates the mapping languages used by the different approaches. In map-
ping languages we can see three general approaches:

• The ontology language and the mapping language are the same. This is the case in
MOMIS, to some extent in OntoMap, to some extent in OBSERVER and to some
extent in ONION.

• The mapping language is different from the ontology language. This is the case
in MAFRA, RDFT and to some extent in OBSERVER. MAFRA and RDFT both
use a meta-ontology to describe types of bridges, which explicate the relationship
between the ontologies. These types of bridges can be seen as the vocabulary for
the mapping languages.

OBSERVER uses to some extent the same languages for the specification of both
the ontologies and the mappings. However, the mapping also allows transformer
functions, which are beyond the ontology language and the mappings between the
ontologies and the data schemas are specified using ERA (Extended Relational Al-
gebra).

• There is no real mapping language.The output of the tool is a similarity measure
between concepts in the ontologies. This is the case for matchers, such as GLUE
and S-Match. The purpose of these matchers is not to create an ontology mapping
as such, but to discover similarities between the ontologies.

MAFRA, RDFT and OntoMap describe an ontology of bridges, called SBO (Semantic
Bridge Ontology), RDFT (RDF-Transformations) and OntoMapO (OntoMap Ontology),
respectively. These bridges are instantiated in the actual ontology mapping in order to
realize the actual mapping specification. In this context, MAFRA has the most elaborate
bridge ontology, i.e. MAFRA has the most expressive mapping language. However,
MAFRA does not support mappings between classes and instances, which is supported
by OntoMap. The specification of such a bridge ontology has many advantages; the main
advantage is that it makes the type of mappings clearer and more understandable to the
user and it allows the user to more easily find suitable mappings between ontologies.

We have not mentioned PROMPT and RDFDiff yet. PROMPT is not used to create a
mapping between ontologies, but to merge ontologies. Therefore, the output of the tool is
not a mapping specification, but a merged ontology, which, in this case, can be exported to
any ontology language supported by Protéǵe, such as RDFS or OWL. RDFDiff returns as
its output not the mapping between two different ontologies, but the structural difference
between two versions of an ontology in the form of changed, added and deleted triples in
the RDF document.

CHAPTER 5. COMPARISON OF THE METHODS 80

Approach Mapping Language Remarks

Methods and Tools
MAFRA Semantic Bridge Ontology

(SBO)
SBO is a meta-ontology of semantic
bridges. It allows arbitrary mappings
between concepts, relations, and at-
tributes, as well as conditional map-
pings and procedural transformations

RDFT RDFT RDFT is a meta-ontology, which
describes types of mappings (bridges).
Only allows class-to-class and
property-to-property bridges

PROMPT - not applicable; PROMPT merges on-
tologies

GLUE similarity measures
S-Match set-based (equal, disjoint,

subset, superset)
OntoMap OntoMapO OntoMapO allows specification of re-

lationships between classes and also
between classes and instances.

RDFDiff changed , added ,
deleted

RDFDiff detects changed, added and
deleted triples between versions of an
RDF document

Integration Systems
InfoSleuth wrappers no ontology mapping; just mapping

data schemas to ontologies
ONION Articulation rules
OBSERVER Extended Relational Alge-

bra for mapping ontology-
DB and DL andtransformer
functions for mapping be-
tween ontologies

MOMIS ODLI3 wrappers are used to integrate data
sources

Table 5.2:Mapping Language

CHAPTER 5. COMPARISON OF THE METHODS 81

5.3 Mapping Patterns

None of the approaches in this survey uses mapping patterns in the way proposed by
[PGM98]. However, the types of mappings often present in specific mapping languages
(e.g. the bridges in RDFT and MAFRA and articulation rules in ONION) can be seen
as elementary mapping patterns. One could combine a number of these bridges to create
more complex mapping patterns. However, there is no explicit support for such combina-
tions in existing approaches.

5.4 Automation Support

Table5.3enumerates the automation support provided by the different approaches. Both
ontology matchers (GLUE and S-Match) are completely automated, in the sense that after
inputting two ontologies, the similarities between concepts in the ontology are returned
without any user interactions. However, the matching of ontologies is just one step in the
overall mapping process (see Section1.2). Therefore, these approaches automate only
part of the mapping process.

Mapping (or merging) ontologies is often an interactive process (e.g. PROMPT),
where the tool suggests mapping or merging actions to the user and the user can choose
to either perform the suggested action, to discard it or to perform a different action. After
the user interaction, the tool has more information to come up with more accurate sug-
gestions. It is not clear if and how such one-shot matchers as GLUE and S-Match could
fit in such an interactive process.

The integration systems ONION and MOMIS use specific tools (SKAT and
ARTEMIS, respectively) for the discovery of similarity between ontologies. These tools
are typically integrated in the system, which allows user interaction in the mapping pro-
cess.

In the context of both MAFRA and RDFT, techniques were described to do ontology
matching. In this context, MAFRA exploits the terms and the structure of the ontolo-
gies for the matching and RDFT exploits the instance descriptions associated with the
ontologies to find similarities.

5.5 Applicability to Use Cases

The integration systems (InfoSleuth, MOMIS, OBSERVER and ONION) in this survey
typically support all instance mediation use cases presented in Chapter2. This is because
the typical use case for data integration systems is the integrated querying of multiple
data sources using a unified view (ontology). The querying of a unified view can be
decomposed into query rewriting (the query in terms of the global ontology has to be

CHAPTER 5. COMPARISON OF THE METHODS 82

Approach Automation Support Remarks

Methods and Tools
MAFRA lexical and structural match-

ing and semi-automatic cre-
ation of mappings

RDFT discovery of similarities
based on instance data

PROMPT name & structural matching semi-automatic ontology merging,
where merge actions are suggested
based on similarities

GLUE multi-strategy machine
learning approach

S-Match matching based on synsets
from thesauri, using a SAT
solver

OntoMap - automation is supported when two on-
tologies are mapped to a common on-
tology

RDFDiff changes between versions are
detected automatically

Integration Systems
InfoSleuth -
ONION term and structural matching

using SKAT
OBSERVER -
MOMIS name and structural matching

using ARTEMIS
affinities computed by ARTEMIS are
used to identify candidates for classes
in the global ontology

Table 5.3:Automation Support

CHAPTER 5. COMPARISON OF THE METHODS 83

rewritten in terms of the local data source), instance transformation (query results need
to be translated from the local representation to the global representation) and instance
unification (duplicates and redundancy have to be removed from the query results when
the results from different data sources are combined).

Both MAFRA and RDFT have specific support forinstance transformations. In
MAFRA, it is possible to attach an executable piece of code to a Semantic Bride. In
RDFT, it is possible to associate an XPath expression with a bridge. Because RDFT is
used for transforming XML documents and RDF documents in their XML representation,
the XPath language can be used to express such transformations.

A form of ontology mergingis performed in both the ONION and the MOMIS sys-
tems. In both systems, a global ontology is created, based on the local ontologies and
database schemas. The global ontology is in both cases a virtual view over the underlying
data sources; the local sources remain and mapping rules between the global ontology
and the local ontologies are specified inside the global ontology.

PROMPT, on the other hand, is a pure ontology merging tool. The outcome of the
PROMPT tool is a merged version of the source ontologies; no mappings between the
sources and the merged ontology are created; the merged ontology is assumed to replace
the original ontologies.

5.6 Implementation

Table5.4 enumerates the type of implementations that have been made for the different
approaches.

As we can see from the table, most approaches have only been implemented as aca-
demic prototypes. For most approaches we are not aware of any planned further develop-
ment of the tools. Exceptions are PROMPT, which is currently under active development
and has recently been adapted for the Protéǵe OWL-plugin, S-Match, which is currently
being extended to take the different semantics of different relations in the ontologies into
account and to optimize the performance of the implementation, and RDFDiff, which will
be further developed in the course of the SEKT project.

5.7 Experiences

Table5.5 enumerates the experiences with the various approaches reported in the litera-
ture.

Most of the experiences reported in the literature are really toy problems; we feel
that real experiences with ontology mapping and ontology-based information integration
are lacking. A cause of this problem is of course that the Semantic Web has not gained

CHAPTER 5. COMPARISON OF THE METHODS 84

Approach Implementation Remarks

Methods and Tools
MAFRA Two prototypes have been

implemented
RDFT Research Prototype
PROMPT Version 2.1.1 PROMPT is still undergoing active de-

velopment
GLUE Research Prototype
S-Match First prototype Work is still under way to improve the

implementation
OntoMap Prototype; under develop-

ment since 2001
RDFDiff Research Prototype The tool will be further developed in

the course of the SEKT project

Integration Systems
InfoSleuth Project Prototype
ONION Research Prototype
OBSERVER Research Prototype
MOMIS Research Prototype

Table 5.4:Implementation

CHAPTER 5. COMPARISON OF THE METHODS 85

Approach Experiences Remarks

Methods and Tools
MAFRA Toy Problems
RDFT Mapping product classifica-

tion schemes in GoldenBullet
project

PROMPT HPKB project; evaluation us-
ing example ontologies

GLUE Toy problems
Semantic Matching Toy problems Was evaluated against other matchers
OntoMap Applied to most upper-level

ontologies
RDFDiff Toy problems

Integration Systems
InfoSleuth Two elaborate case studies
ONION Toy Examples
OBSERVER Prototype with real-life bibli-

ographic data
MOMIS Toy Examples ARTEMIS (part of MOMIS) has been

applied in the domain of Italian Public
Administration

Table 5.5:Experiences

any real momentum as of yet. Therefore, there are currently not so many ontologies
on the Web, although there are some experiences with real-life data sources, such as
bibliographic sources.

Chapter 6

Conclusions

In this survey we have evaluated and compared several approaches to ontology mapping,
ontology matching, ontology merging and data integration.

Comparing different types of approaches in this survey has made it clear that none
of the approaches exactly fits all our criteria for ontology mediation on the Semantic
Web. The purposes of the approaches in this survey tend to vary. The integration systems
such as MOMIS [BCVB01] and ONION [MWK00, MW01] have the aim of providing
query answering services over multiple data sources to the user. Matchers such as GLUE
[DMDH04] and S-Match [GS04] have the more specific goal of finding similarities be-
tween schemas or ontologies. Integration systems often use matchers for the discovery of
mappings (e.g. ONION uses SKAT; MOMIS uses ARTEMIS).

MAFRA [MMSV02] and RDFT [Ome02b] provide meta-ontologies for the specifi-
cations of mappings between ontologies. These mappings can be used for instance trans-
formations. In fact, both approaches include specific means to enable transformation of
instances between different representations. However, whereas InfoSleuth provides meth-
ods for the fusion of query results (instance unification), both MAFRA and RDFT do not
handle this situation. Query rewriting is also not explicitly handled, but this should not
be a problem because bridges between entities in the ontologies are explicitly present and
can be readily used for query rewriting.

This state-of-the-art survey has made clear that work still needs to be done on the
area of ontology mediation on the Semantic Web. We can learn from the data integration
systems, which provide services for query answering over distributed heterogeneous data
sources. However, the current setting of these integration systems is inside the enterprise,
which is still a more-or-less controlled area. On the Web, not much control over the
use of ontologies can be expected and the global integration scenario is not expected to
scale, because eventually different organizations will use different ontologies and will not
want to commit to a new ontology. However, the one-to-one integration approach is also
not expected to scale, because it would require the maintenance of too many mappings

86

CHAPTER 6. CONCLUSIONS 87

Figure 6.1: Ontology “islands”: large ellipses depict locally global ontologies; small
ellipses depict locally local ontologies

between ontologies. Therefore, we expect a hybrid approach will appear, where we have
several “islands” around influential domain ontologies, where within the island there is
a form of global integration; one ontology would be the global ontology of the islands
and a number of local ontologies are mapped to this global ontology. Then, there would
be mappings between the islands, as illustrated in Figure6.1. In the ontology mediation
solution to be developed within SEKT, we need to take this into account and we need
to combine global integration approaches, such as the ones supported by MOMIS and
ONION, with one-to-one mappings, which are supported by, for example, MAFRA.

From the mapping process (Section1.2) we can already see that we need different
types of methods and tools for its realization. Most notably, we need an ontology matcher
in order to identify similarities between ontologies and we need a mapping language and a
mapping tool for the specification of ontology mapping. Examples of matchers are GLUE
and S-Match. MAFRA and OntoMap provide mapping languages for the specification of
mappings between ontologies.

From the comparison in Chapter5 we can see that current approaches to ontology
mapping have mostly been applied to toy problems and cannot be expected to scale both

CHAPTER 6. CONCLUSIONS 88

in the number of ontologies to be mapped and the number of instances to the transformed
during execution time. Within SEKT we will take into account the different approaches
that are out there and especially look into database integration approaches, which can
overcome some of the scalability issues with large sets of instances. In order to cope with
large number of ontologies, we initially adopt the model of ontology islands (Figure6.1)
and evaluate the performance of the approach within the various case studies in the SEKT
project and other case studies, if necessary.

Bibliography

[BCM+03] Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele Nardi,
and Peter F. Patel-Schneider, editors.The Description Logic Handbook.
Cambridge University Press, 2003.

[BCV99] Sonia Bergamaschi, Silvana Castano, and Maurizio Vincini. Semantic in-
tegration of semistructured and structured data sources.SIGMOD Record
Special Issua on Semantic Interoperability in Global Information, 28(1),
March 1999.

[BCVB01] Sonia Bergamaschi, Silvana Castano, Maurizio Vincini, and Domenico Ben-
eventano. Semantic integration of heterogeneous information sources.Spe-
cial Issue on Intelligent Information Integration, Data & Knowledge Engi-
neering, 36(1):215–249, 2001.

[Bec03] Dave Beckett. RDF/XML syntax specification (revised). Recommendation
10 February 2004, W3C, 2003.

[BG04] Dan Brickley and Ramanathan V. Guha. RDF vocabulary description lan-
guage 1.0: RDF schema. Recommendation 10 February 2004, W3C, 2004.
Available from http://www.w3.org/TR/rdf-schema/.

[BLHL01] Tim Berners-Lee, James Hendler, and Ora Lassila. The se-
mantic web. Scientific American, 284(5):34–43, May 2001.
http://www.sciam.com/article.cfm?articleID=00048144-10D2-1C70-
84A9809EC588EF21&ref=sciam.

[BS85] Ronald J. Brachman and James G. Schmolze. An overview of the KL-ONE
knowledge representation system.Cognitive Science, 9(2):171–216, 1985.

[CAdV01] Silvana Castano, Valeria De Antonellis, and Sabrina De Capitani di Vimer-
cati. Global viewing of heterogeneous data sources.IEEE Transactions on
Knowledge and Data Engineering, 13(2):277–297, 2001.

[CD99] James Clark and Steve DeRose. XML path language (XPath) version 1.0.
Recommendation 16 November 1999, W3C, 1999.

89

BIBLIOGRAPHY 90

[CdA99] Silvana Castano and Valeria de Antonellis. A schema analysis and reconcil-
iation tool environment for heterogeneous databases. InProceedings of the
1999 International Symposium on Database Engineering & Applications.
IEEE Computer Society, 1999.

[CFF+98] Vinay K. Chaudhri, Adam Farquhar, Richard Fikes, Peter D. Karp, and
James P. Rice. OKBC: A programmatic foundation for knowledge base
interoperability. InProceedings of the Fifteenth National Conference on Ar-
tificial Intelligence (AAAI-98), pages 600–607, Madison, Wisconsin, USA,
1998. MIT Press.

[Cha00] Hans Chalupsky. OntoMorph: A translation system for symbolic knowl-
edge. In Anthony G. Cohn, Fausto Giunchiglia, and Bart Selman, editors,
KR 2000, Principles of Knowledge Representation and Reasoning Proceed-
ings of the Seventh International Conference, pages 471–482, Breckenridge,
Colorado, USA, 2000. Morgan Kaufmann Publishers.

[Che79] P. Chen. The entity relationship model - toward a unified view of data.ACM
Transactions on Database Systems, 1(1):9–36, 1979.

[Cla99] James Clark. XSL transformations (XSLT) version 1.0. Recommendation
16 November 1999, W3C, 1999.

[dBPF04] Jos de Bruijn, Axel Polleres, and Dieter Fensel. OWL lite−. Deliverable
d20v0.1, WSML, 2004.
Available from http://www.wsmo.org/2004/d20/v0.1/.

[DFKO02] Ying Ding, Dieter Fensel, Michel C. A. Klein, and Borys Omelayenko.
The semantic web: yet another hip?Data Knowledge Engineering, 41(2-
3):205–227, 2002.

[DKO+02] Ying Ding, M. Korotkiy, Borys Omelayenko, V. Kartseva, V. Zykov, Michel
Klein, Ellen Schulten, and Dieter Fensel. GoldenBullet: Automated clas-
sification of product data in e-commerce. In Withold Abramowicz, editor,
Proceedings of BIS 2002, Poznan, Poland, 2002.

[DMDH02] AnHai Doan, Jazant Madhavan, Pedro Domingos, and Alon Halevy. Learn-
ing to map between ontologies on the semantic web. InProceedings of the
World-Wide Web Conference, 2002.

[DMDH04] AnHai Doan, Jazant Madhaven, Pedro Domingos, and Alon Halevy. Ontol-
ogy matching: A machine learning approach. In Steffen Staab and Rudi
Studer, editors,Handbook on Ontologies in Information Systems, pages
397–416. Springer-Verlag, 2004.

BIBLIOGRAPHY 91

[DMQ02] Dejing Dou, Drew McDermott, and Peishen Qi. Ontology translation by
ontology merging and automated reasoning. InProc. EKAW2002 Workshop
on Ontologies for Multi-Agent Systems, pages 3–18, 2002.

[DR02] Hong-Hai Do and Erhard Rahm. COMA – a system for flexible combination
of schema matching approaches. InProceedings of the VLDB’02, pages
610–621, 2002.

[DS04] Mike Dean and Guus Schreiber, editors.OWL Web Ontology Language
Reference. 2004. W3C Recommendation 10 February 2004.

[ES04] Marc Ehrig and York Sure. Ontology mapping - an integrated approach.
In Proceedings of the First European Semantic Web Symposium, Heraklion,
Greece, May 2004.

[Fel99] Christiane Fellbaum, editor.WordNet: An Electronic Lexical Database.
MIT Press, 1999.

[Fen03] Dieter Fensel.Ontologies: Silver Bullet for Knowledge Management and
Electronic Commerce, 2nd edition. Springer-Verlag, Berlin, 2003.

[FMvH+03] Dieter Fensel, Enrico Motta, Frank van Harmelen, V. Richard Benjamins,
Stefan Decker, Mauro Gaspari, Rix Groenboom, William Grosso, Mark A.
Musen, Enric, Guus Schreiber, Rudi Studer, and Bob Wielinga. The uni-
fied problem-solving method development language upml.Knowledge and
Information Systems(KAIS) journal, 5(1), 2003.

[FNPB99] Jerry Fowler, Marian Nodine, Brad Perry, and Bruce Bargmeyer. Agent-
based semantic interoperability in infosleuth.SIGMOD Record, 28(1),
1999.

[GGM98] John H. Gennari, William Grosso, and Mark A. Musen. A method-
description language: An initial ontology with examples. InProceedings
of the Eleventh Banff Knowledge Acquisition for Knowledge-Bases Systems
Workshop, Banff, Canada, 1998.

[GS04] Fausto Giunchiglia and Pavel Shvaiko. Semantic matching.The Knowledge
Engineering Review, 18(3):265–280, 2004.

[GSY04] Fausto Giunchiglia, Pavel Shvaiko, and Mikalai Yatskevich. S-match: an
algorithm and an implementation of semantic matching. InProceedings of
ESWS’04, number 3053 in LNCS, pages 61–75, Heraklion, Greece, 2004.
Springer-Verlag.

[GW99] Bernhard Ganter and Rudolph Wille.Formal concept analysis: Mathemati-
cal Foundations. Springer, Berlin-Heidelberg, 1999.

BIBLIOGRAPHY 92

[HM93] Joachim Hammer and Dennis McLeod. An approach to resolving seman-
tic heterogeneity in a federation of autonomous, heterogeneous, database
systems.International Journal on Intelligent and Cooperative Information
Systems, 2(1):51–83, 1993.

[Hul97] Richard Hull. Managing semantic heterogeneity in databases: A theoretical
perspective. InACM Symposium on Principles of Database Systems, pages
51–61, Tuscon, Arizona, USA, 1997.

[Kle01] Michel Klein. Combining and relating ontologies: an analysis of prob-
lems and solutions. In Asuncion Gomez-Perez, Michael Gruninger, Heiner
Stuckenschmidt, and Michael Uschold, editors,Workshop on Ontologies
and Information Sharing, IJCAI’01, Seattle, USA, August 4–5, 2001.

[Kle04] Michel Klein. Change Management for Distributed Ontologies. PhD thesis,
Free University of Amsterdam, 2004.

[KS00] Atanas Kiryakov and Kiril Iv. Simov. Mapping of eurowordnet top ontology
to upper cyc ontology. InProceedings of Ontologies and Text workshop,
EKAW 2000, Juan-les-Pins, French Riviera, 2000.

[KSD01a] Atanas Kiryakov, Kiril Iv. Simov, and Marin Dimitrov. Ontomap: The
upper-ontology portal. InProceedings of ”Formal Ontology in Information
Systems”, Ogunquit, Maine, 2001.

[KSD01b] Atanas Kiryakov, Kiril Iv. Simov, and Marin Dimitrov. Tr1. ontomap: The
upper-ontology portal. revision 2, Ontotext, 2001.

[Lev00] Alon Y. Levy. Logic-Based Techniques in Data Integration, pages 575–595.
Kluwer Publishers, 2000.

[LS99] Ora Lassila and Ralph R. Swick. Resource description framework (RDF)
model and syntax specification. W3c recommendation, W3C, 1999.
http://www.w3.org/TR/1999/REC-rdf-syntax-19990222.

[MBR01] Jayant Madhavan, Philip A. Bernstein, and Erhard Rahm. Generic schema
matching with cupid. InProc. 27th Int. Conf. on Very Large Data Bases
(VLDB), 2001.

[MFRW00] Deborah L. McGuinness, Richard Fikes, James Rice, and Steve Wilder.
An environment for merging and testing large ontologies. InProc. 7th
Intl. Conf. On Principles of Knowledge Representation and Reasoning
(KR2000), Colorado, USA, April 2000.

[MGMR02] Sergey Melnik, Hector Garcia-Molina, and Erhard Rahm. Similarity flood-
ing: A versatile graph matching algorithm. InProceedings of ICDE, pages
117–128, 2002.

BIBLIOGRAPHY 93

[MIKS00] Eduardo Mena, Arantza Illarramendi, Vipul Kashyap, and Amit P. Sheth.
OBSERVER: An approach for query processing in global information sys-
tems based on interoperation across pre-existing ontologies.Distributed and
Parallel Databases, 8(2):223–271, 2000.

[MMSV02] Alexander Maedche, Boris Motik, Nuno Silva, and Raphael Volz. Mafra a
mapping framework for distributed ontologies. InProceedings of the 13th
European Conference on Knowledge Engineering and Knowledge Manage-
ment EKAW-2002, Madrid, Spain, 2002.

[MRB03] Sergey Melnik, Erhard Rahm, and Philip A. Bernstein. Developing
metadata-intensive applications with rondo.Journal of Web Semantics, 1(1),
December 2003.

[MvH04] Deborah L. McGuinness and Frank van Harmelen. OWL web ontology lan-
guage overview. Recommendation 10 February 2004, W3C, 2004. Avail-
able from http://www.w3.org/TR/owl-features/.

[MW01] Prasenjit Mitra and Gio Wiederhold. An algebra for semantic interoperabil-
ity of information sources. InIEEE International Conference on Bioinfor-
matics and Biomedical Egineering, pages 174–182, 2001.

[MWJ99] Prasenjit Mitra, Gio Wiederhold, and Jan Jannink. Semi-automatic inte-
gration of knowledge sources. InProceedings of Fusion 99, Sunnydale,
California, USA, July 1999.

[MWK00] Prasenjit Mitra, Gio Wiederhold, and Martin L. Kersten. A graph-oriented
model for articulation of ontology interdependencies. InProceedings of
Conference on Extending Database Technology (EDBT 2000), Konstanz,
Germany, March 2000.

[NFK+00] Marian H. Nodine, Jerry Fowler, Tomasz Ksiezyk, Brad Perry, Malcolm
Taylor, and Amy Unruh. Active information gathering in infosleuth.Inter-
national Journal of Cooperative Information Systems, 9(1-2):3–28, 2000.

[NM99] Natalya F. Noy and Mark A. Musen. Smart: Automated support for on-
tology merging and alignment. Technical Report SMI-1999-0813, Stanford
Medical Informatics, 1999.

[NM00a] Natalya F. Noy and Mark A. Musen. Anchor-prompt: Using non-local con-
text for semantic matching. InProceedings of the Workshop on Ontologies
and Information Sharing at the Seventeenth International Joint Conference
on Artificial Intelligence (IJCAI-2001), Seattle, WA, USA, 2000.

[NM00b] Natalya F. Noy and Mark A. Musen. Prompt: Algorithm and tool for au-
tomated ontology merging and alignment. InProc. 17th Natl. Conf. On
Artificial Intelligence (AAAI2000), Austin, Texas, USA, July/August 2000.

BIBLIOGRAPHY 94

[NM03a] Natalya F. Noy and Mark A. Musen. Ontology versioning as an element of
an ontology-management framework. To be published in IEEE Intelligent
Systems, 2003.

[NM03b] Natalya F. Noy and Mark A. Musen. The PROMPT suite: Interactive
tools for ontology merging and mapping.International Journal of Human-
Computer Studies, 59(6):983–1024, 2003.

[OF01] Borys Omelayenko and Dieter Fensel. A two-layered integration approach
for product information in B2B e-commerce. InProceedings of the Sec-
ond Intenational Conference on Electronic Commerce and Web Technolo-
gies (EC WEB-2001), Munich, Germany, 2001. Springer-Verlag.

[Ome02a] Borys Omelayenko. Integrating vocabularies: Discovering and representing
vocabulary maps. InProceedings of the First International Semantic Web
Conference (ISWC2002), Sardinia, Italy, 2002.

[Ome02b] Borys Omelayenko. RDFT: A mapping meta-ontology for business integra-
tion. In Proceedings of the Workshop on Knowledge Transformation for the
Semantic Web (KTSW 2002) at the 15-th European Conference on Artificial
Intelligence, pages 76–83, Lyon, France, 2002.

[PGM98] John Y. Park, John H. Gennari, and Mark A. Musen. Mappings for reuse in
knowledge-based systems. InProceedings of the 11th Workshop on Knowl-
edge Acquisition, Modelling and Management (KAW 98), Banff, Canada,
1998.

[RB01] Erhard Rahm and Philip A. Bernstein. A survey of approaches to automatic
schema matching.VLDB Journal: Very Large Data Bases, 10(4):334–350,
2001.

[RLK04] Dumitru Roman, Holger Lausen, and Uwe Keller. Web service model-
ing ontology standard (WSMO-standard). Working Draft D2v0.2, WSMO,
2004.

[SaR03a] Nuno Silva and Jo ao Rocha. Ontology mapping for interoperability in
semantic web. InProceedings of the IADIS International Conference
WWW/Internet 2003 (ICWI’2003), Algarve, Portugal, 2003.

[SaR03b] Nuno Silva and Jo ao Rocha. Service-oriented ontology mapping system. In
Proceedings of the Workshop on Semantic Integration of the International
Semantic Web Conference (ISWC2003), Sanibel Island, USA, 2003.

[SM01] Gerd Stumme and Alexander Maedche. Fca-merge: Bottom-up merging of
ontologies. In7th Intl. Conf. on Artificial Intelligence (IJCAI ’01), pages
225–230, Seattle, WA, USA, 2001.

BIBLIOGRAPHY 95

[Smi90] D.C. Smith. Plisp Users Manual. Apple Computers, august, 1990 edition,
1990.

[Usc00] Mike Uschold. Creating, integrating, and maintaining local and global on-
tologies. InProceedings of the First Workshop on Ontology Learning (OL-
2000) in conjunction with the 14th European Conference on Artificial Intel-
ligence (ECAI-2000), Berlin, Germany, August 2000.

[VC98] Pepijn R. S. Visser and Zhan Cui. On accepting heterogeneous ontologies
in distributed architectures. InProceedings of the ECAI98 workshop on ap-
plications of ontologies and problem-solving methods, Brighton, UK, 1998.

[VJBCS97] Pepijn R. S. Visser, Dean M. Jones, T. J. M. Bench-Capon, and M. J. R.
Shave. An analysis of ontological mismatches: Heterogeneity versus inter-
operability. InAAAI 1997 Spring Symposium on Ontological Engineering,
Stanford, USA, 1997.

[Wie94] Gio Wiederhold. An algebra for ontology composition. InProceedings
of 1994 Monterey Workshop on formal Methods, pages 56–61, U.S. Naval
Postgraduate School, Monterey CA, 1994.

