EU-IST Integrated Project (IP) IST-2003-506826 SEKT

SEKT: Semantically Enabled Knowledge Technologies

dekt

D4.2.2 State-of-the-art survey on
Ontology Merging and Aligning V2

Livia Predoiu (DERI)
Cristina Feier (DERI)
Francois Scharffe (DERI)

Jos de Bruijn (DERI)
Francisco Martin-Recuerda (DERI)
Dimitar Manov (SIRMA)

Marc Ehrig (UKARL)
Abstract.
EU-IST Integrated Project (IP) IST-2003-506826 SEKT
Deliverable D4.2.2 (WP4)

This deliverable contains a comprehensive state-of-the-art survey on Ontology Merging and
Aligning methods, tools and specification languages.

Keyword list: Ontology Mediation, state-of-the-art survey, ontology merging, ontology aligning,
ontology mapping

WP4: Ontology Mediation
Nature of the Deliverable: Report Dissemination level: PU

Contractual date of delivery: 2005-12-31 Actual date of delivery: 2005-12-31

Copyright (©) 2006 Digital Enterprise Research Institute, University of Innsbruck

SEKT Consortium

This document is part of a research project partially funded by the IST Programme of the Commission of the European
Communities as project number IST-2003-506826.

British Telecommunications plc.

Orion 5/12, Adastral Park

Ipswich IP5 3RE

UK

Tel: +44 1473 609583, Fax: +44 1473 609832
Contactperson: John Davies

E-mail: john.nj.davies@bt.com

Jozef Stefan Institute

Jamova 39

1000 Ljubljana

Slovenia

Tel: +386 14773 778, Fax: +386 1 4251 038
Contactperson: Marko Grobelnik

E-mail: marko.grobelnik @ijs.si

University of Sheffield

Department of Computer Science

Regent Court, 211 Portobello St.

Sheffield S1 4DP

UK

Tel: +44 114 222 1891, Fax: +44 114 222 1810
Contactperson: Hamish Cunningham

E-mail: hamish@dcs.shef.ac.uk

Intelligent Software Components S.A.

Pedro de Valdivia, 10

28006 Madrid

Spain

Tel: +34 913 349 797, Fax: +49 34 913 349 799
Contactperson: Richard Benjamins

E-mail: rbenjamins @isoco.com

Ontoprise GmbH

Amalienbadstr. 36

76227 Karlsruhe

Germany

Tel: +49 721 50980912, Fax: +49 721 50980911
Contactperson: Hans-Peter Schnurr

E-mail: schnurr @ontoprise.de

Vrije Universiteit Amsterdam (VUA)
Department of Computer Sciences

De Boelelaan 1081a

1081 HV Amsterdam

The Netherlands

Tel: +31 20 444 7731, Fax: +31 84 221 4294
Contactperson: Frank van Harmelen

E-mail: frank.van.harmelen@cs.vu.nl

Empolis GmbH

Europaallee 10

67657 Kaiserslautern

Germany

Tel: +49 631 303 5540, Fax: +49 631 303 5507
Contactperson: Ralph Traphoner

E-mail: ralph.traphoener @empolis.com

University of Karlsruhe, Institute AIFB
Englerstr. 28

D-76128 Karlsruhe

Germany

Tel: +49 721 608 6592, Fax: +49 721 608 6580
Contactperson: York Sure

E-mail: sure @aifb.uni-karlsruhe.de

University of Innsbruck

Institute of Computer Science

Techikerstraf3e 13

6020 Innsbruck

Austria

Tel: +43 512 507 6475, Fax: +43 512 507 9872
Contactperson: Jos de Bruijn

E-mail: jos.de-bruijn @deri.ie

Kea-pro GmbH

Tal

6464 Springen

Switzerland

Tel: +41 41 879 00, Fax: 41 41 879 00 13
Contactperson: Tom Bosser

E-mail: tb@keapro.net

Sirma AT EOOD (Ltd.)

135 Tsarigradsko Shose

Sofia 1784

Bulgaria

Tel: 4359 2 9768, Fax: +359 2 9768 311
Contactperson: Atanas Kiryakov
E-mail: naso@sirma.bg

Universitat Autonoma de Barcelona

Edifici B, Campus de la UAB

08193 Bellaterra (Cerdanyola del Valles)
Barcelona

Spain

Tel: +34 93 581 22 35, Fax: +34 93 581 29 88
Contactperson: Pompeu Casanovas Romeu
E-mail: pompeu.casanovasquab.es

Changes

‘ Version\ Date

Author ‘ Changes

0.1 2005-12-01 | Cristina | creation and fill in a lot of the content of D4.2.1
0.2 2005-12-05 | Livia added more content

0.3 2005-12-10 | Cristina | added more content

04 2005-12-19 | Livia added more content

0.5 2005-12-20 | Cristina | Version for QA

0.6 2006-01-31 | Livia final Version for QA

Executive Summary

This report provides a state-of-the-art survey of Ontology Merging and Aligning methods,
tools and techniques. In this deliverable, we provide a framework for the evaluation of
these approaches, as well as a categorization of approaches for ontology merging and
aligning.

We categorize the approaches in methods and tools, integration systems and specific
techniques. We compare the approaches according to the evaluation framework and to a
set of generic use cases for ontology mediation in order to evaluate the applicability of
the approach to the ontology mediation problem on the Semantic Web.

This is the second version of this deliverable in the course of the SEKT project. We
kept much of the content that was delivered in the first version because the systems did not
change and parts of the state-of-the-art thus did not change. In this version we have refined
the definitions for the common-encountered terms in the deliverable and we have updated
the classification of the integration approaches. We have also added the description of
five new systems that are remarkable and make a big contribution to the field of Ontology
Mediation and updated the descriptions of the previous systems, where necessarily.

Contents

1

Introductiod

1.1 Terminolo gy‘

1.2 The Ontology Mapping Process
1.3 Ontology Mismatches‘
1.3.1 Ontology-level Mismatches
1.3.2 Language-level mismatches

1.4 Integration approaches

1.5 Wrappers and Mediators oo

Motivational Use Cases‘

‘2.1 Use Cases for Instance Mediation

2.1.1 Instance Transformation
2.1.2 Instance Unification
2.1.3 QueryRewriting

2.2 Ontology Merging e

2.3 Creating Ontology Mappings
2.3.1 Finding Similarities/.

The Evaluation Frameworlﬂ

The Survev‘

‘4.1 Methods and Tools‘

40.1 MAFRA . ..o
412 RDFT . . . oo,
413 PROMPT . . o oo
414 GLUE e
4.1.5 Semantic Matching
4.1.6 OntoMap e
4177 RDFDiff
4.1.8 OntoMerge e
4.1.9 OMEN e
4.1.10 WSMT Data mediationmodule

21
21
22
23
24
25
26
26
26

27

CONTENTS

4.1.11 DOME mappingmodule
4.2 Integrated Systemso e e e

4.2.1

InfoSleuthJ

4.2.2

ONION . . o o,

4.2.3

OBSERVER . . . o o oo

4.2.4

MOMIS e

4.2.5

INFOMIX . . o o oo oo

4.2.6

AutoMed

43

Specific Techniques

43.1

FCA-Merge

4.3.2

OntoMorDlﬂ

4.3.3

QOM Quick Ontology Mapping

5.2

Mapping Language

5.3

Mapping Patterns

5.4

Automation Support L e

5.5

Applicability to Use Cases‘

5.6

Imnlementation‘

5.7

Experiences‘

‘6 Conclusions

Bibliographﬂ

72
74
74
78
81
87
90
95
98
98
99
99

101
101
103
105
105
105
107
107

110

113

Chapter 1

Introduction

This report presents a state-of-the-art survey of ontology mapping and merging methods
and tools with an emphasis on ontology mapping and inter-operability over the Semantic
Web.

This is the second version of this deliverable in the course of the SEKT project. We
kept a lot of the content that was delivered in the first version unchanged because the
systems did not change and parts of the state-of-the-art thus did not change as well. In
this version we have refined the definitions for the common-encountered terms in the de-
liverable and we have updated the classification of the integration approaches. We have
also added the description of five new systems that are remarkable and make a big con-
tribution to the field of Ontology Mediation and updated the descriptions of the previous
systems, where necessarily. The five new systems which were added are OMEN, WSMT
Data Mediation module, Dome mapping module, INFOMIX and AutoMed.

The issue of inter-operability between information systems has already existed for
many years. With the recent advent of the Semantic Web [BLHLO1], the issues have only
increased, because of the abundance, heterogeneity and independence of the various data
sources.

Traditional data integration systems focus on inter-operability between data sources
and applications within enterprises. Within enterprises a certain coherence between data
sources can be expected, although data integration within enterprises still faces many
challenges which remain to be resolved.

We focus on information integration on the Semantic Web. This means that we not
only take into account data integration within organizationsE, but also explicitly address
integration across organizational boundaries. Between organizations, even more hetero-
geneity between the data sources can be expected.

Fortunately, ontologies [Fen03], the backbone of the Semantic Web, can help us with a

! Arguably, the intranet of an organization is an isolated part of the Web and could be part of the Semantic
Web in the near future

CHAPTER 1. INTRODUCTION 4

part of the integration problem. Because ontologies are explicit and formal specifications
of knowledge, they help in disambiguating data and can help in finding correspondences
between data sources because of the explicit specification of the knowledge in an ontol-
ogy.

On the Semantic Web, data is annotated using ontologies. Concepts (also called
classesﬁ in ontologies give meaning to data on the Web. Because ontologies are shared
specifications, the same ontologies can be used for the annotation of multiple data sources,
not only limited to Web pages, but also collections of xml documents, relational databases,
etc. This enables a certain degree of inter-operation between data sources using the same
ontologies, because of their shared terminologyE. However, it cannot be expected that all
individuals and organizations on the Semantic Web will ever agree on using one common
terminology or ontology. It can be expected that many different ontologies will appear
and, in order to enable inter-operation, mediation is required between these ontologies.

As was argued in [VC98, Usc00], it is very hard to create standard ontologies. In fact,
even inside organizations the standardization of a terminology is not feasible, because
of the lengthy process of standardization and because the use of a big standard impedes
changes in the organization (any change would require consensus among a large group
of people, which is hard to achieve). Across organizations this problem becomes more
severe, because the group of people which need to reach consensus is much bigger and
conflicts of interest are more likely to occur. Therefore, it is likely that there will be many
different heterogeneous ontologies on the Semantic Web and in order to enable inter-
operability between applications on the Semantic Web, mediation is required between
different representations (ontologies) of knowledge in the same domain.

This report presents a survey on the state of the art of ontology mapping, merging and
mediation. It includes both well-known approaches in database integration and recent ap-
proaches specifically addressing ontology mapping on the Semantic Web. The Semantic
Web has a number of distinguishing features relative to older data integration systems:

e The Semantic Web relies heavily on standardization of both the protocols for the
transport of data (HTTP) and the syntax for the specification of data and knowledge
(RDF [LS99] and OWL [DS04]).

e In contrast with the database schemas in many data integration systems, the seman-
tics of the data are made explicit through a logic-based language.

e Ontologies capture knowledge in a way understandable to humans and processable
by machines. Furthermore, ontologies ideally represent a consensual view of a
particular domain, which is shared among a group of people.

2We use the words concept and class interchangeably in this document.

3Note that this is not the end of the story. For many applications it is necessary to detect whether pieces
of data, coming from different data sources annotated with the same ontology, actually refer to the same
thing. This is a challenge we also address in the course of the SEKT project; it is described in more detail
in Section of this report.

CHAPTER 1. INTRODUCTION 5

These features help in the task of ontology mediation. For example, because of the
standardization of the languages on the Semantic Web, syntax does not play a big role, so
the mediation can focus on the semantics of the data.

Note that Semantic Web technologies can not only be put to use on the World Wide
Web. They can also be employed within company intranets in order to achieve inter-
operability between applications within an organization.

This chapter is further structured as follows. We first clarify the terminology used in
this survey in Section [1.1. In Section 1.2 we explain the ontology mapping process as
we see it, which is used during the survey to identify the use of certain methods in this
process. Then, we present a list of mismatches, which can occur between ontologies, in
Section 1.3. In Section 1.4 we summarize different approaches to achieve integration of
multiple heterogeneous data sources. We conclude with a few remarks about the wrap-
per/mediator architecture, which is used in several of the approaches in this survey, in
Section|L.5.

1.1 Terminology

This section provides some clarification on the terminology used in this survey. We deem
this necessary, because there exist many different understandings of the terminology in
the literature.

Ontology A widespread definition for the notion of ontology is ”an explicit specification
of a conceptualization”[Gru94]. In the following we consider an ontology to be a
4-tuple (C, R, I, A), where C'is a set of concepts, R is a set of relations, [is a set of
instances and A is a set of axioms. A concept in an ontology is a category of real or
virtual objects of interest, which we call instances. Relations specify how different
concepts and instances are interconnected, and axioms are formulae that allow to
further specify interdependencies between all mentioned ontology entities. All con-
cepts, relations, instances, and axioms are specified in some logical language. Note
that the sets C' and [are not necessarily disjoint (e.g. the same term can denote
both a class and an instance), although the ontology language often requires this.

In an ontology, concepts are usually organized in a subclass hierarchy, through the
subclass-of (or subconcept-of)relationship. More general concepts reside higher in
the hierarchy.

Instance Base Although instances are logically part of an ontology, it is often useful to
separate between an ontology describing a collection of instances and the collection
of instances described by the ontology. We refer to this collection of instances as the
Instance Base. Instance bases are sometimes used to discover similarities between
concepts in different ontologies (e.g. [SMO1], [DMDHO04]). Note that this does not

CHAPTER 1. INTRODUCTION 6

rule out the situation where instances use several ontologies for their description.
However, most approaches in this survey which make use of instances assume a
collection of instances described by one ontology.

Ontology Language The ontology language is the language which is used to represent
the ontology. Popular ontology languages for the Semantic Web are RDFS [BG04]
and OWL [DS04]. Semantic Web ontology languages can be split up into two
parts: the logical and the extra-logical parts. The logical part usually amounts to a
theory in some logical language, which can be used for reasoning. The logical part
basically consists of a number of logical axioms, which form the class (concept)
definitions, property (relation) definitions, instance definitions, etc.

The extra-logical part of the language typically consists of non-functional prop-
erties (e.g. author name, creation date, natural language comments, multi-lingual
labels) and other extra-logical statements, such as namespace declarations, ontol-
ogy imports, versioning, etc.

Non-functional properties are typically only for the human reader, whereas many of
the other extra-logical statements are machine-processable. For example, names-
paces can be resolved by the machine and the importing of ontologies can be
achieved automatically by either (a) appending the logical part of the imported on-
tology to the logical part of the importing ontology to create one logical theory or
(b) using a mediator, which resolves the heterogeneity between the two ontologies
(see also the definition of Ontology Mediation below).

Ontology Mediation Ontology mediation is the process of reconciling differences be-
tween heterogeneous ontologies in order to achieve inter-operation between data
sources annotated with and applications using these ontologies. This includes the
discovery and specification of ontology mappings, as well as the use of these map-
pings for certain tasks, such as query rewriting and instance transformation. Fur-
thermore, the merging of ontologies also falls under the term ontology mediation.

Ontology Mapping An ontology mapping M 1is a (declarative) specification of the se-
mantic overlap between two ontologies Og and O7. The correspondences between
different entities of the two ontologies are typically expressed using some axioms
formulated in a specific mapping language. Mappings can be unidirectional (that
specify how terms in one ontology can be expressed using terms from the other
ontology) or bidirectional (that work in both ways, i.e terms from one ontology are
expressed using terms from the other and the other way around).

Mapping Language The mapping language is the language used to represent the on-
tology mapping M. It is important here to distinguish between a specification of
the similarities of entities between ontologies and an actual ontology mapping. The
specification of similarities between ontologies is usually a level of confidence (usu-
ally between O and 1) of the similarity of entities, whereas an ontology mapping

CHAPTER 1. INTRODUCTION 7

actually specifies the relationship between the entities in the ontologies. This is typ-
ically an exact specification and typically far more powerful than simple similarity
measures. Mapping languages often allow arbitrary transformation between on-
tologies, often using a rule-based formalism and typically allowing arbitrary value
transformations.

Mapping Pattern Although not often used in current approaches to ontology mediation,
patterns can play an important role in the specification of ontology mappings, be-
cause they have the potential to make mappings more concise, better understandable
and reduce the number of errors (cf. [PGMO98]). A mapping pattern can be seen
as a template for mappings which occur very often. Patterns can range from very
simple (e.g. a mapping between a concept and a relation) to very complex, in which
case the pattern captures comprehensive substructures of the ontologies, which are
related in a certain way.

Matching We define ontology matching as the process of discovering similarities be-
tween two source ontologies. The result of a matching operation is a specifica-
tion of similarities between two ontologies. Ontology matching is done through
application of the Match operator (cf. [RBO1]). Any schema matching or on-
tology matching algorithm can be used to implement the Match operator, e.g.
[DMDHO04, GSY04, MBRO1, MRBO3].

The specification of similarities typically serves as an input to the ontology mapping
(see also Section|1.2).

Merging Ontologies Merging refers to the creation of one ontology from two or more
source ontologies. The new ontology will unify and in general replace the original
source ontologies (see also Section|1.4).

Aligning Ontologies Specifying how the concepts in the different ontologies are related
in a logical sense. This means that the original ontologies have not changed, but
that additional axioms describe the relationship between the concepts. Leaving
the original ontologies unchanged often implies that only a part of the integration
can be done, because major differences may require adaptation of the ontologies.
This concept is very similar with Ontology Mapping, however it is a more general
concept: two ontologies can be aligned by creating an ontology mapping.

1.2 The Ontology Mapping Process

In order to clarify the role of many of the methods, tools and techniques in this survey,
we will explain in this section what we see as the ontology mapping process. Many of
the tools and techniques in this survey form a part of the overall mapping process and the
integration systems typically form a superset of the mapping process, i.e. they typically

CHAPTER 1. INTRODUCTION 8

import _» find __ specifiying mapping /
ontologies i similarities | mapping/merging merged ontology

e

Figure 1.1: The Ontology Mapping Process

incorporate the complete mapping process, but also offer additional functionality, such as
the use of the mapping to perform the actual querying and data integration.

First, we have to note that for simplicity we assume only twa* different ontologies O,
and O,, which describe the same or similar domains, as input to the mapping process.
The outcome of the mapping process is either a mapping M, which describes how O, and
O, are related, or a new ontology O}, which is the merger of O; and O,.

Figure [1.1/ depicts the different phases in the generic mapping process as we see it.
Not all phases are necessarily incorporated in every mapping tool and several phases in
the process are optional. We distinguish the following phases (in temporal order) in the
mapping process:

1. Import of ontologies Ontologies can be specified in different languages, which in-
dicates a need to convert them to a common format in order to be able to specify
the mapping. Furthermore, the ontologies need to be imported in the tool, which is
used to specify the mapping.

2. Finding Similarities Many systems use the Match operator to (semi-)automatically
find similarities between schemas or ontologies. For any two source ontologies,
the Match operator returns the similarities between the ontologies. We distinguish
this phase in the mapping process only when the similarities are determined in
an automatic fashion. If the mapping process is completely manual, this phase is
skipped.

3. Specifying Mapping/Merging After (potential) similarities between ontologies have
been found, the mapping between the ontologies needs to be specified. This spec-
ification is usually a manual process, but it can be aided by a tool. PROMPT
[NMOOb], for example, comes up with concrete proposals for merge operations,
so that for many operations the user only needs to say “execute”, instead of having
to specify the complete operation.

In many cases (e.g. PROMPT), there is a feedback loop from this phase to the
previous phase. Typically, the tool can offer more precise similarity measures when

*It is straightforward to scale up this approach to more than two ontologies.

CHAPTER 1. INTRODUCTION 9

the user has already specified part of the mapping. Many matching algorithms
do not include this feedback loop. However, these algorithms can often be readily
applied in an overall algorithm which executes the match algorithm in each iteration
in the process.

The three phases of the mapping process are specified at a very high level. Many of
the approaches in this survey provide a more detailed description of (part of) this mapping
process (e.g. PROMPT, Section|4.1.3, MOMIS, Section|4.2.4).

1.3 Ontology Mismatches

Different types of mismatches can occur between different ontologies. It is important
to identify which kind of mismatches can and do occur between ontologies, in order to
resolve these mismatches in the mapping or the merge of ontologies. The classification
of ontology mismatches is also important to denote which kind of mismatches can be
resolved with a particular mapping formalism (language) and which kind of mismatches
can be detected with a particular matching algorithm.

Klein [KleO1] identifies two levels of mismatches between ontologies. The first level
is the ontology language or meta-model level. These mismatches include syntactic mis-
matches, differences in the meaning of primitives in the different languages, and differ-
ences in the expressivity of the languages. We will describe these mismatches in more
detail in Section [1.3.2. The second level of mismatches is the ontology or model level,
which is described below.

1.3.1 Ontology-level Mismatches

Where mismatches at the language level include differences in encoding and meaning of
language constructs, mismatches at the ontology level include mismatches in the meaning
or encoding of concepts in different ontologies. Klein follows the basic types of ontology
mismatches identified in [VIBCS97]:

e Conceptualization mismatches are mismatches between different conceptualiza-
tions of the same domain.

e Explication mismatches are mismatches in the way a conceptualization is specified.
[KleO1] distinguishes two different conceptualization mismatches:
Scope mismatch Two classes have some overlap in the extension (the set of instances),

but the extensions are not exactly the same. [VIBCS97] call this a class mismatch
and work it out further for classes and relations.

CHAPTER 1. INTRODUCTION 10

Model coverage and granularity This mismatch is a difference in the part of the domain
that is covered by both ontologies or the level of detail with which the model is
covered.

Klein furthermore distinguishes different types of explication mismatches. First, there
are two mismatches in the style of modeling:

Paradigm These mismatches occur when different paradigms are used for the explica-
tion of the same concept. For example, one ontology might represent time using
intervals, while another ontology might use points to represent time.

Concept description Mismatches in the way a concept is described. For example, differ-
ences in the way the subclass-of hierarchy is built or when in one ontology several
subclasses are defined for groups of instances, while in the other ontology sub-
classes are created for these different groups.

Then there are the terminological mismatches:

Synonym terms Two terms are equivalent when they are semantically equivalent, but
are represented by different names. It is possible to use dictionaries or thesauri to
resolve this problem, but one should be aware of possible scope differences (see the
first conceptualization mismatch above).

Homonym terms This problem occurs when semantically different concepts have the
same name.

Finally, the last type of difference:

Encoding Values in different ontologies might be encoded in a different way. For exam-
ple, one ontology might define distance in kilometers, while another uses miles.

Inter-ontology relationships [MIKSO00] takes a slightly different approach. This paper
identifies different types of inter-ontology relationships (based on relationships identified
in [HM93]) that should be taken into account by ontology mapping systems:

Synonym Two terms in different ontologies have the same semantics. This corresponds
to the synonym terms mismatch mentioned above.

Hyponym A term is less general than another one in a different ontology. This is a special
kind of scope mismatch and can also be seen as a concept description mismatch.

Hypernym A term is more general than another one in a different ontology. This is
a special kind of scope mismatch and can also be seen as a concept description
mismatch.

CHAPTER 1. INTRODUCTION 11

Overlap There is an intersection in the abstraction represented by two terms. This cor-
responds to the scope mismatch.

Disjoint There is no intersection in the abstraction represented by two terms.

Covering The abstraction represented by a term in one ontology is the same as the ab-
straction represented by the union of other given abstractions which are subsumed
individually by the term. This corresponds to the granularity mismatch identified
by Klein.

1.3.2 Language-level mismatches

Typically, ontology mappings require the source and target ontologies to be represented
in the same language. This translation may already resolve most of the language issues,
which can occur. Typical language level mismatches are syntax, logical representation,
semantics of primitives and language expressivity [KleO1]. Most systems presented in this
survey do such a translation but do not say if and how the issues surrounding language
level mismatches are resolved in the translation to the internal representation.

Also, many methods and tools for matching and mapping require the source ontologies
to be expressed in a certain representational format. Although there typically exists a
translation from any ontology language into this particular representation, the preservation
of semantics can still not be guaranteed.

We will now go over the above mentioned language level mismatches and describe
what the (potential) issues are with the current systems and techniques:

e Certainly, differences in syntax would be resolved by any such translation to an
internal representation, since both ontologies then use the same syntax.

e Differences in logical representation occur when syntactically different, but logi-
cally equivalent statements are used to represent the same thing. An example of this
is the way disjointness is expressed in the OWL Lite species of the Web Ontology
Language OWL [MvHO04], compared to the way disjointness is usually expressed
in the OWL DL specie.

Arguably, this is not really an issue with the language itself, but rather an issue with
the use of the language. However, when a language allows the user to model the
same thing in different ways, it is easy for a user to mistakenly model certain things
in an inconvenient way and it is harder for a user to understand the model created
by a different user or indeed created by him/herself in the past. When the ontology
language used by the technique/tool/system allows such different logical represen-
tations of equivalent statements, this mismatch still needs to be taken into account

5The OWL Lite statement Class (owl :Nothing complete A B), although also valid in OWL
DL, is usually modeled as DisjointClasses (A B) in OWL DL

CHAPTER 1. INTRODUCTION 12

in the ontology mapping process. In order to overcome these issues, one could think
of a normalization step before the start of the mapping process or reasoning during
the mapping process in order to detect equivalence in logical expressions.

e When the semantics of primitives is different in different ontology languages, i.e. a
syntactically equivalent construct has a different meaning in the different languages,
the translation to the common representation needs to take this into account. For-
tunately, this problem can be resolved in the translation to the common representa-
tion. If both ontologies already use the common representation and this common
representation does not allow ambiguous statements, this mismatch does not occur.

e Differences in expressivity of the languages are resolved in the translation to the
common representation language. However, if the expressivity of the common rep-
resentation language is not a superset of the language of the source ontology, some
semantics might get lost in the translation, as was pointed out in [MWKOO].

As we can see, the issues with language mismatches are less severe if there is a trans-
lation to a common representation. However, all ontology mismatches mentioned previ-
ously need to be taken into account when creating any mapping between ontologies.

1.4 Integration approaches

We identify two major paradigms in information integration: (1) merging data models
into a central model and (2) aligning and mapping models. In the ontology engineering
community these approaches are known as Ontology Merging and Ontology Aligning.

We distinguish two distinct approaches in ontology merging. In the first approach the
input of the merging process is a collection of ontologies and the outcome is one new,
merged, ontology which captures the original ontologies (see Figure [1.2). A prominent
example of this approach is PROMPT [NMOOb], which is an algorithm and a tool for
interactively merging ontologies. In the second approach (see Figure [1.3) the original
ontologies are not replaced, but rather a ‘view’, called bridge ontology, is created which
imports the original ontologies and specifies the correspondences using bridge axioms.
OntoMerge [DMQO02] is a prominent example of this approach.

[NM99] clarifies the difference between ontology merging and ontology aligning.
When merging two ontologies, a single coherent ontology is created that is a merged
version of the two original ontologies. When aligning two ontologies, the two original
ontologies persist, with a number of links established between them, allowing the aligned
ontologies to reuse information from one another. The alignment of ontologies is usually
part of the ontology merging process.

Solutions can be further classified along two dimensions: a run-time and a design-time
dimension. The run-time dimension concerns with the way the user views the data in the

CHAPTER 1. INTRODUCTION 13

01-02
03=01U02

01N 02
02 - O1

Figure 1.2: Output of the merging process - case 1

Bridge ontology
o1y 02
/
import O1 import 02
bridge axioms

Figure 1.3: Output of the merging process - case 2

system during operation. The design-time dimension concerns with the way the models
of the disparate data sources are integrated.

In the run-time, or user-centered dimension we distinguish two approaches: (1) the
local model and (2) the global model approach. The difference between these two ap-
proaches is whether, in interactions with the system, the user can use his/her own local
data model, or whether the user needs to conform to a global model when interacting with
the system:

The Local Model/Ontology Approach. In this case the user is represented by an agent
in the system and this agent represents the user with its own local data model. The
agent performs the translation between the user’s local model and either the global
model or other local models in order to allow interaction with multiple data sources
in the system.

The Global Model/Ontology Approach. The user views the system through the global
data model using a mediator, which is ”a system that supports an integrated view
over multiple information sources”[Hul97]. Note that in the local model approach,
a user agent will in most cases also contact a mediator in order to allow inter-
operation with the system, which contains multiple information sources. An exam-
ple is the approach taken in the COG project[dB04].

In the design-time dimension we distinguish:

One-to-one mapping of ontologies. Mappings are created between pairs of ontologies.
Problems with this approach arise when many such mappings need to be created,

CHAPTER 1. INTRODUCTION 14

Figure 1.4: The one-to-one approach for ontology integration

which is often the case in organizations where many different applications are in
use. The complexity of the ontology mapping for the one-to-one approach is O(n?),
where n is the number of ontologies. An example of the one-to-one approach is
OBSERVER [MIKS00] (see also Section [4.2.3). Figure 1.4 illustrates one-to-one
mapping of ontologies. There exists a mapping between every pair of ontologies. In
the worst case, these mappings are only one-way. This means that a single mapping
can only translate from one model to another, not the other way around.

Mapping to a global ontology. Each ontology is mapped to a central shared ontology
(Figure Drawbacks of using a global ontology to which all other ontologies
are mapped are similar to those of using any standard [VC98]. For example, it
is hard to reach a consensus on a standard shared by many people (it is always
a lengthy process), who use different terminologies for the same domain and a
standard impedes changes in an organization (because evolution of standards suffers

CHAPTER 1. INTRODUCTION 15

(S I - - L .

‘ shared ontology ‘

G2 T TaE Ty TR

Figure 1.5: The global approach for ontology integration

from the same problems as the development of standards). An example of the global
ontology approach is MOMIS [BCVBO1] (see also Section 4.2.4).

Hybrid approach. On the Web, not much control over the use of ontologies can be en-
forced and the global integration scenario does not scale, because different organi-
zations use different ontologies and do not want to commit to a single new ontology.
However, the one-to-one integration approach also does not to scale, because it re-
quires the maintenance of too many mappings between ontologies. Therefore, a
hybrid approach is suitable, where there are several “islands” around influential
domain ontologies, where within the island there is a form of global integration;
one ontology would be the global ontology of the islands and a number of local

ontologies are mapped to this global ontology. Mappings between the islands are
established, as illustrated in Figure

Note that many methods, tools and techniques in the survey do not have a bias for one

CHAPTER 1. INTRODUCTION

Figure 1.6: The hybrid approach for ontology integration

16

CHAPTER 1. INTRODUCTION 17

of the above approaches. They can often be used in all scenarios, although an ontology
merging tool such as PROMPT [NMOOb] does seem to have a bias towards using a shared
ontology.

The more comprehensive integration systems typically prescribe which paradigm
should be used. MOMIS [BCVBOL1], for example, prescribes the use of a global merged
ontology for the integration of data sources, whereas OBSERVER [MIKSO00] prescribes
loosely coupled component ontologies with mappings between the ontologies.

The approaches that fall in the global-approach category can be further classified by
the directionality of the mappings between the local ontologies and the shared ontology.
This distinction is inherited from the database setting, where the data integration task is
seen as a process by which several databases with associated local schemas are integrated
to form a virtual database (thus it conforms to the global approach), and views connect
local schemas with the global virtual schema. The terms LAV, GAV, and GLAV were
introduced for describing different approaches in database integration [Len]:

GAV (Global as view). The constructs of a global schema are described as views over
the local schemas (in database terminology) or the mappings describe entities from
the shared ontology in terms of entities from the local ontologies (in ontology me-
diation terminology).

In the case where there are no integrity constraints in the global schema, query
processing is rather simple, consisting in unfolding the original query. Unfolding
means expanding the terms of the query, which are constructs of the global schema,
according to the mappings, in order to obtain a query which contains only constructs
from local schemas. Unfortunately, in the presence of integrity constraints (which is
the case when the global schema is an ontology), additional steps must be performed
for reasoning[CDGLO1].

One disadvantage of this method is that whenever a source changes or a new one
is added, the global schema needs to be reconsidered. Another disadvantage men-
tioned in [EA] is that it cannot fully capture the data integration semantics where
a source schema construct can be defined by a non-reversible function over global
schema constructs.

LAYV (Local as view). The constructs of local schemas are described as views over the
global schema (in database terminology) or the mappings define entities from the
local ontologies in terms of entities from the global ontology (in ontology mediation
terminology). This approach is characterized by a high modularity and extensibility
(the local schemas are expected to be the subject of change more frequently than the
global schema and changing a local schema does not require changes in the global
one). A disadvantage of this method is the complexity of reasoning. Like GAV,
there are situations where the approach is not expressive enough for fully capturing
the data integration semantics [EA].

CHAPTER 1. INTRODUCTION 18

GLAV (Global-local as view). This approach can be seen as an extension of both LAV
and GAV. In this case a view on the local schema is defined with respect to a view on
the global schema (a mapping is an inclusion/equivalence relation between a query
over the global ontology and a query over a shared ontology). Query processing
is complex in this case as well, since there is no direct information about which
data satisfy the global schema. One reasoning technique is to transform a GLAV
rule into a GAV rule and an integrity constraint over the global schema[ACO1]. An
advantage of this method is that it is more expressive than both LAV and GAV®

Recently, as part of the AutoMed framework (see Section |4.2.6), a new approach for
connecting schemas called BAV(Both as view) was introduced [MPO3],[EA] that is more
expressive than LAV/GAV/GLAV. Below we give an overview of this approach:

BAYV (Both as view). This approach is based on the use of reversible sequences of prim-
itive schema transformations, called transformations pathways.

Schemas are incrementally transformed by applying to them a sequence of prim-
itive transformation steps ¢4, ..., t,, where each such step adds, extends, deletes,
contracts or renames a single schema concept. A query expressed in the intermedi-
ate query language (IQL) is attached to each add or delete step and specifies
the extent of the new or the deleted construct in terms of the rest of the constructs
in the schema.

[MPO3] shows how the LAV and GAV definitions of views can be fully derived from
BAV schema transformation sequences, and how BAV transformation sequences
may be partially derived from LAV or GAV definitions. A network of pathways may
join different schema together. Thus, this approach for specifying mappings could
also be applied for the case of one-to-one mapping and for the hybrid approach.

1.5 Wrappers and Mediators

In the wrapper/mediator architecture, the main components are wrappers; there typically
exists one wrapper for each data source, and one (or more) mediator(s), which mediate
between the differences in the individual data sources. In the global integration paradigm,
there is typically one mediator which is accessed by the user for querying and infor-
mation retrieval. In this case the mediator typically has one global schema along with
mappings to all the local schemas, where each data source has one local schema. Each
data source has a wrapper associated with it, which provides the translation between the
representation of the data source and the system representation (this is typically between
a database representation and the ontology representation) and translates queries from the
system representation to the data source representation (typically, ontology queries would

®see http://www.science.unitn.it/coopis/talks/Wednesday/Lenzerini.pdf for an example

CHAPTER 1. INTRODUCTION 19

be translated to SQL queries to be executed on the individual database). An example
of this approach is MOMIS [BCVBO01] (see also Section 4.2.4). This wrapper/mediator
approach with one global mediator is illustrated in Figure [1.7.

X

mediator

wrapper] [wrapper

Figure 1.7: The wrapper/mediator architecture in the case of global integration. Note that
the drums represent as usual databases and the sheets represent other data sources.

In a one-to-one integration scheme, there are typically several mediators, which me-
diate between the representations in the individual sources. The setting here is similar
to a peer-to-peer setting, where each peer could have a number of data sources and an
ontology, which describes the data of the source. The user would be one peer and would
use that peer’s ontology. If the user wants to query a different peer, the mediator has to
mediate the differences between the ontologies. One example of this case is OBSERVER
[MIKSO00] (see also Section [4.2.3)), where each peer has its own mediator, which does
the query rewriting and querying of other peers, although one central mediator (called
the Inter-ontology Relationship Manager IRM) still keeps track of the relationships be-
tween the ontologies. This central mediator is queried by other mediators to find out about
related peers and the differences in representation.

Figure illustrates the use of wrappers and mediators in the case of one-to-one
integration. Note that in this case, all mediators need to be aware of all other mediators in
order to perform query rewriting and to achieve effective query answering.

This report is further structured as follows. Chapter 2 presents the use cases which
we have identified as crucial for ontology mediation on the Semantic Web. These use
cases are later used to identify if and how the approaches in the survey would fit into
a Semantic Web context. The framework we use for evaluating the approaches in this
survey is presented in Chapter 3| The survey itself is presented in Chapter 4. Chapter |5
compares the approaches in the survey and Chapter 6/ presents some conclusions.

CHAPTER 1. INTRODUCTION

.

wrapper

u \%

mediator -------------- mediator

mediator

wraz;per

Figure 1.8: The wrapper/mediator architecture in the case of one-to-one integration

Chapter 2

Motivational Use Cases

In this chapter we present a number of generic use cases which capture the functionality
required for ontology mediation on the Semantic Web. Any application of ontology me-
diation is expected to use all these use cases to some extent. Therefore it is interesting
to see to what extent each of the approaches in this survey supports these use cases in
order to evaluate their applicability to the ontology mediation problem on the Semantic
Web. The Ontology Mediation framework developed in the SEKT project should support
as many features as possible from the ones described here.

We distinguish three use cases, which are detailed in the remainder of this chapter:

e Instance Mediation
e Ontology Merging
e Creating Ontology Mappings

The first use case, Instance Mediation, addresses the tasks of instance transformation,
unification and query rewriting. The second use case, Ontology Merging, addresses the
way two source ontologies can be merged into one target ontology. The third use case,
Creating Ontology Mappings, is about actually finding similarities between ontologies
and creating mappings between the ontologies.

The generic use cases correspond to three orthogonal dimensions in ontology media-
tion. Each application scenario can make use of all three use cases to some extent.

2.1 Use Cases for Instance Mediation

The following use cases are the typical use cases for instance mediation, where the em-
phasis is on instance transformation and unification.

21

CHAPTER 2. MOTIVATIONAL USE CASES 22

DRREEEEEEE CLELEEEEEEEE >

Figure 2.1: Instance Transformation

Definition 1 We define instance mediation as the process of reconciling differences be-
tween two instance bases, each described by an ontology. This includes the discovery and
specification of ontology mappings, as well as the use of these mappings for certain tasks,
such as query rewriting and instance transformation.

As we can see in the definition, instance mediation also requires the discovery and
specification of ontology mappings. This makes apparent the inter-dependencies between
the different use cases. We do not describe the discovery and specification of ontology
mappings here; instead, these use cases are discussed later, because of their use in differ-
ent other areas of ontology mediation.

2.1.1 Instance Transformation

For the instance transformation use case we assume two separate applications with sepa-
rate instance stores both described by ontologies. The task to be performed is the transfor-
mation of an instance of a source ontology, say Og, to an instance of the target ontology
O7. Figure 2.1 illustrates the process of instance transformation. An instance i1, which
refers to ontology (01, is transformed into instance 72, which refers to ontology O2. What
is important to note here is that the transformation itself is derived from the mapping be-
tween the two ontologies, and that both the original and the transformed instance provide
information about the same real-world referant. Note that a real-world referant is not nec-
essarily a physical object, but can also be, for example, a brand-name product, a date, an
event or a message.

This kind of transformation needs to be supported by the ontology mapping in the
sense that the ontology mapping specifies the relationship between instances of the source
ontology Og and instances of the target ontology Or.

Different application scenarios have different requirements on the precision and cov-
erage of the transformation. With precision in this context we mean the degree to which
the intended meaning of the instance is preserved in the transformation. With coverage

CHAPTER 2. MOTIVATIONAL USE CASES 23

we mean the fraction of instances that are intended to be transformed, which are actually
transformed. The requirements of the application determine what these measures look
like.

When an instance has been translated from Og to O, it is often necessary to detect
whether the transformed instance corresponds to an existing instance in the instance store
of the target application in order to avoid duplication of information and in order to find
out more about the instances in the knowledge base. We discuss this issue below.

2.1.2 Instance Unification

The instance unification problem can be summarized as follows:

Say we have an ontology O, and two instances /; and /5 of that ontology. We want to
check whether /; and I, refer to the same real-world referant. In this case we need to unify
I; and I, into a newly created instance /j, which is the union of /; and]. Therefore,
the instance unification task can be decomposed into (1) the identification of instances
referring to the same real-world referant and (2) taking the union of the two instances in
order to obtain the unified instance.

If the instances /; and I, have been identified as referring to the same real-world refer-
ant, but contain contradictory information, it is not possible to create a unified instance
and the user should be informed of the inconsistency.

Figure 2.2illustrates the process of instance unification. Two instances (i1 and 72) in
the same ontology O1, which refer to the same real-world referant 1, are unified into one
new instance, 70, which is also an instance in the ontology O1 and also describes the same
real-world referant rlE

We identify two general means of detecting whether two instances refer to the same
real-world referant:

e In the ‘exact’ case, the ontology mapping specifies precise, exact conditions which
unambiguously specify in which cases two instances refer to the same real-world
referant and in which cases they refer to different real-world referant. In other
words, in which cases the instances are unifiable.

e In the ‘probabilistic’ case, a similarity measure is created on the basis of the ontol-
ogy mapping. The similarity measure expresses the probability that both instances

'Note that I, could coincide with either I; or I, which would be a less general case of the one described
here.

Note that contradictory information may result from unstated assumptions in an ontology or instance
base. Unification of contradictory statements could be performed by adding in the appropriate assumption
as a condition.

For example, "Canada [a real-world object] requires inbound travellers to carry passports” is true if the
assumption is that travellers are EU citizens, but not if they are US citizens entering from the US.
Such techniques are not explored in this deliverable.

CHAPTER 2. MOTIVATIONAL USE CASES 24

Figure 2.2: Instance Unification

refer to the same object. A threshold could be used to decide whether to unify the
instances. Another possibility is to have the user decide about the unification, which
is clearly undesirable in the general case, but could be useful when the accuracy of
the resulting ontology is crucial or when dealing with very few instances.

Instance transformation and instance unification are often required in a querying sce-
nario where an application A queries another application B and the query results (con-
sisting of instances) are transformed to the representation of A and unified with instances
in the instance base of A.

In order to be able to query a data source which uses a different (unknown) ontology,
the query originally formulated in terms of the application’s ontology needs to be rewritten
in terms of the other ontology. The next section describes the generic query rewriting use
case.

2.1.3 Query Rewriting

An operation occurring very frequently in Knowledge Management applications is query-
ing of information sources. We want to allow an application to query different heteroge-
neous information sources without actually knowing about all the ontologies. In order to
achieve this, a query written in terms of the application’s ontology needs to be rewritten
using the terms in the target data source’s ontology.

Say, we have an application A, which uses an ontology O 4 for its information repre-
sentation. Say now that this application wants to query a different data source, which uses
ontology Op, but A does not know about the structure of this ontology. The application

CHAPTER 2. MOTIVATIONAL USE CASES 25

nRLEELLELEEREE LR >
g/ v/

Figure 2.3: Query Rewriting

A now formulates a query Q4 in terms of ontology O 4. In order to execute this query
on the target data source, it needs to be rewritten onto query Q g, which is formulated in
terms of ontology Op. This rewriting process is illustrated in Figure

After execution of the query, the results are transformed back to the O 4 representation
and unified with the local instances using the techniques for instance transformation and
unification described above.

2.2 Ontology Merging

Besides the instance transformation and unification and query rewriting, we see another
major use case for ontology mediation: Ontology Merging.

In the case of Ontology Merging [NMOOb], two source ontologies shall be merged
into one target ontology based on the source ontologies. In the general case, the source
ontologies would disappear or become unavailable and only the target (merged) ontology
remains. A special case is when the source ontologies remain, along with mappings to the
merged ontology. Note that the target (merged) ontology could coincide with one of the
source ontologies.

In the general case where the source ontologies become unavailable after the merge,
the complete instance stores of the source ontologies have to be merged. In the special
case, the source ontologies can maintain their instance stores and during run-time of the
application, processes of instance transformation and instance unification (cf. the previous
subsection) might be necessaryE. We can compare these two distinct cases with notions
developed in the field of database integration, namely, the notions of materialised and
virtual views [Hul97] respectively.

Of course, when the source ontologies do not have instance stores associated with
them, these problems do not occur. However, in the general case an ontology will have
one or more instance stores associated with it. In special cases, such as the (distributed)
development of ontologies, there will not be instance stores.

3Note that mappings only can be derived when there is a semantical overlap. If there is no semantical
overlap, the set of mappings is empty and thus instance transformations and and instance unifications are
not performed.

CHAPTER 2. MOTIVATIONAL USE CASES 26

2.3 Creating Ontology Mappings

In order to be able to support the previously mentioned use cases, generally, a mapping
needs to be created between the source and the target ontology. This does not apply to the
case of ontology merging where the source ontologies do not remain. Because the source
ontologies disappear, there needs to be no ontology mapping between these sources and
the new merged ontology. However, the techniques for finding concepts to be merged in
different ontologies and finding mappings between concepts in different ontologies are
the same, since they are both based on the similarity of concepts. In fact, a mapping
between two ontologies can be used as a basis for the merged ontology. In the case of
Ontology Merging where the source ontologies remain, a mapping needs to be created
between each source ontology and the merged ontology.

We split the ”Creating Ontology Mappings” use case into two distinct use cases: find-
ing similarities between ontologies and specifying mappings between ontologies.

2.3.1 Finding Similarities

In order to determine which mappings need to be created, the similarity between ontolo-
gies needs to be established. This can either be established manually or automatically
using the so-called Match operator (cf. [RBO1]). The Match operator takes as input two
ontologies and returns as output a list of similarities between entities in the two source
ontologies. These similarities can now be used as a starting point to semi-automatically
create a mapping between the ontologies or to merge the two ontologies (cf. [NMOOb]).

2.3.2 Specifying Mappings

After having defined the similarities between entities in the different ontologies, a map-
ping needs to be specified between the similar entities of the ontologies. The requirements
of this mapping depend on the application scenario (cf. the various scenarios described in
the next section) and in general the requirements of ontology mediation, as mentioned in
the introduction.

Chapter 3

The Evaluation Framework

This chapter presents the framework used for evaluating and comparing different ap-
proaches in ontology merging and aligning, as well as data integration using ontologies.
This framework is set up in such a way that it enables us to evaluate the applicability of
the approaches to an ontology mediation setting in the Semantic Web context. Each of
the approaches in the survey is described according to these criteria. If one of the criteria
is not applicable to the approach, it will be omitted.

Summary of the approach We first summarize the approach to give the reader a feeling
for what the approach is all about.

Ontology Languages For each tool or method we describe which ontology languages are
supported as sources and targets of the mapping between ontologies. Furthermore,
we describe how the ontology languages relate to the mapping language employed
by the approach. In many cases the same language is used for both the ontologies
and the mappings. In some cases, this can have drawbacks if the ontology language
is not expressive enough to capture all the required ontology mappings.

Mapping language An important aspect in ontology mediation is the mapping language
which is used to actually specify the mapping. The mapping language determines
to some extent the complexity of creating mappings and also the possibilities of au-
tomation in creating the mappings and in transforming and unifying instances. The
most important aspects of an ontology mapping language are its expressivity (i.e.
what kind of relations between the ontologies can be expressed) and its usability.

An important aspect of a mapping language is the types of mappings that are sup-
ported, in other words the expressivity. We can distinguish several types of map-
pings here. The following is an (incomplete) list of types of mappings:

e (Class mappings

e Property (i.e. relation) mappings

27

CHAPTER 3. THE EVALUATION FRAMEWORK 28

Instance mappings

Axioms / rules / constraints

Value transformations (for properties)

Conditional mapping

As was pointed out in Section|1.3| there are several mismatches between ontologies,
both on the language and the ontology level. A mapping language needs to take
these mismatches into account. These mismatches mostly concern the ontology
level, although there are still some issues remaining on the language level, as was
pointed out in Section|1.3.

Two notes about the mapping language with respect to the approach in the survey
are in order here. Firstly, an ontology merging tool (e.g. PROMPT [NMOOb]) does
not produce a mapping and therefore does not need a mapping language. Secondly,
we describe several methods and tools for ontology matching in this survey. These
approaches typically do not produce a mapping, but rather a specification of simi-
larities between entities in the ontologies.

Mapping Patterns One of the major goals of Work Package 4 in the SEKT project is to
investigate the use of patterns for the creation of ontology mappings. One of the
tasks is to find such patterns. Therefore, it would be interesting to see if and how
existing approaches cope with this and how mapping patterns could be integrated.
This issue is very closely related to the mapping language.

Automation support We describe the type of automation that is supported and the de-
gree to which it is supported during creation of the ontology mapping. Ontology
mapping can not be fully automated; the mapping process will always be an inter-
active one.

One important aspect in the automation support is the use of external information
sources, such as domain-specific lexicons or existing ontologies or data schemas.

Applicability to use cases In order to see if and how an approach can be applied to our
setting of ontology mediation in the Semantic Web we analyze the applicability of
each approach to the use cases presented in Chapter 2l More specifically, we relate
each approach to the following use cases:

Instance Transformation

Instance Unification

Query Rewriting

Ontology Merging

We will not treat the applicability of each of the approaches to each of the use cases
in detail, but rather give an indication about the (in)applicability to each of the use
cases.

CHAPTER 3. THE EVALUATION FRAMEWORK 29

Implementation For each approach we describe the tool support developed for the par-
ticular method. We distinguish the following two categories of tools:

e Tools that support the user in creating the mappings (and merging the ontolo-
gies). These tools fall in two categories: (1) components that implement the
Match operator to find similarities between ontologies and (2) GUI tools that
aid the user in specifying the mappings between the ontologies.

e Tools that do the run-time mediation. These tools take care of query-rewriting,
data transformation, etc. ..

An important aspect of the implementation is the maturity of the tool(set). An
academic prototype that has just been built to support a PhD thesis would be less
stable and less usable than a product that has undergone much development over
the years and is exploited by a commercial organization.

Experiences with the approach We summarize the experiences that have been reported
in the literature for each approach. These experiences are very valuable, because
they show the applicability of the methods to real ontology mapping and informa-
tion integration problems. They also show the usability and limitations of the tools
that have been developed for the method.

We structure the description of each of the approaches in the survey in Chapter
according to this evaluation framework. Furthermore, we provide a comparison of the
approaches in the survey based on the presented evaluation framework in Chapter

Chapter 4

The Survey

This chapter presents the actual survey on ontology merging and aligning approaches. We
evaluate the approaches according to the criteria identified in the evaluation framework in
Chapter 3.

In order to structure the survey, we have grouped the approaches into three categories:

e Methods and Tools. We describe several special-purpose methods and tools.
The purpose of the approaches in this section ranges from ontology matching
(GLUE, Semantic Matching) to ontology merging (PROMPT) and ontology map-
ping (MAFRA, RDFT, WSMT). Sometimes the lines between the purpose of
the approaches becomes blurred, because, for example, the authors of MAFRA
[MMSVO02] also describe a way to do ontology matching. Also, in the case of
PROMPT we not only describe the ontology merging tool, but also related tools in
the area of matching (even PROMPT itself has a matching algorithm) and ontology
versioning (PROMPTDiff).

e Data Integration Systems. We describe four approaches to data integration using
ontologies, namely InfoSleuth, ONION, INFOMIX, MOMIS and OBSERVER.
These integration systems are all comprehensive in the sense that they typically
have different types of functionality. For example, both ONION and MOMIS have
matching tools, which aid in creating mappings between ontologies. All data in-
tegration systems described in this survey support querying of the underlying data
sources based on querying posed against an ontology; they typically implement the
wrapper/mediator architecture, which was described in Section

e Specific Techniques. We briefly describe a few specific techniques, which we do
not evaluate according to the criteria in the evaluation framework. FCA-Merge is a
method for ontology merging, based on formal concept analysis. OntoMorph is a
system for syntactic and semantic rewriting of ontologies. QOM (Quick Ontology
Mapping) is a method and tool for the discovery of ontology mapping, based on a

30

CHAPTER 4. THE SURVEY 31

combined similarity measure. OMEN is a system that describes mappings with a
probability and a by means of a Bayesian Network.

4.1 Methods and Tools

4.1.1 MAFRA

Summary MAFRA (MApping FRAmework for distributed ontologies) [MMSVO02,
SaR03b] is a framework defined for mapping distributed ontologies on the Semantic Web
based on the idea that complex mappings and reasoning about those mappings is the best
approach in a decentralized environment like the Web. MAFRA has been implemented
as a plug-in of KAON! and introduces two interesting new concepts: Semantic Bridges
and service-centric approaches. A Semantic Bridge is defined as a declarative represen-
tation of a semantic relation between source and target ontologies entities” [SaR03b]. A
Semantic Bridge provides the necessary mechanisms to transform instances and property
fillers of a particular source ontology into instances and property fillers of a particular
target ontology. Semantic Bridges are similar to the notion of articulation structures (“the
points of linkage between two aligned ontologies”) in [KleO1] and articulation ontologies
in ONION [MWKO00, MWO1] (also Section 4.2.2).

The other novelty is the service-centric approach that the MAFRA Toolkit introduces
[SaR03b]:

Each semantic bridge has an associated transformation service that deter-
mines the transformation procedure and the information the user must pro-
vide to the transformation engine. Each service is characterized by a set of
arguments, which in turn are characterized by name, type, optionality and lo-
cation (whether it is a source, target or condition argument). Services are not
only responsible for the transformation capabilities but also for the validation
of argument values and semi-automatic mapping.

The service oriented approach complements the Semantic Bridges mechanism provid-
ing the transformation services necessary to perform the mapping transformations. Silva
and colleagues proposed a decentralized solution where independent transformation mod-
ules are attached to the system. An overview of the architecture of the MAFRA toolkit can
be seen in Figure [4.1, where some transformation modules are included (copy instance,
copy relation, concatenate, split, etc.).

Figure|4.2 outlines the conceptual architecture of the MAFRA System. In the concep-
tual architecture a set of modules is identified and organized along two dimensions. Hor-
izontal modules correspond to five fundamental phases in the ontology mapping process

'KAON is an Ontology Management tool developed by the University of Karlsruhe,
http://kaon.semanticweb.org/

CHAPTER 4. THE SURVEY

Copy
Instance
Copy
Relation

Copy

Attribute

Concatenate
Split
AttributeTable
Translation

Currency
Converter
Service X

MAFRA Service Interface (API)

Similarity
Measurment

Automatic
Bridging

Manual
Bridging

Execution Negotiation Evolution

MAFRA Core Engine

1

Source Ontology

T

Source

Instances

SBO
Instance

T
'}%

Semantic Bridge
Ontology *

Lift & Normalization

)

Source Schema

Source Instances Target Schema

Target Instances

Figure 4.1: MAFRA Toolkit System Architecture [SaR03b]

32

CHAPTER 4. THE SURVEY

33

(Lift & Normalization, Similarity, Semantic Bridging, Execution and Postprocessing).
The vertical modules (Evolution, Domain Knowledge & Constraints, Cooperative Con-
sensus building and GUI) interact with the horizontal phases during the entire ontology
mapping process.

Domain c
Know- :gg:r—

Ev- | ledge [; P | n
olfion 2 Semantic Bridging SS::us GUI
Con- f | Y o
abrainis Building

1| N Similarity
[[|

Lift & Normalization

\4/

Figure 4.2: MAFRA Conceptual Architecture [MMSV02]

The main phases of the mapping process described along the horizontal dimension

e Lift & Normalization. Lifting refers to the process of importing the ontologies in a
uniform representation formalism (RDF-Schema in this case) for facilitating later
operations. The next step after lifting is the normalization of the vocabularies of the
ontologies by eliminating lexical and semantic differences (like special characters,
upper case letters and acronyms).

Similarity In this step, similarities between ontology entities are calculated as a
support for mapping discovery. A combination of different similarity algorithms
is employed in MAFRA[MMSVO02][Sil02] in order to improve the result of the
identification of equivalent terms.

Semantic Bridging After identifying the similarities between entities from different
ontologies, the similar entities are semantically bridged, i.e. correspondences are
established between them for enabling the transformation of instances of one source
entity to instances of one target entity. Several sub-steps can be identified in this

CHAPTER 4. THE SURVEY 34

phase. We describe these sub-steps in more detail after the enumeration of the
mapping phases and of the vertical modules.

MAFRA includes a formal representation to specify the mappings. The formalism
that is used to describe the Semantic Bridges is based on a DAML+OIL ontology,
called the Semantic Bridging Ontology (SBO). The result is close to the notion of
articulation ontology in ONION[MWKOO] (see also Section 4.2.2). A mapping is
a set of instances of the semantic bridges described by this ontology. We describe
this ontology in more detail later.

e Execution. When the mappings/bridges are specified, the next step is to exploit
them in a meaningful way. As already mentioned, MAFRA addresses only the task
of instance transformation [MMSVO02]. This module actually transforms instances
from the source ontology representation into the representation of the target on-
tology by by evaluating the transformation functions associated with the bridges
defined in the previous stage. There are two possible operational modes: offline
(all the transformations are executed one time) and online (the transformations are
continuously executed, and modifications in the source or target ontologies are im-
mediately reflected).

e Postprocessing Based on the execution results, the mapping specification is again
analyzed, e.g. for discovering object identities, in order to improve the quality of
the instance transformation task.

The vertical dimension comprises the following modules:

e Evolution Synchronize the changes in the source and target ontologies with the
Semantic Bridges defined by the Semantic Bridge module.

e Cooperative Consensus Building From multiple alternative possible mappings the
tool helps to set up a consensus between the various proposals of people involved
in the mapping task.

e Domain constraints and Background Knowledge The tool allows users to include
extra information (e.g. lexical ontologies like Wordnet can help in the identification
of synonyms) in order to improve the quality of the mapping.

e GUI Visualization of the elements of the source and target ontologies makes the
mapping task a lot easier in the same way as do the Semantic Bridges established
to represent the mapping between entities.

The Semantic Bridging Ontology (SBO) (see Figure 4.3) is a taxonomy of generic
bridges that are going to be instantiated for defining concrete bridges/mappings. We give
an overview of the dimensions along which a bridge can be described in MAFRA, fol-
lowed by a shallow description of the classes from SBO that allows one to express such
bridges.

CHAPTER 4. THE SURVEY

Service +sourceArgument
Argument Arg
hasName :
+HargetArgument =
iti hasName
Condition
Transformation hasType
Entity
ey +relatesSourceEntity
+sub
Rule SemanticBridge _
direction abstract +relates TargetEntity
EntityArray
+has RelationNode Relation
+has, ConceptArray
SemanticBridgeAlt
RelationBridge RelationArray
AttributeArray
ConceptBridge Congept
AttributeBridge Attribute

Figure 4.3: Semantic Bridging Ontology (SBO) in UML [MMSV02]

CHAPTER 4. THE SURVEY 36

A bridge can be described along five dimensions:

e entity dimension: pertains to the entities related by a bridge which may be concepts
(modeling classes of objects in the real world), relations, and attributes.

e cardinality dimension: pertains to the number of ontology entities at both sides of
the semantic bridge(usually 1:n or m:1, m:n is seldom required and it can be usually
decomposed into m:1:n)

o structural dimension: pertains to the way elementary bridges may be combined into
a more complex bridge (relations that may hold between bridges: specialization,
alternatives, composition, abstraction)

e transformation dimension: describes how instances are transformed by means of an
associated transformation function.

e constraint dimension: allows one to express conditions upon whose fulfilment the
bridge evaluation depends. The transformation rule associated with the bridge is
not executed unless these conditions hold.

The abstract class SemanticBridge describes a generic bridge, upon which there
are no restrictions regarding the entity types that the bridge connects or the cardinal-
ity. For supporting the composition modelling primitive, this class has defined a rela-
tion hasBridge. The class SemanticBridgeAlt supports the alternative modelling
primitive by grouping several mutual exclusive semantic bridges. SemanticBridge is
further specialized in the SBO according to the entity type, the ontology defining as sub-
classes of this class: RelationBridge, ConceptBridge,and AtributeBridge.
There is no specialization of the SemanticBridge class to a class which bridges be-
tween individuals.

Rule is a class for describing generic rules. Condition and Transformation
are its subclasses which are responsible for describing the condition necessary for the
execution of a bridge, and the transformation function of a bridge, respectively. The
Service class maps the bridge parameters with the transformation procedure arguments
and call to procedures.

The main goal in MAFRA is to transform instances of the source ontology into in-
stances of the target ontology. Semantic Bridges specify how to perform these trans-
formations and categorize them between concept bridges and property bridges. Concept
bridges define the transformations between source instances and target instances, whereas
property bridges specify the transformations between source properties and target prop-
erties. The Semantic Bridge phase defines in the following steps the necessary structures
to describe the mapping between two ontologies:

1. Based on the analysis of similarities that were discovered in the Similarity phase,
the first step is to select the pairs of entities, which could be concepts, relations

CHAPTER 4. THE SURVEY 37

and attributes, to be bridged that correspond with concept bridges. MAFRA allows
relations of different cardinality between source and target entities. Thus, a source
or target entity can belong to one or more Semantic Bridges.

2. The property bridging step specifies matching properties for each concept bridge.
The authors of MAFRA distinguish two types of properties: attributes and relations.
In the case that the type of source and target properties is different the transforma-
tion specification information is required, and the domain expert is asked to supply
this information. According to MAFRA’s definition, an attribute defines a relation
between a concept and a data type value and a relation defines a relation between
two concepts.

3. This step (together with the next one) is part of a refinement process to improve the
matching results, and focuses on looking for mapping alternatives where there is
no target entities. If it is not possible to find a target entity for a source entity, the
algorithm analyzes the hierarchy of the source ontology and proposes an equivalent
mapping of some of the parents of the unmapped source entity. So the source entity
is mapped to the same target entities as some of its parents.

4. As a part of the refinement process mentioned previously, in this step the system
tries to improve the quality of bridges between source concepts and target concepts.
It can be viewed as a complementary routine to the similarity phase.

5. Associate transformation procedures with the mapping relations identified in previ-
ous phases. Although one of the main goals of the authors of MAFRA is to provide
an elevated level of automation in the mapping procedure, they recognize that in
this step the intervention of an expert is highly recommended.

To finish this brief description of MAFRA, we present an example from [MMSV02]
(see Figure|4.4). The goal of this exercise is to map two ontologies: the source ontology
(01) describes the structure of a family and its events are categorized in family events
(marriage and divorce) and individual events (birth date, death date); and the target ontol-
ogy (02) characterizes individuals as Man and Woman. A Concept Bridge is defined to
map ol : Individual with 02 : Individual. All the attribute bridges are mapped using
property/attribute bridges except for ol : Individual - sex. This attribute is mapped us-
ing an alternative semantic bridge with two concept bridges that map ol : Individual -
sex with 02 : Man and 02 : Woman.

Ontology Languages MAFRA needs the Lift & Normalization module to translate the
ontologies that participate in the mapping process into RDF (S). Precisely, the terminol-
ogy specification is transformed to RDF Schema and the instances to RDF.

CHAPTER 4. THE SURVEY 38

o1:Event Mapping
date ConceptBridge
local

\QZ:IndividuaI

AtiributeBridge
AftributsBridge | 1

o1:Individual Event T __\::t;eDate
o1:Family Event P title .
noMarriages
o1:Birth o
irth o1:Individ
o1:Marriage o1:Divorce name
sex
marriage death " 02:Man 02:Woman

divorce 01:Death

ot:Family —child spousein

Figure 4.4: UML representation of the semantic bridge defined to map the ontologies of
the example [MMSV02]

Mapping Language Semantic Bridges (SBs) in conjunction with transformations mod-
ules services provide all the functionality that a mapping language requires. The seman-
tics of this mapping formalism is unambiguously specified through the SBO (Semantic
Bridging Ontology).

Another important characteristic of MAFRA is that it supports several types of map-
ping like Class mappings, Property (i.e. relation) mappings and Instance mappings.

Mapping Patterns MAFRA does not support the use of mapping patterns in ontology
mappings. However, one could see a Semantic Bridge as an elementary mapping pattern
and a specific combination of a number of Semantic Bridges can be seen as a mapping
pattern. Therefore, it should be possible to incorporate the use of mapping patterns into
MAFRA.

Automation Support One of the main goals of the designers of MAFRA is to get a
high level of automation support. Unfortunately, the papers that describe the tool do not
indicate precisely which steps are automatic and which are not. Also MAFRA gives the
user the opportunity to define Semantic Bridges manually. The modules that are directly
involved in the mapping process (horizontal dimension) present the following level of
automation:

e Lift & Normalization is probably a module that can work independently from users
to provide a uniform representation of the ontologies that will be mapped.

CHAPTER 4. THE SURVEY 39

e The calculation of similarities inside a multi-strategy process looks like it is fully
automatic.

e The generation of Semantic Bridges is partially automated. The specification of
mappings between properties (property bridging step) and the association of trans-
formation procedures with mapping relations require the participation of a domain
expert.

e The execution engine, implemented in Java, is fully automated, and achieves the
transformations defined in the Semantic Bridges.

e The postprocessing module is not further elaborated in the papers that described
MAFRA, and the level of automation is not specified.

The module Domain and Background Knowledge provides mechanisms to include
background knowledge and domain constraints by using for example glossaries or lexi-
cal ontologies. This features can considerably improved the quality of the results of the
similarity module and the semantic bridge module.

Applicability to Use Cases One of the goals of MAFRA is to support instance transfor-
mation through transformation procedures that are associated to Semantic Bridges. The
postprocessing module tries to provide support for instance unification (recognizing that
two instances represent the same real word object), but the authors recognized that it is
a very challenging task and do not guarantee that it is fully implemented. On the other
hand, Semantic Bridges define explicitly mappings between entities of two ontologies,
and MAFRA provides a semantic specification for these mechanisms.

Finally, in the papers [SaR03a] and [SaR03b], the authors outline a mechanism is
close to the idea of query rewriting to retrieve all the instances of a query that are stored
in several ontologies which have mapping specifications between each other.

Implementation As we mentioned in the summary description of this tool, the MAFRA
toolkit was implemented as plug-in of KAON. Silva and colleagues continuous with
the development of this mapping system, and the latest versions can be founded at
http://mafra-toolkit.sourceforge.net. Also some examples and documentation are avail-
able on this site. MAFRA’s current approach is being used and tested under the Har-
monise projecg. Harmonise intends to overcome the interoperability problems occurring
between tourism operators due to the use of different information representation stan-
dards. The MAFRA Toolkit was adopted as the representation and transformation engine
core technology for the Harmonise project. Harmonise uses an “Interoperability Mini-
mum Harmonisation Ontology” (IMHO) as lingua franca between agents. The MAFRA
Toolkit 1s responsible for the acquisition, representation and execution of the ontology
mapping between each agent specific ontology and IMHO [SaR03a].

Zhttp://www.harmonise.org

CHAPTER 4. THE SURVEY 40

Experiences Silva and colleagues provided an informal evaluation in their papers
([SaR03a, SaR03b]) of the performance of MAFRA and they compare their results with
OntoMerge [DMQO02], a tool for mapping and merge.

4.1.2 RDFT

Summary Omelayenko and Fensel [OFO1] present an approach to the integration of
product information over the web by exploiting the data model of RDF [LS99], which
is based on directed labeled graphs. In their approach, Omelayenko and Fensel assume
product catalogs from different organizations specified in XML documents. The prob-
lem they sketch is different organizations using different representations for their product
catalogs. They intend to mediate between these different representations with the use of
RDF triples’.

The approach to the integration of product catalogs is called two-layered because the
product information itself is represented in XML, whereas the transformation between
different representations is done in RDF. The general idea is that an XML document,
whose structure is described by a DTD (Document Type Definition) or XML Schema, is
(1) abstracted to an RDF graph, which in turn is described by an ontology, which could
be specified using the RDF Schema [BG04] ontology language. The RDF document is
then (2) transformed into a target representation, which is also described by an ontology.
Then, the target RDF is (3) refined to the target XML representation, which can be used
by applications at the target vendor. All three transformation steps are performed with the
XML transformation language XSLT [Cla99]. The process of abstraction, transformation
and refinement is illustrated in Figure 4.5.

[Ome02b] proposes a mapping meta-ontology for describing the transformation be-
tween RDF documents. This mapping meta-ontology, called RDFT (RDF Transforma-
tion) is specified using RDF Schema [BG04] and is used to describe the mapping between
two RDFS ontologies. We describe this ontology and its use in more detail below.

[Ome02a] describes a technique for discovering semantic correspondence between
different product classification schemes based on a Naive-Bayes classifier. The mappings
between the different product classifications are represented using the bridges from the
RDFT meta-ontology.

Ontology Languages Omelayenko [Ome02b] not only describes a way to map between
different RDF Schema ontologies, but also describes the way to transform XML docu-
ments to RDF using RDFT, thereby effectively specifying the way to perform the abstrac-
tion step.

3 An RDF triple consists of a subject, a predicate and an object. Subjects and objects form the nodes of
the graph, whereas predicates form the edges. An object in a triple can also occur as a subject or an object
of a different triple.

CHAPTER 4. THE SURVEY 41

source target
Ontology Ontology
idescribes idescribes

source target
RDF Triples RDF Triples

source target
XML Catalog XML Catalog

Figure 4.5: Two-layered integration of XML catalogs using RDF

RDFT can be used to express mappings between arbitrary ontologies specified in the
RDF Schema ontology language. Furthermore, it can be used to specify the transforma-
tion between XML documents and the RDF representation.

Mapping language We will now give a short overview of the RDFT mapping meta-
ontology.

The RDFT meta-ontology is used to describe three types of mappings denoted by
classes in RDFT:

e An EventMap is used to specify the relationship between different events. Events
in this context correspond to activity occurrences, such as sending or receiving a
message. These events can be used, for example, to connect descriptions of two
web services, described using the Web Service Definition Language WSDL*,

e A DocumentMap specifies the relationship between an XML and an RDF repre-
sentation of a catalog.

e A VocabularyMap specifies the actual relationships between two ontologies.

For our purposes, the most interesting type of mapping is the vocabulary mapping
(VocabularyMap).

A mapping between two ontologies (vocabularies) is expressed using a number of
bridges. Bridges in RDFT are subclasses of the RDFBridge class. RDFT distin-
guishes two types of RDF bridges, namely Class2Class and Property2Property

“http://www.w3.org/TR/wsdl

CHAPTER 4. THE SURVEY 42

bridges. Class2Class bridges are used to describe the mapping between two classes
and the transformation of instances of these classes. The instance transformation is spec-
ified using XPath [CD99] expressions. Property2Property bridges are used to de-
scribe the mapping between two properties in the ontologies. Again, XPath can be used
to specify instance transformations.

The types of mappings in RDFT (class-to-class and property-to-property) are proba-
bly sufficient in the domain of e-Marketplaces, which was the original target application
domain [OFO01], because ontologies can be expected to have a similar level of granular-
ity and the goals of the different ontologies are similar. However, if ontologies are more
diverse, different types of mappings, e.g. classes-to-instances, classes-to-properties, etc.
will be necessary.

In the approach taken by Omelayenko (cf. [OF01, Ome02b]), the steps of abstraction,
transformation, and refinement all use the XML Transformation language XSLT [Cla99]
for specifying the transformations between XML and RDF documents, as well as trans-
formations between different RDF representations. While certainly XSLT is expressive
enough to express arbitrary transformations between XML documents, and can therefore
also transform RDF documents represented in the RDF/XML [Bec03] serialization into
a different representation, it is not well-suited for the specification of RDF transforma-
tions, because it does not take the data model of RDF, which is graph based into account,
whereas the data model of XML is tree based. Therefore, the RDF data model needs to
be in a sense encoded in the tree based XML model in each single XSLT transformation.

Automation Support [Ome02a] describes a way to discover similarity between classes
based on the instance information for this class, using a machine-learning approach. In the
use case, the class was a product classifier and the instance data consisted of the product
descriptions.

The RDFT meta-ontology was presented as the preferred way to specify mappings be-
tween ontologies, based on the similarities discovered by a matching tool, but no explicit
support is provided for this.

Applicability to Use Cases RDFT tackles the use case of instance transformation
through the XPath specifications attached to the RDF Bridges. RDFT does not offer a
solution for instance unification, nor for query rewriting, although the declarative map-
ping between classes and properties could be used for this purpose. The scope of RDFT
is limited to the transformation of XML documents between different representations.

The use case of ontology merging is not addressed, although a specification of rela-
tionships between ontologies in terms of the RDFT meta-ontology could help in merging
different ontologies, because it specifies the relationship between classes.

CHAPTER 4. THE SURVEY 43

Implementation A prototype tool was created to create mappings based on the RDFT
meta-ontology.

Experiences RDFT as well as the classification method proposed in [Ome(02a] have
been used for the discovery and specification of mappings between product classification
schemes in the course of the GoldenBullet [DKO™02] project.

4.1.3 PROMPT

Summary The PROMPT suite consists of a set of tools that have had an important im-
pact in the area of merging, alignment and versioning of ontologies. A relevant result
of this development is the definition of a global strategy that looks to take advantage of
the synergies that have been generated by the combination of tools that in the past where
considered independent. The PROMPT suite [NMO3b] includes an ontology merging
tool (iPROMPT, formerly known as PROMPT [NMOOb]), an ontology tool for finding
additional points of similarity between ontologies for other tools like iPROMPT (An-
chorPROMPT, [NM00a]), an ontology versioning tool (PROMPTDiff, [NMO03a]), and a
tool for factoring out semantically complete subontologies (PROMPTFactor, [NMO3b]).
The work of Natasha Noy and colleagues proves that different tasks in multiple ontology
managemenﬁ,like looking for differences between versions of an ontology or looking
for similarities between two ontologies in a merging process, are closely interrelated and
share several components and heuristics (see Figure 4.6). Thus tools for supporting some
of the tasks in the context of multiple ontology management can benefit greatly from their
integration with others [NM03a].

The key components of the PROMPT suite have been developed as extensions (plug-
ins) of the Protégé 2000 ontology development environmenﬁ. We can distinguish the
following components:

e iPROMPT is an interactive ontology merging tool, which helps users in the ontol-
ogy merging task by providing suggestions about which elements can be merged, by
identifying inconsistencies and potential problems and suggesting possible strate-
gies to resolve these problems and inconsistencies.

e AnchorPROMPT extends the performances of tools like iPROMPT determin-
ing additional points of similarities between ontologies that are not identified by
iPROMPT.

SNoy and colleagues [NMO03b] define multiple ontology management as a set of concrete tasks for
dealing with multiple ontologies such as maintaining libraries of ontologies, import and reuse of ontolo-
gies, translating ontologies to other formalisms, ontology versioning support, ontology merging-mapping-
alignment support, inference across multiple ontologies and query across multiple ontologies

®http://protege.semanticweb.org/

CHAPTER 4. THE SURVEY

Protégé-2000 Project Browser

I
Infrastructure

v

AnchorPROMPT

/ graph-based ontology
mapping

Ul structure,

anchors
suggestions
iPROMPT
interactive ontology
merging Ul structure, .
reference analysis S :BQN:PTFfCtDr‘
\ heuristion sub-ontology factoring

Ul structure,
heuristics
PROMPTDiff
ontology versioning

44

Figure 4.6: The PROMPT suite infrastructure and interactions between tools [NMO03b]

CHAPTER 4. THE SURVEY 45

e PROMPTD:iff compares two version of an ontology and identifies structural differ-
ences between different versions of the same ontology.

e PROMPTFactor is a tool that enables users to create a new ontology factoring out
part of an existing ontology. In this process, the tool guarantees that the terms
of the resulting subontology are well-defined (for instance, every concept of the
subontology includes as appropriate the superconcepts/subconcepts required for its
specification).

One of the major contributions to the development of PROMPT suite was the identi-
fication of an important overlap in the functionality of its tools and the implementation of
an integrated approach where all these tools benefit from each other. For instance, some of
the components that were originally created for the interface of iPROMPT were reused in
the implementation of the interfaces of the other tools of the suite. In addition, the initial
sets of related terms between two ontologies that AnchorPROMPT requires as a starting
point for a deeper analysis of similarities can be provided by iPROMPT. In return, An-
chorPROMPT can supply an additional set of related terms that can be used by iPROMPT
to improve the results of the merging process. A final example of this integrated approach
can be found in the design of PROMPTDitf and iPROMPT. PROMPTDiff uses some
of the heuristics that were initially developed in iPROMPT for comparison of concept
names, slots attached to concepts, domains and range of slots and so on.

As mentioned above, iPROMPT [NMOOb] is an interactive tool implemented as an
extension of Protégé 2000. iPROMPT guides users in the process of merging two on-
tologies (see an example of the user interface in Figure 4.7). The tool was originally
developed to handle ontologies specified in OKBC [CFF198], but there are significant
efforts to adapt the tool in order to support the OWL ontology language [DS04]. The
central element of iPROMPT is the algorithm that defines a set of steps for the interactive
merging process, see also Figure 4.8, The first step is to identify potential merge can-
didates based on class-name similarities. The result is presented to the user as a list of
potential merge operations. The second step is initiated by the user who chooses one of
the suggested operations from the list or specifies the operation directly. The system per-
forms the requested action and automatically executes additional changes derived from
the action. It then makes a new list of suggested actions for the user based on the new
structure of the ontology, determines conflicts introduced by the last action, finds possible
solutions to these conflicts and displays these to the user.

Initially, PROMPT identified a set of ontology merging operations (merge classes,
merge slots, merge bindings between a slot and a class, etc) and a set of possible conflicts
for these operations (name conflicts, dangling references, redundancy in the class hier-
archy and slot-value restrictions that violate class inheritance). These lists of ontology
merging operations and possible conflict operations have been extended by the authors of
the tool as a part of an evolution process in the design of the system.

The goal of AnchorPROMPT [NMO00a] is to augment the results of methods that

CHAPTER 4. THE SURVEY

. merge2 Protégé-2000

46

[C:\Program Files\Protege-2000\examples\promptimerge2_pprj]
Project Edit Window Help Prompt

ojsle) (=

[Prompt | C/ Classes | S ||Slots || || Forms | I:: Instances | @ Queries |

| Suggestions | 1« | Creating operation |

||| Result classes | Result siots | Result instances |

[V] 2] s]

To Do list | V"?“ x "? ey

| P I] | o ' ASEOCIATED-SLOT
Nams], 13 gl et CREATION-TIMESTAMP
merge ,ﬂr.r_resewa J.O.P'.ls L Drver Car_rer =1 CREATOR
oy et A G 5] DIRECT-INSTANCES
merge ; . |8 customer_type--Car_rental B DIRECT-SUBCLASSES
copy .AJr_reservfatJons params = {subs} DIRECT-SUBSLOTE
i j_”’—’ese""ﬁf_’ons DIRECT-SUPERCLASSES
i RoEAaIE DIRECT-SUPERSLOTS
oy ; RO DIRECT-TEMPLATE-SLOTS
copy - Drl\rer.Car_renraI < DIRECT-TYPE
copy Locgtlon Car_rental params = {subs} DOCUMENTATION
ERity . ASiVahicie CAE et - _ MODIFICATION-TIMESTAMP
merge Alr_resenations ! Check Car_rental MODIFIER
merge | Alr_reservations (©) Credit_card Car_rental NANE
copy _ Air_reserv: PAL-DESCRIPTION
copy A.Ur_reservafnons PAL-NMAME
capy Alr_resarsations PAL-RAMGE
copy Ale_reservat)

copy C) Payment_information Car_rer

-

Reason for selected suggestion

SLOT-COMETRAINTS
SLOT-DEFALLTS

Frame were value types for merged slots that are now

SLOT-INVERSE
SLOT-MARIMUM-CARDIMALITY
SLOT-MIMNIMUM-CARDIMALITY
SLOT-MUMERIC-hAXIMLIN

3| JSLOT-NUMERIC-MIMNIMIIM

|8 traveler

| - Dolt

SLOT-VALUE-TYPE
SLOT-VALUES
ravelar

Figure 4.7: An example of ontology merging in iPROMPT

Make initial suggestions

v

Select next operation

s

Perform automatic updates

Find conflicts

Make suggestions

Figure 4.8: The flow of the iPROMPT algorithm [NMOOb]

CHAPTER 4. THE SURVEY 47

analyze only local context in ontology structures, such as Chimaera [MFRWO0O0] and
iPROMPT [NMOOb], by finding additional possible points of similarity between ontolo-
gies. To do this AnchorPROMPT requires that the other tool or the user provides an initial
set of related terms. Following a graph perspective, the tool establishes a set of paths that
connects the terms of an ontology that are related with the terms of the other one. The
algorithm takes two pairs of related terms as input and analyzes the elements that are in-
cluded in the path that connect the elements of the same ontology with the elements of
the equivalence path of the other ontology. So, we have two paths (one for each ontology)
and the terms that compound these paths. The analysis looks for terms along the paths
that might be similar to the terms of the other path, which belongs to the other ontology,
assuming that the elements of those paths are often similar as well. These new poten-
tially related terms the algorithm discovers are marked with a similarity score that can
be modified during the evaluation of other paths in which these terms are also involved.
Terms with high similar scores will be presented to the user to improve the set of possible
suggestions in, for example, a merging process in iPROMPT.

If the two ontologies that we compare present important differences in the number of
levels of their hierarchy or in the number of relations between classes, the algorithm does
not work well.

The third element of the suite is PROMPTDIiff [NMO03a], which is used to compare
the structure of two versions of a particular ontology and which identifies the frames
(i.e. classes, slots or instances) that have no changes, frames with only changes in their
properties, and frames that have also changed in other parts of their definitions. The name
of the tool, PROMPTDIff, is influenced by tools like CVS, which is a version control
system that is used to maintain the history of program source code files. This tool includes
facilities to discover changes between versions of a document (finding a diff).

The last element of the PROMPT suite we will describe here is the tool PROMPT-
Factor [NMO03b] which allows users to extract from a larger ontology the elements that
the user is interested in, in a way that also copies all the terms required for preserving
the semantics of the descriptions. The authors of the tool call this process “factoring
subontologies”.

During the analysis of the PROMPT suite, we concluded that the tool has some limi-
tations in the area of ontology versioning and evolution. We present a summary of some
of the most relevant conclusions of our study (some of them where confirmed by Natasha
Noy):

e PROMPTD:iff only detects differences between two versions using a structural diff.
In [Kle04], we can find several complementary alternatives (change logs, concep-
tual relations and transformation set) that can give us a richer description of the
changes that the original ontology has undergone.

CHAPTER 4. THE SURVEY 48

e The description of the differences between two versions of an ontology that
PROMPTDIfT offers is limited. For this reason, Klein extended PROMPTDIfT to
support richer semantic descriptions of changes. He introduced a more complex
classification of type of changes (implicitly-changed, directly-changed, changed,
isomorphic and unchanged, see [Kle0O4]) and provides a high level description of
the changes based on the idea of minimal transformation set and on an ontology of
changes (again see, [Kle04]).

PROMPTDIfT can find difference between ontologies but it does not mean that there
is explicit support for versioning. PROMPTDiff does not allow the user to identify
versions or to indicate that there is a versioning relationship between ontologies.
Therefore, the user has to find a way to manage different versions of an ontology
and to identify that a particular ontology is a version of another ontology.

Ontology Languages The knowledge model underlying PROMPT is the Open Knowl-
edge Base Connectivity (OKBC) protocol [CFF198]. OKBC is frame-based: frames are
the main elements in this knowledge model for building ontologies, and three types of
frames can be distinguished: classes, slots and instances. A class is a set of entities and
the elements of such a set are called instances, which may be classes or slots as well as in-
dividuals. Slots define binary relations between pairs of entities, whether they be classes,
instances, or primitive objects (such as a string or a number).

There has been a considerable effort to provide PROMPT with RDF and OWL
support[NMO3b]. In the tutorial about the Protégé OWL plug-in given at ISWC037 it was
mentioned that PROMPT can be used in conjunction with this plug-in@[KFNM]. Thus the
OWL support for PROMPT is achieved through this plug-in.

Mapping Language iPROMPT and AnchorPROMPT do not include a language that
specifies the mapping. We understand that there should exist an internal representation of
the mapping results because there is a strong interaction between the tools of the suite, and
they need to share these results, but the related bibliography does not describe this possible
formalism. Michel Klein (see [Kle04]) implemented an extension of PROMPTDiff that
provides a language for change specification that characterizes differences between two
ontologies. This language was originally defined using OKBC and then translated and
extended in OWL.

1PROMPT in combination with AnchorPROMPT can map classes, properties and in-
stances using linguistic and structural similarity techniques.

Mapping Patterns Currently there is no support for mapping patterns in the PROMPT
suite.

Thttp://iswc2003.semanticweb.org/pdf/Protege-OWL-Tutorial-ISWCO03.pdf
8http://protege.stanford.edu/plugins/owl/

CHAPTER 4. THE SURVEY 49

Automation Support iPROMPT is an interactive merging tool that guides users in the
process of merging two ontologies. iIPROMPT proposes to the user a set of ontology
merging operations and a set of possible conflicts for these operations. Then, the user has
two choices: select one of the suggestions generated by the tool, or specify the desired op-
eration directly. After that, iIPROMPT performs the operation and automatically executes
additional changes that the operation requires. Finally the previous list of suggestions is
modified as a result of the changes that the executed operation produced. This cycle is
repeated until the merging process finishes, or the user decides to abort it.

Applicability to Use Cases The PROMPT suite is a set of tools that provides several so-
lutions for ontology mediation, versioning and factoring. iPROMPT covers the complete
merging process, and can also generate a list of initial similarities that AnchorPROMPT
improves in generating a new list of related terms on which the mapping could be based.

Implementation All the tools of the PROMPT suite are plug-ins or extensions to the
Protégé-2000 ontology development environment. Protégé-2000 provides an intuitive
graphical user interface for ontology development, a rich knowledge model based on
OKBC, and an extensible architecture that provides API access both to the Protégé-2000
knowledge bases and to its user interface components [NMO3b]. One of the disadvantages
of having Protégé-2000 as a base for PROMPT stems from the difficulties of supporting
OWL on top of Protégé-2000. These are mentioned in [KFNM] and are due to the differ-
ences between OKBC, Protégé-2000’s internal model, and OWL.

The PROMPT suite is clearly user oriented where the main goal is to support the
user in creating the mappings (and merging the ontologies).The suite of tools provides a
common user interface that follows the schema of Protégé-2000 GUI, and components
that implement the Match operator to find similarities between ontologies.

The PROMPT suite was developed and improved in the context of several projects
during the last 5 years, with the collaboration of many users who continuously evaluate
and exploit the tools providing valuable feedback for the developers.

Experiences The papers that describe iPROMPT [NMOOb], AnchorPROMPT [NMO00a]
and PROMPTDiff [NMO03a] include evaluation tests to show the accuracy of these tools.

In the case of iPROMPT [NMOOb], the authors tested the tool using two ontologies
with 134 class and slot frames in total. The first ontology was developed for the unified
problem solving method development language (UPML) [FMvH'03] and the second on-
tology for the method description language (MDL) [GGM98]. The evaluation showed
that human experts followed 90% of iPROMPT’s suggestions and 75% of the conflict
resolution strategies. The users performed 74% of the operations suggested by iPROMPT
during the merging process.

CHAPTER 4. THE SURVEY 50

AnchorPROMPT was also tested in [NMOOa]. The results show that the accuracy of
AnchorPROMPT is directly proportional to the length of the paths considered. For exam-
ple with path length 2 the accuracy is 100% and with path length 4 the accuracy decreases
to 67%. Noy and colleagues also tested AnchorPROMPT with the same ontologies as
1IPROMPT. They discovered an important limitation of the tool: the algorithm does not
provide good results when the structures of the ontologies differ considerably. The UPML
ontology has a large number of classes distributed on many different levels. On the other
hand, the MDL ontology has a simpler structure with fewer classes and with only two
levels in the hierarchy.

Finally, the accuracy of PROMPTDiff [NMO03a] was evaluated using several versions
of two ontologies of two different projects: EON project and PharmGKB project. The
tool identified 96% of the possible matches (recall) and 93% of the identified matches
were correct (precision).

414 GLUE

Summary GLUE [DMDHO04] is a system which employs machine learning technolo-
gies to semi-automatically create mappings between heterogeneous ontologies, where an
ontology is seen as a taxonomy of concepts. With GLUE, the authors port their previ-
ous work on matching database schemas (called LSD) [DMDHO2] to the Semantic Web
domain. GLUE focuses on finding 1-to-1 mappings between concepts in taxonomies, al-
though the authors say that extending matching to relations and attributes and involving
more complex mappings (such as 1-to-n and n-to-1 mappings) is the subject of ongoing
research.

The similarity of two concepts A and B in the two taxonomies O; and O is based on
the sets of instances that overlap between the two concepts. In order to determine whether
an instance of concept B is also an instance of concept A, first a classifier is built using
the instances of concept A as the training set. This classifier is now used to classify the
instances of concept B. The classifier then decides for each instance of B, whether it is
also an instance of A or not.

Based on these classifications, four probabilities are computed, namely P(A, B),
P(A,B), P(A,B) and P(A, B), where, for example, P(A, B) is the probability that
an instance in the domain belongs to A, but not to B. These four probabilities can now
be used to compute the joint probability distribution for the concepts A and B, which is a
user supplied function, using these four probabilities as parameters. [DMDHO04] describes
two possible functions for the joint probability distribution. The first example is the Jac-
card coefficient, where the similarity measure is computed by dividing the probability
that an instance is in the intersection of two concepts by the probability that an instance
is in the union of the concepts (P(A N B)/P(A U B)), which intuitively corresponds to
the function of relevant instances, which are both in A and B. The second example is the
“most-specific-parent”, where the similarity measure is positive (i.e. the measure is not

CHAPTER 4. THE SURVEY 51

0) for any parent B of A and it is the highest for the most specific parent, i.e. the concept
Byrsp, which represents the smallest superset of A.

The general architecture of the GLUE system is as follows:

e The Distribution Estimator takes as input the two taxonomies O; and Os, together
with their instances and applies machine learning to compute the four aforemen-
tioned probabilities P(A, B), P(A, B), P(A, B) and P(A, B). Currently, the dis-
tribution estimator uses a content learner, which learns a classifier based on the
textual context of the instances, and a name learner, which learns a classifier based
on the name of the instance. It is possible to plug in different learners for differ-
ent aspects using a meta-learner which uses a certain function to incorporate the
predictions from all learners into an overall prediction.

e The Similarity Estimator applies a user supplied function, such as the mentioned
Jaccard coefficient or the most-specific-parent, and computes a similarity value for
each pair of concepts (A € Oy, B € O,).

e The Relaxation Labeler takes as input the similarity values for the concepts from
the taxonomies and searches for the best mapping configuration, exploiting user
supplied domain specific constraints and heuristics.

All in all, GLUE can be seen as an implementation of the Match operator and can be
fit into the overall mapping process as illustrated in Section [1.2.

Ontology Languages The GLUE matcher uses two taxonomies, in which the nodes
correspond to concepts, and edges correspond to subclass-of relationships in the ontolo-
gies. Clearly, such a taxonomy can be easily extracted from an ontology represented in
any ontology language, although a lot of the relationships in the ontology are not taken
into account. This, though, is not such a big problem for the approach, since the matching
is mostly based on instance information.

Mapping Language The result of the matching done in GLUE is not a mapping be-
tween the two ontologies, but rather a set of similarity measures, stating which concepts
in one ontology O, are similar to concepts in the other ontology Os.

Mapping Patterns Mapping patterns are not an issue in GLUE, since it is only con-
cerned with discovering similarities between concepts based on their instances. GLUE
could also not be used for matching patterns with an ontology, since a pattern does not
have instances.

CHAPTER 4. THE SURVEY 52

Automation Support GLUE has a semi-automatic algorithm for specifying the map-
ping between two ontologies. Ontologies are seen as taxonomies and the problem of
matching is reduced to: “for each concept node in one taxonomy, find the most similar
node in the other taxonomy”.

The input from the user in the matching process consists of the function to be used for
computing the overall similarity value, based on the joint distribution of the concepts, and
the domain specific constraints and heuristics, which are used for the relaxation labeling
process.

GLUE takes a one-shot approach at determining the similarities between taxonomies,
which means that there is no user interaction during the matching process. The user has to
use the outcome of the matching process as-is and use it as a basis for creating a mapping
between the ontologies. In other words, GLUE implements the “find similarities” step in
the mapping process (Section 1.2), but does not provide support for the iteration step.

Applicability to Use Cases GLUE aids in creating mappings between ontologies in the
sense that it makes the work of the human user easier by finding similarities between
concepts in two ontologies based on their instances.

Implementation A prototypical implementation of GLUE was created and the perfor-
mance of each of the components in the architecture was evaluated. The main components
to be evaluated were the different types of learners used for the classification and the re-
laxation labeler, which applied domain constraints and heuristics in order to come up
with better matches. It turned out that the combination of several combined classifiers to-
gether with domain heuristics can achieve significant performance enhancement in terms
of accuracy, which can go up to 97% in some domains.

Experiences [DMDHO04] reports only on small evaluations of the performance of their
system for taxonomies in the domain of (university) course catalogs and company pro-
files. The matching accuracy for their chosen examples was typically between 70 and 90
percent. However, experiments on a broader scale need to be done to see if GLUE works
in other domains and to evaluate the scalability of the approach.

4.1.5 Semantic Matching

Summary Semantic Matching [GS04] is an approach to matching classification hier-
archies. The problem addressed by Semantic Matching is the following: say you have
two different classification hierarchies, where each hierarchy is used to describe a set of
documents, i.e. each term in the classification hierarchy describes a set of documents.
How do the terms in one hierarchy relate to the terms in the other hierarchy?

CHAPTER 4. THE SURVEY 53

Semantic Matching can also be seen as an implementation of the Match operator for
purely tree-structures ontologies. The authors define Match as follows: “Match is an
operator that takes two graph-like structures (e.g. database schemas or ontologies) and
produces a mapping between elements of the two graphs that correspond semantically to
each other”. This definition is similar to the definition provided in Section [1.1. How-
ever, in Semantic Matching the definition is limited to the graph representation format for
ontologies. This distinction is fundamental to the Semantic Matching approach, since it
performs matching based on the nodes and the edges between the nodes in a graph.

Until now Semantic Matching has been mostly developed and tested for the task of
matching classification hierarchies. Classification hierarchies are tree-structured graphs in
which each node has only one parent. A property of classification hierarchies is that there
is only one type of relationship, which is a more-specific-term relation which subsumes
the subclass-of relationship. It is currently not clear if and exactly how Semantic Match-
ing can be applied to the problem of ontology matching, because most ontologies typically
have different types of relationships between concepts and the subclass-of relationship in
ontologies is a formal relationship, interpreted often as a strict logical implication or a
subset relationship (as is the case for the semantics of Description Logics).

Of course, an ontology can usually be rewritten as a graph with labelled edges, al-
though some information (e.g. axioms and higher-order relations) might be lost in the
rewriting. Concepts could be the nodes and relationships between concepts could be the
(labelled) edges; the label of the edge would denote the type of the relationship. This is
similar to the labelled graphs used in ONION (see Section|4.2.2). There is currently work
underway to incorporate the semantics of the relationships in the Semantic Matching al-
gorithm, but this work is still in the early stages.

The authors of [GS04] have argued that almost all earlier approaches to schema and
ontology matching have been syntactic matching approaches, as opposed to semantic
matching. In syntactic matching, the labels and sometimes the syntactical structure of
the graph is matched and typically some similarity coefficient [0, 1] is obtained, which
indicates the similarity between the two nodes. Semantic Matching computes a set-based
relation between the nodes, taking into account the meaning of each node. The possible
relations returned by the Semantic Matching algorithm are equality (=), overlap (N),
mismatch (L), more general (C) or more specific (2). The correspondence of the symbols
with set theory is not a coincidence, since each concept in the classification hierarchies
represents a set of documents.

We will now briefly sketch the Semantic Matching (also S-Match) algorithm for graph
matching.

Two levels of granularity for matching are distinguished in S-Match, namely element-
level matching and structure-level matching. At the element level, which is concerned
with individual nodes, the authors distinguish techniques with weak semantics and tech-
niques with strong semantics. Techniques with weak semantics correspond to the syn-
tactic matching which has been proposed in most previous literature (for an overview

CHAPTER 4. THE SURVEY 54

see [RBO1]). Element-level matching with strong semantics is done using thesauri (e.g.
WordNet [Fel99]), which typically contain synonym and hypernym relations between
terms. These relations can be used to find semantic relations between nodes in the graphs.

In the next phase, the structure-level matching, the matching problem, i.e. the two
graphs together with the mapping query are translated into a propositional formula and
then checked for validity (i.e. satisfiability). A mapping query is a pair of nodes and a
semantic relationship between the pair of nodes. If the propositional sentence is valid, we
know that the semantic relationship between the two nodes in the query holds and thus
can be added to the mapping result.

A potential problem with this algorithm is that the propositional satisfiability check
(which is known to have nondeterministic polynomial complexity) has to be performed
for every pair of nodes from the two graphs. Clearly, this does not scale for large graphs.

Ontology Languages Currently, the semantic matching can work with classification hi-
erarchies, but also directed acyclic graphs (DAGs) in general. Classification hierarchies
can often be extracted from ontologies by treating classes in the ontology as nodes and
the subclass-of relationships as edges, but all other relationships are lost in the transla-
tion. Note that multiple classification hierarchies can be extracted from an ontology in
which concepts have more than one direct superclass. This of course does not rule out
the use of the result of the algorithm as the input to a mapping process for the complete
ontologies. Also, there is work underway to extend the semantic matching to work with
labeled graphs, taking the semantics of the different relationships into account.

This does not mean that the algorithm in its current form is useless, on the contrary.
There are currently many classification schemes around, such as dmoﬂ, Yahodﬂ, and
many other (specialized) classification hierarchies are in use. However, for arbitrary on-
tology matching on the Semantic Web, it has not been shown that the algorithm performs
well. That the algorithm works well has been shown only for the case of classification
hierarchies with more-specific-term relationships. Ontologies typically implement both
the formal subclass-of relation and many other types of relationships.

Mapping Language S-Match is a matching algorithm and as such does not have a
language for the actual specification of the mappings, only for the specification of the
similarities, although in this case the specification of similarities comes close to a real
mapping specification.

As we have mentioned earlier, the specification of the similarity of concepts is done
using set-based primitives, denoting the relationships of equality, disjointness, overlap
and sub/superset. In later work (e.g. [GSYO04]), the authors use the symbols commonly
found in description logics, i.e. (A, B,M) for overlap, (A, B,C) for subset, (A, B, J)

“http://www.dmoz.org/
1%http://www.yahoo.com/

CHAPTER 4. THE SURVEY 55

for superset and (A, B, 1) for disjointness of the concepts. These relations could be
translated to Description Logic [BCM™03] axioms, i.e. AMMB# 1, AC B, BC A, and
ANB=_1.

Mapping Patterns Currently, there is no use of mapping patterns in Semantic Match-
ing. It might be worthwhile to see if mapping patterns can help to find similarities, al-
though this is not a straightforward task. Perhaps it is possible to match ontologies against
mapping patterns in order to find out if a certain mapping pattern might be applicable, but
the authors do not give any hints as to if and how we can incorporate mapping patterns
into the matching algorithm.

Automation Support Clearly, the proposed algorithm is an automatic one-pass (i.e.
no user interaction) algorithm, which returns all similarities it can find between the two
graphs. There is no user interaction during the execution of the matching.

It cannot be assumed that the mapping returned by the algorithm is either correct
or complete. Therefore, the result of the S-Match algorithm can serve as a first step in
the overall ontology mapping process. It can serve as the input for the next phase in
the mapping process, in which the user validates the result of the matching and corrects
any mistakes and does the necessary additions in order to make the mapping correct and

complet.

Applicability to Use Cases For the purpose of ontology mediation on the Semantic
Web, the role which can be played by S-Match could be in the discovery phase of the
mappings between ontologies. Since S-Match provides an implementation of the Match
operator, it fits into the “find similarities” step in the mapping process.

Implementation [GSY04] presents S-Match, an algorithm and implementation of Se-
mantic Matching. It also compares the performance of the S-Match implementation
in terms of speed, precision and recall with available implementations of existing ap-
proaches in syntactic matchings COMA [DRO02], Cupid [MBRO1] and Similarity Flood-
ing [MGMRO2], which was implemented in the RONDO system [MRBO3].

It turned out that for most applications, S-Match outperformed the other systems in
terms of precision and recall. However, the other systems typically outperformed S-Match
in terms of time required to perform the actual matching. One possible explanation is that
the S-Match implementation has not really been optimized. However, the S-Match im-
plementation uses a propositional SAT solver, which can not be efficiently implemented,
because the problem is known to be NP-Hard. Currently, there are no known algorithms
that require less than exponential time for satisfiability checking.

Of course, it can also never be guaranteed that the outcome of the human mapping will be either correct
or complete.

CHAPTER 4. THE SURVEY 56

Experiences Semantic matching has so far only been tested with some toy examples.
However, the results presented in [GSY04] do look promising with respect to the precision
and recall achieved by the system compared to other existing matchers. Furthermore, S-
Match is currently in the early stages of its development; there are plans to apply S-Match
in other settings, which will show whether S-Match works for real-world problems on the
Semantic Web.

4.1.6 OntoMap

OntoMap ([KSDO1a]) is a knowledge representation formalism, reasoner, and web por-
tal'? for upper-level ontologies and lexical semantics. The project was developed by Onto-
text Lab. in cooperation with the Bulgarian Academy of Sciences. Note that the Ontology
Mapping system used in SEKT is also named OntoMap but is mainly developed by the
company Ontoprise and is a completely different system. The portal provides access to
the most popular upper-level ontologies and lexical resources, together with hand-crafted
mappings between them. It facilitates the evaluation and comparison of upper-level on-
tologies and lexical knowledge bases. The portal is based on a unified representation of
the resources, a proprietary inference engine, and a mapping methodology. It includes a
number of alternative viewers: HTML, DHTML, a stand-alone GUI application.

In order to provide a uniform representation of the ontologies and the mappings be-
tween them, OntoMap introduces a relatively simple meta-ontology called OntoMapO.
The knowledge representation language is more complex than RDF(S) and similar to
OWL Lite™ [dBPFO04], but it also includes specific primitives for ontology-mapping.

The following upper-level ontologies are hosted:
e Upper Cyc Ontology

e EuroWordnet Top Ontology

e EuroWordnet Meta-Ontology

e WordNet Meta-Ontology

e WordNet Tops (the top 41 classes)

e MikroKosmos Top (the top 13 classes)

e OntoMap Meta-Ontology

e Protege Meta-Ontology

e Simple Ontology of Business Entities

2http://www.ontotext.com/projects/OntoMap.html

CHAPTER 4. THE SURVEY 57

e SENSUS Top (the top 257 classes)

Mappings between EuroWordnet Top and the other ontologies were created. There are
almost no direct mappings between the other ontologies, but the equivalence and sub-
sumption relations are automatically propagated through the mapping to EuroWordnet
Top.

Mapping Language The full description of the OntoMapO could be found in
[KSDO1b]. Here we present just its mapping primitives, as follows:

o MuchMoreSpecific - the 1st concept is much more specific than the second one;
transitive relation. Inverse of MuchMoreGeneral and a specialization of ChildOf;

e MuchMoreGeneral - the 1st concept is much more general than the second one;
transitive relation. Inverse of MuchMoreSpecific and a specialization of ParentOf;

e Toplnstance - the 1st concept is the most general instance of the second one, which
is a meta-concept. Inverse of ExactClass and a specialization of InstanceOf,

e ExactClass - the 1st concept is a meta-concept, the second concept is the most
general instance of the first one. Inverse of Toplnstance and a specialization of
ClassOf,

e ParentAslnstance - the Ist concept is more general than all the instances of the
second one which is a meta-concept. Inverse of ChildAsClass;

e ChildAsClass - the 1st concept is a meta-concept (class), all its instances are more
specific than the second concept. Inverse of ParentAslnstance.

Automation support OntoMap does not automatically create mappings. It assumes
that either a mapping exists or it may be created manually. Although it may seem that
automatic mapping may reduce the efforts, in the case of upper-level ontologies the typical
heuristics involved for domain ontologies can play a very limited role. This is explained
in detail in [KSDO1b]. Once a mapping to one of the ontologies it supports is created,
OntoMap could automatically create a mapping to any of the other ontologies.

Applicability to use cases OntoMap could be used for (semi-)automatic creation of
Ontology Mappings between other domain ontologies and existing ones, but it requires
that a mapping exists to one of the supported ontologies. The different upper-level ontolo-
gies are suited for different purposes, thus, a domain ontology may naturally map to one
of these, and then OntoMap will automatically provide a mapping to the rest. Although
OntoMap does not directly address the use-case of instance transformation, the mappings
it creates could be used for such tasks. It is important to mention that OntoMap handles

CHAPTER 4. THE SURVEY 58

classes and instances in an uniform fashion and thus could transform instances to classes
and vice-versa (via ParentAsInstance and ChildAsClass mapping primitives).

Tool support

e The OntoMap web portal (http://ontomap.ontotext.com) requires the users to reg-
ister (it is free) and then it allows the browsing of ontologies via a handy DHTML
Tree View. The search for concepts throughout one or more ontologies is also sup-
ported. The portal allows the export of the ontologies to DAML+OIL.

e CYC to EWN-Top mapping. An online service, hosted at http://demo.ontotext.com,
allows the browsing of the EuroWordnet Top ontology and its mapping into Upper
Cyc Ontology. The corresponding Cyc concepts are represented with: their glosses,
direct and indirect super-classes (#$genls), direct and indirect classes (#$isa). The
mapping itself is expressed in terms of a CycL microtheory encoding of the Eu-
roWordNet Top Ontology on top of the publicly available part of the Cyc knowledge
base. This approach was chosen because such a mapping is impossible by means of
equivalence and subsumption relations only. However, a simplified relational view
that is sufficient for many purposes, is also provided. More theoretical details can
be found in [KS00].

e The OntoMap Viewer is a standalone java application, which represents
the main functionality of the OntoMap web portal. OntoMap Viewer is
distributed for all popular platforms: Windows, Linux, Solaris, MacOS
(http://www.ontotext.com/projects/OntoMap Viewer/install.htm). All of the previ-
ously mentioned ontologies are encoded into OntoMapO language. The viewer
allows the browsing and searching by concepts from any ontology. An example,
shown in Figure(4.9, illustrates the supported mappings between the upper-level on-
tologies. The user chooses an ontology and then selects a concept from it, e.g. Per-
son from SENSUS Top ontology. Then the viewer shows any equivalence, super-
and sub-concepts from all ontologies including the current one, but also the others,
if there are equivalence and/or subsumption relations (in this case the concept is
equivalent to Human from EuroWordnet Top and Person from UpperCyc).

Summary OntoMap provides a mapping model for upper-level ontologies, and a few
of the most popular ones are encoded in it. Using the mapping to the EuroWordnet Top
ontology and a reasoner to support the knowledge representation language, a mapping
between all of the ontologies is available. Thus, a new mapping from a domain ontology
to one of the supported upper-level ontologies could be automatically mapped to each of
the other ones. However, OntoMap is focused on the evaluation and the comparison of
the ontologies, which are encoded into OntoMapO, rather than on Ontology mapping or
instance transformation services.

CHAPTER 4. THE SURVEY

OntoMap ¥iewer

File ‘iew Search Help

ﬂ‘_] Search: Eerso ﬁ Search [Searchthe gloss aleo

59

=lolx]

List of Ontologies

EuroWordnet Meta-Ontology = |
Wersion:
Concept count; ¥
EuroWwordnet Top Ontology
Wersion:
Concept count: 1451
MikroKosmos Top [mKosm
Wersion;
Concept caunt: 1.3
OntoMap Meta-Ontology [Or
YWersion:
Concept count; 30
Protege Meta-Ontology [Pra
Wersion: 1.5
Concept court: 10

Simple Ontology of Busines
Wersian:
Concept count; 50
Upper Cyc Ontology [Upper(
Wersion:
Concept count: 3501
‘WordHet Meta-Ontology [Wh

Wersion: 1.7
Concept count: 46

Ontology Yiew Concept View
el S| @||e[~|S|D|5l|2]
N | SENSUS Top W | PERSON [SENSUS]
@ comanm Al I PERSON
= |L] 0B-THING - MJEquivalents | synonyms) Direct: 1; all: 3
= I PrOCES S + @ Hunan [EuroWordner Ton Ontolody]

= \LJ MENTAL-PROCESS
+ B MENTAL-INACTI
@ MENTAL-ACTIVE
+ @@ COGNITION
=\ MATERTAL-PROCESS
@ DIRECTED-ACTI
+ @ NONDIRECTED -4
@ VERBAL-PROCESS
+- @ RELATTONAL-PROCE
=\ ouaLTTY
+ @ LOGICAL-QUALITY
@ EVALUATIVE-QUALI |
+ @ MATERIAL-WORLD-(Q
- \LJ INTERPERSO. . .
+ @ COMMUNICATIVE-AC
-\l oBJECT
+- @ CONSCIOUS-BEING
+- @ NON-CONSCIOUS-TE
= \LJ NAMED-OBJECT

+ 0#$Person [Upper Cyc Ontoloogy]

= lL]Super—concepts { peremts) Direck: Z27 - dll: T

+ - @ VERTEERATE
+ - @ NAMED - 0EJECT

= U;.]Su.b—concept.s { children) Direct: 2; &ll: 17

@ malE
@ FEMALE

ODirect instances Direct:

- \JCclasses Direct: 1; A&ll:

etoncept [OntoMap Meta-Ontology]

0; all: 0
1

Q Other Felations

Concept's Gloss:

WordHet Tops [WHet1?] + @I -
K ’ 4 | »
SENSUS Tap

Figure 4.9: OntoMap Viewer - concept ‘“Person” in different upper-level ontologies

CHAPTER 4. THE SURVEY 60

4.1.7 RDFDiff

RDEFDiff (formerly known as OntoView [KKOFO02]) is an algorithm and a tool, devel-
oped jointly by VU Amsterdam and Ontotext Lab. It aims to detect and depict changes
in RDF-encoded knowledge (such as ontologies encoded in RDF(S), DAML+OIL, and
OWL). Basically, it is very much inspired by the CVS diff and the UNIX diff. It has been
tuned for RDF(S) and compares the ontologies on a structural level, i.e. rather the data
model of different RDF(S) ontologies than the syntactical encoding. RDFDiff utilizes
change-classification rules, which are intended to serve as a basis for further semantic
and structural analysis of the differences. Such rules can be classified as:

e robust categorization of the changes
e cvaluation of the compatibility between the versions

e data-transformation or mapping
The change detection in RDFDiff includes:

e Matching anonymous resources and their descriptions
e Detection of renamed resources, based on the definition of the resource

e Detection of renamed resources, based on the usage of the resource (detection of
sub-graphs, which do not change, given that the old ID/URI has been substituted
with the new one)

The tool resembles PROMPTDiff [NM03a] in the following characteristics:

e change detection based on graphs

e an extensible set of rules to classify a change (called “heuristics” in both PROMPT-
Diff and RDFDiff)

It differs from PROMPTDIff in being able to compare XML-serializations of the RDF(S)
ontology as well. RDFDiff detects changes mainly using the RDF-graph model, but it
presents the results in a diff-like way (textual), while trying to preserve the order of the
statements in the XML serialized files. It is focused on RDF(S) and thus it handles its
specifics well (e.g. anonymous resource matching). However, the rules model the seman-
tics of the logical language (i.e. Description Logics for DAML+OIL and OWL).

CHAPTER 4. THE SURVEY 61

RDFDiff overview Essentially, the algorithm takes as input two RDF-encoded files,
compares them, and produces a list of changes, organized into added, changed and deleted
items.

It is important to mention that RDFDiff does not implement much semantics. The
rules may implement the semantics of the data model of the RDF-encoded ontology but
they need not to be used. RDFDiff does not need to be run on two ontologies (it could
compare any arbitrary RDF-graphs) but it was developed to aid ontology comparison.
In its first version RDFDiff was perceived as a diff for an old and a new version of an
ontology, and thus the description of the algorithm, as well as the user interface of the
tool implementing it, refer to the two ontologies being compared as old” and “new”.
However, except for the visualization of the results, RDFDiftf does not depend on the fact
that the RDF graphs are two versions of the same graph and therefore it could well be
used for any two ontologies.

The algorithm treats an RDF-encoded ontology as a sequence of resource definitions,
where a definition of resource R is assumed to be the list of all statements where R is
a subject. This grouping of the statements into resource definitions is optional, because
the user might require the original grouping from the source file. In the case where the
statements are not grouped into “resource definitions”, they will be handled as grouped in
first level XML elements. The resource definitions are ordered according to the new file,
considering the position of the first statement from the definition.

Statements are considered to be changed if and only if the subject and the predicate in
each versions match unambiguously, but the values might be different, i.e. when there is
a single statement with such a subject and such a predicate in both versions. Because the
resource definitions of the first file are reordered according to the second file, definitions
of same terms that occur in different places in the two files can be found.

Mapping language The change-classification rules are defined via a simple RDFS
schema, which contains two classes and a few properties. The classes are Rule and Triplet.
Each rule is a set of triplets defining relationships between some triples via common vari-
ables used in place of ’subject’, 'predicate’ or "object’. The main task is to find all the
possible solutions (read possible bindings of the variables used in the triplets) where there
exist triples that match the patterns of the whole set of triplets. Then all solutions found
with the older version of the resource definition are compared against those found in its
newer version, and the equal pairs are removed.

Each instance of a Rule class can be connected with several instances of the Triplet
by the property use, which is defined as:

<rdfs:Property rdf:about="&rule;use" />

These are the properties that indicate which variable is to be observed for possible
changes and what label should be added, removed or changed:

CHAPTER 4. THE SURVEY 62

<rdfs:Property rdf:about="&rule;checkVar" /> <rdfs:Property
rdf:about="&rule;onChanged" /> <rdfs:Property
rdf:about="&rule;onAdded" /> <rdfs:Property

rdf :about="&rule; onRemoved" />

The instances of the Triplet class can be connected with predicates specifying a sub-
ject, a predicate and an object of a triple for matching. Each value of these predicates,
starting with ”$”, can be treated as a name of a variable, and the others as resource URIs
or literals.

<rdfs:Property rdf:about="&rule;theSubj" /> <rdfs:Property
rdf :about="&rule;thePred" /> <rdfs:Property
rdf :about="&rule;theObj" />

The solutions are compared by the values bound to the used variables: if a value is a
resource, by its URI, if it is a literal, lexically, and in the case of an anonymous resource,
by the object value of the triple with a predicate “daml:onProperty”. If there is at least
one such solution in any of the versions, the rule is applicable and its ‘label’ is added.

If there are solutions which only differ by the value of the ’checkVar’ variable: the
generated ’label’ is the one prepared by the literal, connected with a 'rule:onChanged’
property to that rule instance. If there are no solutions in the older version, then for
each ’extra’ solution that is left unmatched in the newer version, a ’label’ is generated
from the literal, connected with a ’rule:onAdded’ property to the rule. And in the case of
unmatched solutions left from the older version, the rule label is generated with the literal
connected to the rule with a rule:onRemoved property.

An example rule to detect the change of the parent class follows:

<rule:Rule rdf:about="&rule;ruleSubClassOf">
<rule:use>
<rule:Triplet>
<rule:theSubj>$X</rule:theSubj>
<rule:thePred rdf:resource="&rdfs;subClassOf" />
<rule:theObj>$z</rule:theObij>
</rule:Triplet>
</rule:use>
<rule:checkVar>$7z</rule:checkVar>
<rule:onChanged>subClassOf.changed to $Z</rule:onChanged>
<rule:onAdded>subClassOf.added to $Z</rule:onAdded>
<rule:onRemoved>subClassOf.removed to $Z</rule:onRemoved>
</rule:Rule>

Application to use-cases When applied to two ontologies, RDFDiff will find structural
similarities. It does not utilize semantic (S-Match) or linguistic (PROMPT) similarities.

CHAPTER 4. THE SURVEY 63

The change-classification rules could be a powerful declarative syntax for the automatic
detection of changes or for the automatic creation of a mapping between two ontologies.
Instance transformation is also possible, but all of the applications require extensions of
the allowed actions in the rules.

Tool support The RDFDiff tool is web-based. It implements the RDFDiff algorithm,
and in addition it allows one to specify some handy compare options:

e pairs of namespaces treated as equal;

e an ignore-list of properties (e.g. ignoring rdf:Comment).

Line 182 Businessdbject Line 184 BusinessChject

subClassOf changed to IntangibleObject

<rdfs:Class rdf:sbout="&kKimo_rdfs;BusinessCbject” <rdfs:Class rdf:sbout="&kKimo_rdfs;BusinessChbject”
rdfs: label="BusinessChject"> rdfs: label="BusinessObject ">

<rdfs:commentrAn almost sbstract entity being used in bhusiness
context. This includes markets, industry sectors, brands,
ete, Many products can also be seen &5 a business sbstraction, but
most of the products bear other important aspects, such as
engineering and design.</rdfs:comments>

<rdfs:comment>An almost shstract entity heing us
context. This includes markets, industry sectors, b
products can also be seen as a business abhstraction,
hear other important aspects, such as engineering an

<rdfs:subClassOf rdf:resource="&kimn_rdfs:IntanglhleOhject"f} <rdfs:subClass0f rdf:resource="ikimo_rdfs;Cbject
</rdfs:Class> </rdfs:Class>
Line 188 : coc Line 190 : coc
subClassOf changed to LexicalResource

<rdfs:subClassCf rdf:resource="&kimo_rdfs;LexicalResource/> <rdfs:subClass0f rdf:resource="ékimo rdfs;NERLex
</rdfs:Class> </rdfs:Class>
Line 201 : calendarMonth Line 199 : calendarMonth

subClassOf changed to CalendarEntity

<rdfs:subClass0of rdf:resource="&kimu_rdfs;CalendarEntity"K> <rdfs:subClass0f rdf:resource="gkimo_rdfs; Tempor
</rdfs:Class> </rdfs:Class>
Line 305 : cContactInformation Line 303 : cContactInformation

comment. added

<rdfs:Class rdf:sbout="&kimo rdfs;ContactInformation” <rdfs:Class rdf:sbout="&kimo rdfs;ContactInformation
rdfs: label="ContactInformation"> rdfs: label="ContactInformation">
<rdfs:comwent>Any instance of a particular notat

allow contacting an individusl or organisation.</rdf
<rdfs:subClass0f rdf:resource="&kimo_rdfs; Abstra

</rdfs:Class> «<frdfs:Class>

<rdfs:subClass0f rdf:resource="skimo_rdfs;ibstract”/>

Figure 4.10: RDFDiff - an example

Summary RDEFDIff is a diff-like tool oriented to the comparison of XML-serialized
RDEF(S) graphs. It could be used for change detection between two versions of an on-
tology, or for a comparison of two arbitrary ontologies. Although not directly suited for
mediation use-cases, its change classification rules allow for applications for automatic
creation of mappings or instance transformation.

4.1.8 OntoMerge

Dou et al.[DMQO02] introduce an approach to ontology mediation “ontology translation by
ontology merging and automated reasoning”. In this approach, ontologies are merged by

CHAPTER 4. THE SURVEY 64

taking the union of both ontologies, where all terms are separated through the differences
in the namespace. So-called Bridging Axioms are used to connect the overlapping part of
the two ontologies.

In general, when merging ontologies, one would either create a new namespace for
the merged ontology or import one ontology into the other, so that the merged ontology
uses the namespace of the importing ontology. Having in the end an ontology which
uses different namespaces in its definitions can be very confusing for the user, since an
ontology is intended to be shared among multiple parties. Furthermore, the bridging
axioms in the merged ontology might also be very confusing for the user, since they serve
no other purpose than linking together related terms in the ontology. Thus, the merged
ontology contains a lot of clutter, which makes the ontology hard to understand and hard
to use. The clutter in the ontology consists of: (1) terms with different namespaces, (2)
similar and equivalent terms exist in the ontology and (3) bridging axioms between the
related terms. These three factors impede usability and especially sharing of the ontology.

On the other hand, Dou et al.[DMQO02] does not propose to use the merged ontologies
as such, but to merely use them for three different tasks:

1. Dataset translation (cf. instance transformation in [dBP04]). Dataset translation is
the problem of translating a set of data (instances) from one representation to the
other.

2. Ontology extension generation. The problem of ontology extension generation is
the problem of generating an extension Os;, given two related ontologies O; and
O, and an extension (subontology) O, of ontology O,. The example given by the
authors is to generate a WSDL extension based on an OWL-S description of the
corresponding Web Service.

3. Querying different ontologies. This relates very much to the query rewriting de-
scribed in [dBP04]. However, query rewriting is a technique for solving the prob-
lem of querying different ontologies, whereas Dou et al. [DMQO02] merely mention
the problem.

As we have also suggested in [dBP04], OntoMerge uses mappings between ontologies
in order to enable the translation. In fact, the ontology translation (except for the extension
generation) can be seen as run-time mediation [dBP04].

[DMQO2] presents an internal representation for the ontologies, called Web-PDDL,
which is a typed first-order logic language. The import and export of DAML+OIL and
OWL is already supported. Due to the fact that Web-PDDL can capture many different
ontology languages, importers and exporters for other languages could be written as well.

CHAPTER 4. THE SURVEY 65

Dataset translation OntoMerge [DMQO2] performs dataset translation in two distinct
steps. First, given the source dataset (a set of facts) and the merged ontology, all possible
inferences are drawn from the source facts. Secondly, the results are projected on the
target vocabulary, retaining only the results expressed in terms of the target ontology.
These two steps guarantee that a maximal translation is performed, with respect to the
merged ontology and the source dataset.

In their practical evaluation of the system, the authors only work with very small
datasets consisting of several thousand facts. The fact that they use a theorem prover
leaves open questions about scalability for large numbers of facts.

Ontology extension generation Say you have two related ontologies O and O, and
a subontology O;s of O;. It is now possible, using the relationships between the two
ontologies, to automatically generate a subontology Oss of Oy which corresponds with
01 S.

The subontology O, will contain new predicates with identifiers generated using
skolem constants. The new predicates are made sub-predicates of the existing predicates.

The major disadvantage to this approach for ontology extension generation, identi-
fied by the authors, is that the generated subontology only contains subproperty axioms,
whereas many subontologies might be specified using general axioms.

Querying through Different Ontologies Querying is done in OntoMerge by selecting
the merged ontology which merges the query ontology and the other ontology. Then, a
query selection and reformulation module (not described in detail) is used to select sub-
queries and reformulate the subqueries. Each subquery is executed on respective knowl-
edge bases and the results are combined.

In fact, what we call an Ontology mapping is very similar to a set of bridging axioms
in [DMQO2]. However, we do not presume the source and target ontologies use the same
language as the mapping, whereas OntoMerge requires the merged ontology to consist of
the source and target ontologies and the bridging axioms.

A major drawback of OntoMerge is that bridging axioms need to be written using a
first-order language. Only very few people are familiar with the first-order logic.

41.9 OMEN

OMEN (Ontology Mapping Enhancer) [MNJ04] is a tool for describing mappings with
probabilities and infer new mappings by means of Bayesian Network inference mecha-
nisms. The motivation for using Bayesian Networks for this purpose is that especially

CHAPTER 4. THE SURVEY 66

when the mappings are discovered automatically by heuristics or machine learning tech-
niques, they are imprecise and attached with a certain uncertainty. Also experts are some-
times unsure about the exact match between ontological elements of different ontologies.
This allows them to assign some certainty rating to a match.

The inference of new mappings happens by means of meta-rules based on the se-
mantics of the ontology relations that expresses how each mapping affects other related
mappings. These meta-rules are used by the Bayesian Network.

Within this tool, a simple ontology model is assumed. Similar to RDF Schema, only
the following components are used to express ontologies:

e Classes are concepts in the domain that are organized in a hierarchy of subclass
superclass relationships with multiple inheritance.

e Properties describe attributes of classes and relationships between classes. Proper-
ties are considered to have one or more domains and one or more ranges. Domains
are classes to which the property can be applied, i.e. the union of the domains that
are possible is taken as final domain. Ranges restrict the classes for the values of
the property, i.e. the intersection of the ranges that are possible is taken as final
range.

Construction of the Bayesian Network The nodes in the Bayesian Network corre-
spond to individual pairs of matches, i.e. matches between individual pairs of classes
or properties from different ontologies. Arrows in the Bayesian Network represent the
influences between the nodes in the Bayesian Network. Each node is associated with a
conditional probability table (CPT) that represents the influences of the parents of a node
that affect the node itself.

Note that not all possible pairs of classes or properties can be represented as nodes
in the Bayesian Network because there are too many pairs and the inference would not
be efficient. Therefore, the Bayesian Network is pruned. For details on the pruning see
[MNJO4]. Also the number of parents that each nodes has is adjusted because too many
parents significantly increase the computations that are necessary and make the inference
intractable. Furthermore, all cycles that may occur with the arrows are broken by rejecting
the edges from the parents whose matching information is minimum.

For inferencing, the nodes that have an initial probability that is above a given thresh-
old are considered to be part of the evidence. The CPTs are computed by means of a set
of generic meta-rules that enables the automatic generation of CPTs for each particular
pair of ontologies. The implementation of the OMEN system is parametrized with re-
spect to the meta-rules. Meta-rules can be added and removed in order to enable a better
evaluation of which one work best for a particular knowledge model.

Afterwards the inference on the Bayesian Network can be started and the output is a
new set of matches.

CHAPTER 4. THE SURVEY 67

The set of meta-rules used in the implementation are for example the following meta-
rules:

e Say there are two concepts C' and C’ that match and there is a relationship between
C' and another concept C; in the ontology O and a relationship between C’ and C] in
the ontology O’. Furthermore these two relationships match. Then, the probability
of the match between C and (] is increased.

e Say there are two concepts C' and C’ that match and there is a relationship between
C' and another concept C; in the ontology O and a relationship between C’ and C]
in the ontology O'. Furthermore these two relationships do not match. Then, the
probability of the match between C; and C] is decreased.

e Say there are two properties that match and each of them has a single range. Then,
the probability of a match between the classes that represent the ranges is increased.

e Say there are two properties that match and the first property has a range that is a
union of the classes C'; and C'5. The other property has a single range corresponding
to C’. Then, the probability that C; is a specialization of C can be increased.
Analogously, the probability that Cy is a specialization of C’ can be increased.

e Say there are mappings between superconcepts of two certain concepts, each be-
longing to a different ontology, and all the siblings. Then, the probability of a
match between the remaining concepts is increased.

Note that in the OMEN system probabilistic influences are combined as follows: If
a node in a Bayesian Network has two parents, the conditional probability tables are
combined for the child using the assumption that the two parents are independent. I.e.
P(N|Py, P3) = P(N|P)P(N|P,)

When the match of two pairs of parents influences each other, this assumption is
not true. However, the system obtained encouraging results even with this simplifying
assumption.

Experiments were conducted in order to see whether the inference of new mappings
works. For this purpose, two ontologies expressed in RDF using RDF Schema have been
used. The experiments showed that new mappings can be inferred by OMEN. E.g. by
giving only 3 out of 11 matches, up to 7 missing matches were able to be generated.

4.1.10 WSMT Data mediation module

The Web Services Modelling Toolkit (WSMT) [Ker05] has different modules to model
Semantic Web Services based on the WSMO framework [DR05]. The data mediation
module [Moc05] presented in this section contains three sub-modules or components: a
graphical user interface for defining the mappings, a component that reads the mappings

CHAPTER 4. THE SURVEY 68

from the storage and generates the appropriate mapping rules and an environment that
provides the means for executing the mapping rules. The first module represents the
design-time component while the second two modules represent the run-time component.
Figure4.11 shows how these components interact.

Overview of the Data Mediation Module

Source T
Onitology [Ontology |
| |
[|
| |
[|
| |
B —
h____"‘i________rE[ETrs':tn — N refers i
P! - ! Solrce |- : Target
— e L - Rules Execution
Instancer” Erireeimerit Instance
: == o
ff
o= Mapping Rules /£
l l Mapping Rules | | Z
Creator o
| -
—_— s - |
A e v
DesignTime Maodule . Runtime Maodule
Mappings

Mapgings

e
-
Dala Base

Figure 4.11: Overview of the WSMT Data Mediation Module

Design Time Component

The mapping tools offer graphical interfaces in order to assist the user in the mapping
creation and to reduce his or her effort to simple choices and validations.

The graphical interface is built using Java 1.5'3 and the default ontology language
supported is WSML. Future versions are expected to propose various wrappers that could
transliterate ontologies expressed in other languages into WSML (a simplified one for
Flora-2 already exists). The object model behind the mapping tool is fully compatible
with the WSMO API and WSMOA4]J (and this applies to the runtime component as well).
The WSMO API provides a set of interface for manipulating WSMO entities, including
ontologies. WSMOA4J provides an implementation of these interfaces and a parser for
WSML'. The mapping tool was integrated as a plug-in in the Web Service Modelling

3see http://java.sun.com for more information
4for more details see https://sourceforge.net/projects/wsmo4j

CHAPTER 4. THE SURVEY 69

Toolkit, which also offers as plug-ins a WSML editor and a WSMX invoker (see Figure
4.12). The editor can be used by the domain expert to operate on the ontologies they are
mapping and the framework offers basic synchronization functions such as reloading the
ontologies into the mapping tool or invalidating mapping rules affected by changes in the
ontologies. The WSML invoker can be used to test mappings with run-time components

deployed as Web Services, directly from the mapping tool (more details about this are
provided in section 4.1.10).

Figure 4.12: Screenshots of WSMT Plug-ins (from back to front: the Preferences Panel,
WSMX Invoker, WSML Editor and Mapping Tool)

Fralarances

[0 PO TR T — Y-
P [ekm ey
w

S i Syt bmmgoy | brmend buse e

e A s Y -
e . =D
g e T W vt i vy, [
L
i v |

fpaFan

: T
e
My R

i Vs pd eme e ks oy

1) Fam 7] ol Y
TG N] OOOHY el |

ER
i dels i =2 B
[ST g

ol B
g L el i s
LT
[T
b i dEE
e e = Ty
o e mm i b A
& ey e v
B g
= -z BIEmEN
o W
o WpPFET
i
IERE
| 5 A

Tergm Sorenm

e I ot g, e bp bl PRI | AU R NI | RO S orc ke M e e

As the mapping tool and WSMT are two of the surrounding efforts around WSMO
and WSMX, they are part of the WSMX open source project!® - Windows and Linux
installers for WSMT can be found on SourceForg.

Bsee https://sourceforge.net/projects/wsmx
1%downloads available at: http://sourceforge.net/project/showfiles.php?group id=113321

CHAPTER 4. THE SURVEY 70

Map<Identifiable, List<Identifiable>> mediate(Ontology sourceOntology,
Ontology targetOntology,
Set<Identifiable> data)
Transforms a set of source ontology
instances into instances of the target
ontology.

List<Identifiable> mediate(Ontology sourceOntology,
Ontology targetOntology,
Identifiable data)
Transforms a given source ontology
instance into instances of the target
ontology.

StringBuffer mediate(Ontology sourceOntology,
Ontology targetOntology,
StringBuffer payload)
Transforms source ontology instances
into instances of the target ontology.
The payload represents a WSML document
containing the instances to be mediated.
It will be parsed and after the mediation
takes places a new WSML document is created
containing the target instances.

Table 4.1: Interfaces of the Run-time Mediator Method Summary

The mappings are stored in an external storage, in this case a relational database, from
where they can be loaded by the mapping rules generator module. Also, by means of
this graphical interface, the user can load existing mappings from the external storage for
further refinements or as support in computing the suggestions.

Run-time component

The Mapping Rules Creator implements the grounding mechanism described in Section
4.2 while the Rule Execution Environment has the role of executing the mapping rules
against the incoming source ontology instances. The Run-time component is designed to
be part of the WSMX architecture [MZ05], and as a consequence it offers well-defined
interfaces explaining how it can be invoked. These interfaces are presented in Table 4.1.

The first two methods refer to the ontological entities in terms of the WSMO API
objects, while the last method manipulates WSML documents embedded in StringBuffer
objects.

Outside the WSMX architecture the Run-time component can be used in the following

CHAPTER 4. THE SURVEY 71

ways:

e as a standalone application able to connect to the provided mapping storage and
to perform mediation of instances provided as WSML documents. It offers a small
graphical interface where the user can set the source and the target ontology, provide
the data to be mediated and retrieve the mediated data.

Figure 4.13: The Graphical Interface of the Stand-alone Run-time Mediator
'_'_T: Madiate Source Instances

Seurce Oréclogy | Hitp-Jéravell comtrae! v

Toeged Ortology ihﬂn:.l.trmeizmm*amlz W

SOLINCE Inetanca:

ingtance my ticket wemberOf cicket 2
Lyps hasWalue "flight™ |
Laatllaeme hasValuse "Hocan™
Fir=tllame= hasValu= "Lldrisn™
].ES".:I.]‘.]‘.'I.II_“I-EI'E'E hasValas :mgr_t,erms
dzpart.urg_time ha=Ts Lu= mf_depal:l:.ure_r.:.mz
departure date hasValue wy departure date |

| moct_ | [wedate |

Targed Instaces
instance medistediheeprf/eravell, ::::nﬁm?_r_ ickhat, hetpt/ Sl eEss
cohttpifftrave L comfatation,. citye> hasWaluea { Tolc
<<hevp:/fferavell comstation, stationfodes> hasValus:
instance mediated (http:/ travell -:au‘#mf_r.it:lnel:., http:/ b
cohttp: fftrave L2, copfatat lon, city=> hasValiuea { Tolow
£ ; | ¥

e as a deployed Web Service that can be invoked with the source and target ontology
IDs and data to be mediated and that returns the mediated data. The mapping tool
can directly invoke such Web Services by using the WSMT Invoker.

CHAPTER 4. THE SURVEY 72

4.1.11 DOME mapping module

The Distributed Ontology Management Environment(DOME [HenOS]E is an ongoing
project aiming at building a suite of tools to manage distributed ontologies. Proposed as
a stand-alone application or as an Eclipse plug-in, it includes three modules: an ontology
editor, a mapping editor, and a versioning editor. DOME is developed using concepts from
Human Interface Design and ontology engineering to facilitate the ontology management
in being easily usable and intuitive. Figure 4.14/present a screen-shot of the software.

Figure 4.14: Screenshot of the Distributed Ontology Management Environment(DOME)

||:|_||_|_ ﬂ],ﬁ,ND jryjrgjr@rig,l?’;yﬁn,

Locations Ontology
£, address
£ border

[T

AL couintry |
£ distance

L) state

Ay validDistance

i EEE e

Identifier [Title | fipsCode | isniCode

L) austria [AaU] [AT]

L) germnany [EM] [DE]

Ausa [Us] [us]
Tree | W3lkL

Figure 4.15: DOME screenshot

Dome is based on WSMOA4j to editing WSML ontologies.

The mapping editor is based on an abstract ontology mapping language[SdB05] and
presents an original mapping document tree view. It allows mapping between classes,
attributes, relations and instance, and exploits the capability of the abstract mapping lan-
guage to relate many to many entities by operator selection. It is to our knowledge the
only mapping tool providing this capability.

"The software is available at http://dome.sourceforge.net

CHAPTER 4. THE SURVEY 73

In order to realize a mapping, the user select one or many entities in the source on-
tology, and drags’n’drops them to the entities in the target ontologies. If many entities
were selected, they can be combined via a selected operator. It is in then possible to
map, for example, the conjunction of male and female classes to the person class using a
unique mapping rule. The mapping document tree editor gives the possibility of adding
conditions to the rules, for example mapping person to female require the condition that
the gender attribute of person is equal to "female”. Figure |4.16 presents the mapping
document tree editor.

Figure 4.16: Mapping document tree editor

Properties Yalues
: E_:] <"http:ffontologies.deri.orgf 1121504986111 =
~[#= Annotations a
== Mapping Rules 1
- E Mapping Rule
[= Annokations a
=[] Class Expression
=| Operatar &
~[== Objects a
=[] Class Expression
=| Operatar &
~[== Objects a
| = Condition Rl
|=| Logical Expression nfa
- Bidirectional False
Source Onkology <"http:ffonkologies. deri.orgf1 121504820834, 1.0" =
Targek Cnkology <"http:ffontologies.deri.orgf1121504971811,1.0% >

Tree | Mapping Language

It is interesting to note that the mapping module is fully integrated in the whole ontol-
ogy management environment, to realize the mapping the user only has to open another
ontology and can directly relate the entities.

CHAPTER 4. THE SURVEY 74
4.2 Integrated Systems

4.2.1 InfoSleuth

Summary InfoSleuth [FNPB99, NFK™00] is an agent-based system, which supports
construction of complex ontologies from smaller component ontologies so that tools tai-
lored for one component ontology can be used in many application domains. The purpose
of the system is to provide an interface to very dynamic data sources which can appear and
disappear from the system at any given time. Examples of reused ontologies include units
of measure, chemistry knowledge, geographic metadata, and so on. Mapping is explicitly
specified among these ontologies as relationships between concepts in one ontology and
related concepts in other ontologies.

All mappings between ontologies are maintained by a special class of agents known
as resource agents. A resource agent encapsulates a set of information about the ontol-
ogy mapping rules, and presents that information to the other agents in concepts of one
or more ontologies (called domain ontologies). All mapping is encapsulated within the
resource agents. Ontologies are represented in OKBC (Open Knowledge Base Connec-
tivity) [CFF98] format and stored in an OKBC server by a special class of agents called
ontology agents, which provide ontology specifications to users (for request formulation)
and to resource agents (for mapping).

The InfoSleuth architecture [NFK™00] (Figure 4.17) consists of a number of different
types of agents. User agents and resource agents are the main agents in the system.
User agents request information to fulfil the user’s information needs and resource agents
provide that information. The remaining agents in the system provide the “glue” (or
mediation) between the two.

e The user agents act on behalf of the user and maintain the user’s state. They provide
a system interface that enables users to communicate with the system.

e The resource agents wrap and activate databases and other repositories of informa-
tion. They translate queries and data stored in external repositories between their
local forms and their InfoSleuth forms. There are resource agents for different types
of data sources, including relational databases, flat files, and images.

e Service agents provide internal information to the operation of the agent system.
Service agents include Broker agents, which collectively maintain the information
the agents advertise about themselves, Ontology agents, which maintain a knowl-
edge base of the different ontologies used for specifying requests, and Monitor
agents, which monitor the operation of the system.

e Query and analysis agents fuse and/or analyze information from one or more re-
sources into single (one-time) results. Query and analysis agents include Multi-
resource query agents, which process queries that span multiple data sources, De-

CHAPTER 4. THE SURVEY 75

Ontology | Ontology n

&

3,

W @ £
'ﬁ{)nlu]ug_\" ® - 2
m Agent m <o
Broker Resource
= \ 4
Acent @ "
Ageat ﬁ Multiresource @ Structured
® Query Databases
LU Agent
— 2
ey Subscription o
———
- Agent Resource
Applet Agent L ey
ext. Images.
Video
Agent
Resouree © @
Value Agent
ﬁ, I

ntormation
Services

Mapping
Avent

Mobile

Figure 4.17: The InfoSleuth architecture

viation detection agents, which monitor streams of data to detect deviations, and
other data mining agents.

Multi-resource query agents query multiple heterogeneous resources. The queries
posed to the agent are specified in terms of some domain ontology. In InfoSleuth,
applications can use several domain ontologies. However, a query is always posed
over one domain-specific ontology.

e Planning and temporal agents guide the request through some processing which
may take place over a period of time, such as a long-term plan, a workflow, or the
detection of complex events. Planning and temporal agents include Subscription
agents, which monitor how a set of information (in a data source) changes over
time, Task planning and execution agents plan the processing of user requests in the
system, and Sentinel agents monitor the information and event stream for complex
events.

e Value mapping agents provide value mappings, i.e. mappings between values,
among equivalent representations of the same information.

InfoSleuth uses a variant of SQL in which a query consists of a select, from and where
clause as its query language. Functions are allowed in the select and where clauses and
the syntax is consistent with that used in popular relational database management sys-
tems. For the user queries, a layer on top of this query language has been developed,

CHAPTER 4. THE SURVEY 76

called Template-based Query Markup Language (TQML), which uses templates and ma-
terialized views to aid the user in creating queries.

When agents come online they advertise their capabilities to a specific broker agent
in terms of the InfoSleuth ontology. This ontology is a special ontology used for adver-
tisement and querying of agents. When a query is posed to a broker agent, the brokering
process is initiated. First, syntactic matching is done for example to, determine which re-
source agents speak the desired language. The semantic matching is done in order to find
out which resources contain information about the desired concepts. Finally, pragmatic
matching is done to restrict the set of resources to those that, for example, have the correct
access permissions.

Resource agents in InfoSleuth function as a wrapper of the underlying data source. A
resource agent advertises the part of the overall domain ontology that it supports, adver-
tises its query capabilities and does the query rewriting and transforms the retrieved data
to facts of the domain ontology.

Mappings between different value domains are encapsulated in value mapping agents,
which perform simple and complex mappings between domains. Examples of complex
mappings are sophisticated functions (e.g. differences in time intervals) and incorporating
values from (multiple) external ontologies.

The execution of queries is done by the query agent. This query agent decomposes
a query into a number of subqueries, one for each resource agent involved in the query.
Furthermore, it creates a number of global queries for fusing the results of the subqueries
in order not to have redundancy in the overall query result.

Ontology Languages Ontology agents which provide an OKBC interface to the knowl-
edge base can all be connected to the InfoSleuth agent system. All ontologies within
InfoSleuth are expressed using the OKBC knowledge model. Each resource agent must
wrap an external information source and provide a mapping with the domain ontologies
currently in use in the InfoSleuth system.

Mapping Language [NFK'00] reports no mapping between ontologies in InfoSleuth.
In fact, this was seen as future work. However, because InfoSleuth is mostly a data inte-
gration system, it is more relevant that a mapping between data sources and the domain
ontologies is possible. InfoSleuth does not provide a mapping language, but does provide
a number of Java templates, which can be used for the development of wrappers, which
contain a procedural mapping between the data schema and the domain ontologies in the
agent system. An important point here is that it is possible to map to multiple domain
ontologies and it would be very interesting to combine this with actual mappings between
ontologies, as is done in ONION [MWKO00], for example.

CHAPTER 4. THE SURVEY 77

Mapping Patterns Although some aid in the creation of mappings through the use of
Java templates is offered to the user, there is no concept of mapping patterns in InfoS-
leuth. Extensions of InfoSleuth, which would enable mapping between ontologies, would
benefit from the use of mapping patterns. However, we are not aware of any continuation
of the work on InfoSleuth after the work reported in [NFK*00].

Automation Support There is no automation support in creating mappings between
data schemas and ontologies. However, the query rewriting and data fusion is completely
automated, based on the mappings between the data schemas and the ontology. A query
written in terms of a domain ontology is automatically decomposed in terms of the re-
sources, and after execution the results are automatically fused by a different decomposi-
tion of the original query.

Applicability to Use Cases As stated above, the resource agents take care of transform-
ing data from the underlying sources to the ontology representation of the system and also
of rewriting the query in terms of the data schema.

The querying agent fuses query results from different sources in order to remove re-
dundancies. The fusion of query results is based on a different decomposition of the user
query, which defines a union of the query results and eliminates any redundancy in the
results.

Implementation The InfoSleuth agent system has been implemented in two prototype
projects.

There are Java templates available to make the development of new agents easier. To
create a resource agent using such a template, it is generally sufficient to just supply a
configuration and a mapping file to complete the agent [NFK*00]. It is possible to use
different ontologies in an InfoSleuth system. Each OKBC-compliant Knowledge Base
can be used in InfoSleuth by wrapping it using an ontology agent.

Experiences [NFK'00] reports the use of InfoSleuth in two prototype projects. The
first is the EDEN (Environmental Data Exchange Network) project. The aim of the EDEN
project was to provide integrated access to environmental information resources over the
Web. EDEN posed many challenges in the area of the integration of legacy databases and
mappings of values of different representations of similar information.

Another prototype project in which InfoSleuth was applied is MCC’s Competitive
Intelligence System [NFK*00].

CHAPTER 4. THE SURVEY 78

4.2.2 ONION

Summary ONION (ONtology compositlON) [MWKO00, MWOI1] is an architecture
based on a sound formalism to support a scalable framework for ontology integration
that uses a graph-oriented model for the representation of the ontologies. The special fea-
ture of this system is that it separates the logical inference engine from the representation
model (the graph representation) of the ontologies as much as possible. This allows for
the accommodation of different inference engines in the architecture.

In ONION there are two types of ontologies, individual ontologies, referred to as
source ontologies and articulation ontologies, which contain the concepts and relation-
ships expressed as articulation rules (rules that provide links across domains). Articu-
lation rules are established to enable knowledge inter-operability, and to bridge the se-
mantic gap between heterogeneous sources. They indicate which concepts individually
or in conjunction, are related in the source ontologies [MWKOO]. SKAT (the Semantic
Knowledge Articulation Tool) [MWJ99] uses the structure of these graphs together with
term-matching and other rules to propose articulation rules for the articulation ontologies.
The source ontologies are reflected in the system by the use of wrappers.

The mapping between ontologies is executed by ontology algebra [Wie94, MWO1].
Such algebra consists of three operations, namely, intersection, union and difference. The
objective of ontology algebra is to provide the capability for interrogating many largely
semantically disjoint knowledge resources, given the ontology algebra as input. The de-
scription of the algebra operators is as follows:

e The intersection produces an ontology graph, which is the intersection of the two
source ontologies with respect to a set of articulation rules, generated by an artic-
ulation generator function. The nodes in the intersection ontology are those that
appear in the articulation rules. The edges are those edges between nodes in the
intersection ontology that appear in the source ontologies or have been established
as an articulation rule. The intersection determines the portions of knowledge bases
that deal with similar concepts.

e The union operator generates a unified ontology graph comprising the two origi-
nal ontology graphs connected by the articulation. The union presents a coherent,
connected and semantically sound unified ontology if the original ontologies are
consistent.

e The difference operator, to distinguish the difference between two ontologies
(O1 — Oy) is defined as the concepts and relationships of the first ontology that have
not been determined to exist in the second. This operation allows a local ontology
maintainer to determine the extent of one’s ontology that remains independent of
the articulation with other domain ontologies so that it can be independently ma-
nipulated without having to update the articulation.

CHAPTER 4. THE SURVEY 79

Tt £ y End-
1esaurus xper
) P User
GUI Tool
-y
h
Articulation Generator Query Engine

Figure 4.18: The components of the ONION system

ONION tries to separate as much as possible the logical inference engine from the
representation model of the ontologies, allowing the accommodation of different infer-
ence engines. It also uses articulations of ontologies to inter-operate among ontologies.
These articulation ontologies can be organized in a hierarchical fashion. For example, an
articulation ontology can be created for two other articulation ontologies that unify differ-
ent source ontologies. The ontology mapping is based on the graph mapping, and at the
same time, domain experts can define a variety of fuzzy matching.

Ontology Language Before ontologies are integrated in the ONION system, they are
translated to the ONION graph-based conceptual model. An ontology O = (G, R) is
represented as a directed labeled graph GG and a set of rules R. The graph G = (V| E)
consists of a finite set of nodes V' and a finite set of edges £. Nodes in the graph corre-
spond to concepts in the ontology. Edges correspond to semantic relationships between
the concepts.

In the ONION conceptual model, there are several semantic relationships with a built-
in meaning, namely {SubClassOf, PartO f, AttributeO f, InstanceO f,ValueO f}.
Furthermore, the user can create user-defined semantic relationships. The user then has
to axiomatize the meaning of the relationship. The better the meaning of the relationship
is axiomatized, the more accurate the articulation will be. A more detailed description of
the meaning of the built-in semantic relationships can be found in [MWO1].

An ontology graph can be represented in the Semantic Web language RDF [LS99],
because RDF has a graph-based data model. The set of logical rules R are expressed as

CHAPTER 4. THE SURVEY 80

Horn clauses.

An ontology in any source language can be translated to the graph-based model using
a custom wrapper. It could happen that during the translation to the ONION conceptual
model, some semantic information is lost. This information can no longer be used for the
articulation of relationships with other ontologies, however, the user can still access this
information by querying the underlying ontology directly.

Mapping Language Inter-operation in ONION is achieved through the use of articula-
tion ontologies. An articulation ontology denotes the semantic intersection of two source
ontologies. The intersection is an operation in the so-called ontology algebra [Wie94].

The articulation ontology is constructed based on so-called articulation rules. An ar-
ticulation rule specifies the relationship between concepts in the source ontologies. An
articulation rule is a rule of the form P = (), which can be intuitively read as “P se-
mantically implies Q”. In other words, P is a specialization of Q, or “P is subsumed by
Q.

ONION distinguishes between simple and compound rules. A simple articulation
rule, which specifies the relationship between nodes in two ontology graphs, is of the
form O;.A = O,.B, where A depicts a node in ontology O; and B depicts a node in
ontology Os. The rule specifies the fact that A is a specialization of B. This rule trans-
lates to the simplest semantic bridge, the semantic implication bridge, which is an edge
(A, “SIBridge”, B), connecting the two nodes. Compound rules incorporate conjunction
and/or disjunction in the rule. Such rules are modeled by adding one or more nodes to the
articulation ontology and creating the appropriate semantic implication bridges between
the nodes in the source ontologies and the new node in the articulation ontology. For more
information, see [MWKOO0].

In order to allow for value transformations, ONION offers the possibility of associat-
ing a function with an edge in the articulation ontology. Examples of such functions are
currency conversion and conversion between different distance measures.

Automation Support The articulation rules are created in a semi-automatic process
with SKAT [MWIJ99] (Semantic Knowledge Annotation Tool), which proposes articula-
tion rules to the expert and the expert can either accept or decline these proposals and also
specify rules which are not proposed by the tool.

SKAT does matching of the two source ontologies using both term matching and
structural matching.

Applicability to use cases ONION is a system for the unification of heterogeneous
ontologies through the use of articulation ontologies with the purpose of query processing.
The resulting articulation ontology is presented to the user and is used (together with the

CHAPTER 4. THE SURVEY 81

source ontologies) by the user for querying. The ONION query system translates a query
on the articulation ontology to the actual source ontologies and executes the query on the
underlying ontologies. The results are then translated back to the representation of the
articulation ontology.

ONION does not propose a strategy for unifying instances. The ontology obtained
from applying the union operator can be seen as the result of a merge operation.

The complete mapping process 1s included in ONION. In fact, the mapping is just
one aspect of ONION, because ONION also provides the run-time environment for data
integration.

Implementation The ONION architecture [MWKO00, MWO1] (Figure 4.18, taken from
[MWO1]) consists of four components:

e The ONION data layer. This layer contains the wrappers for the external sources
and the articulation ontologies that form the Semantic Bridges between the sources.

e The ONION viewer. This is the user interface component of the system. The viewer
visualizes both the source and the articulation ontologies.

e The ONION query system. The query system translates queries formulated in term
of an articulation ontology into a query execution plan and executes the query.

e The Articulation Engine. The articulation generator takes articulation rules pro-
posed by SKAT [MWJ99], the Semantic Knowledge Articulation Tool, and gener-
ates sets of articulation rules, which are forwarded to the expert for confirmation.

The different components in the architecture have been implemented as a research
prototype to support a PhD thesis.

Experiences [MWKO00, MWO01] do not show any real experiences with the application
of ONION besides toy examples described in the papers.

4.2.3 OBSERVER

Summary OBSERVER (Ontology Based System Enhanced with Relationships for Vo-
cabulary hEterogeneity Resolution) [MIKSO00] is a system which is intended to over-
come problems with heterogeneity between distributed data repositories by using com-
ponent ontologies and the explicit relationships between these components. OBSERVER
presents an architecture consisting of component nodes, each of which has its own on-
tology, and the Inter-ontology Relationship Manager (IRM), which maintains mappings
between the ontologies at the different component nodes. Besides the ontology, each com-
ponent node contains a number of data repositories along with mappings to the ontology,

CHAPTER 4. THE SURVEY 82

to enable semantic querying of data residing in these repositories. When other compo-
nents need to be queried, the IRM provides mappings to ontologies of other component
nodes in order to enable querying. The user views the data in the system through its own
local ontology, located at the user’s component node.

OBSERVER uses a component-based approach to ontology mapping. It provides
brokering capabilities across domain ontologies to enhance distributed ontology querying,
thus avoiding the need to have a global schema or collection of concepts.

OBSERVER uses multiple pre-existing ontologies to access heterogeneous, dis-
tributed and independently developed data repositories. Each repository is described by
means of one or more ontologies expressed using the Description Logic (DL) system
CLASSIC. The information requested from OBSERVER is expressed according to the
user’s domain ontology, also expressed using DL. DL allows matching the query with the
available relevant data repositories, as well as translating it to the ontologies used in the
local repositories.

The system contains a number of component nodes, one of which is the user node.
Each node has an ontology server that provides definitions for the terms in the ontology
and retrieves data underlying the ontology in the component node. If the user wants to
expand his query over different ontology servers, the original query needs to be translated
from the vocabulary of the user’s ontology into the vocabulary of another’s component on-
tology. This is done in the following way: the source and target ontologies are integrated,
after which all terms in the query for which a synonym exists in the target ontology, are
replaced by this synonym and all other terms are replaced by semantically similar expres-
sion that could lead to a full translation of the user query. Each such term for which there
is no synonym in the component ontology is replaced by the intersection of its immediate
parents or the union of its immediate children, recursively, until the rewritten query con-
tains only terms from the component ontology. Several alternative translations might be
generated in this process, which are not exact in the case where terms were replace with
semantically similar expression and not synonyms.

A method for evaluating the information loss for the case of inexact translations was
developed, with the purpose of enabling the system to choose “the best” among alternative
translations. The user can opt for translations for which the information loss is smaller
than a certain value by setting a certain threshold. By setting this parameter to 0, the user
specifies no loss at all. The loss of information threshold is used by the query processor,
which discards queries exceeding the threshold.

The information loss is computed based on the commonly encountered metrics in
Information Retrieval, precision and recall. The idea is to take into account both these
metrics, that is the loss in precision (percentage of retrieved objects which are not relevant)
and the loss in recall (percentage of relevant objects which are not retrieved), because it is
not known a priori the preference of the user towards one of these measures. The formula
for computing information loss based on precision loss and recall loss contains a weight
which expresses the bias towards one of the two metrics, which can be set by the user.

CHAPTER 4. THE SURVEY 83

However these metrics, i.e. precision and recall, had to be adapted in order to give
higher priority to semantic relationships than to those suggested by the underlying ex-
tensions. This problem arises due to the fact that extensions are coming from different
ontologies and the extensional relationships may not reflect the semantic relationships.
For example, a term in a user ontology which semantically subsumes a term in the target
ontology may have a smaller extension than the child term.

An Inter-ontology Relationship Manager (IRM) provides the translations between the
terms among the different component ontologies. The IRM effectively contains a one-
to-one mapping between any two component ontologies. This module is able to deal
with (intentional) Synonym, Hyponym, Hypernym, Overlap, Disjoint and Covering inter-
ontology relationships. Furthermore, the IRM is also able to deal with extensional rela-
tionships between ontologies through the use of so-called transformer functions.

The user submits a query to the query processor in its own component node (in fact,
each component node has a query processor). The query processor first uses the local
ontology server to translate the query into queries on the local data repositories and then
execute them, after which the user can choose to incrementally increase the query to
multiple ontologies. The query processor then uses the IRM to translate the query into
terms used by the other component ontologies and retrieve the results from the ontology
servers at the other component nodes.

Querying in OBSERVER consists of the following three steps:

1. The user constructs the query using terms from the user’s ontology.

2. The query processor uses the ontology server to access the underlying data at the
user’s node. The query is executed against the local data repositories.

3. In a process of controlled query expansion to new ontologies the user can specify
whether he/she is satisfied with the query results or whether the query should be ex-
panded to other component ontologies. In this case, the inter-ontology relationships
retrieved from the IRM are used to rewrite queries and to transform query results.

The ontology server can be queried in two ways. Information about the ontology itself
can be retrieved and the ontology server can answer queries formulated over an ontology
using the mappings to the different data sources and the wrappers available for each data
source. The query capabilities of each data source are consulted by the ontology server,
which creates a query plan and invokes the wrappers to retrieve the data from the sources.

In principle, only the local ontology server is queried initially. The user can then
choose to incrementally expand the query over multiple ontologies in order to retrieve
more results for the query.

Ontology Languages Ontologies, as well as mappings between ontologies are specified
using the Description Logic system CLASSIC.

CHAPTER 4. THE SURVEY

84

\

Interontalogics
Lerminological
Relations! lnp

IRM node

™

Data Repositories

A
\

oo Q

Component Node

- Jusal

Data Repositories

Mappings

User Node

Component Node

Mappings

[)lu}{q asitories

Figure 4.19: The general OBSERVER architecture [MIKS00]

CHAPTER 4. THE SURVEY 85

Mapping Language In OBSERVER, there exist two types of mappings, namely the
mappings between data repositories and ontologies and the mappings between the on-
tologies. We will first describe the mappings between data repositories and ontologies,
after which we describe the specification of the inter-ontology relationships.

A data source is seen as consisting of entities and attributes (in the Entity-Relationship
[Che79] sense of the terms). Mapping between data sources and the ontology is repre-
sented by associating each term in the ontology with a number of Extended Relation
Algebra (ERA) expressions. ERA is used as an intermediate language between the De-
scription Logic expressions of the ontology and the underlying data repositories. The
wrapper is responsible for the translation between ERA and the data repository itself,
which is straightforward if the data source is a relational database. It is interesting to
note that in the mapping to roles in the ontology, ERA allows functions, which typically
represent value transformations.

OBSERVER deals with a number of types of inter-ontology relationships in order to
enable inter-operability:

e Synonym. Two synonymous terms have the same semantics, i.e. the same infended
meaning. This does not guarantee that they have the same extension.

e Hyponym. A term is a hyponym of another term if it is less general, i.e. a term in
one ontology subsumes a term in another ontology.

e Hypernym. A term is a hypernym of another term if it is more general, i.e. a term
in one ontology is subsumed by a term in another ontology.

e Overlap. This means the two terms have an overlap, i.e. a non-empty intersection.
In OBSERVER, the overlap between terms is usually indicated with a percentage,
which can be used to estimate the loss of information in a query translation.

e Disjoint. This means there is no intersection between the two terms.

e Covering. When a term in one ontology corresponds to a union of terms in the other
ontology, i.e. the meaning of the term in one ontology is covered by the union of
terms from the other ontology. There does not exist an object represented by the
term in the one ontology, which is not represented by the union of the given children
terms.

The above mentioned inter-ontology relationships explicate the intentional relation-
ship between terms in two ontologies. However, when an intentional relationship between
terms is true, it does not mean that this relationship holds also for the extensions (i.e. sets
of instances) of the ontologies. For the extensional level, a set of transformer functions
between roles in different ontologies is used. These functions are used for both instance
transformation and instance unification.

CHAPTER 4. THE SURVEY 86

The Inter-ontology Relationship Manager can be used to discover sets of related com-
ponent ontologies, to retrieve related terms between ontologies and to perform value trans-
formations from one ontology representation to the other.

Automation Support There seems to be no automation in creating the mappings be-
tween ontologies and/or data sources. However, known matching algorithms could be
easily used to identify similarities between ontologies.

The query processing, on the other hand, is completely automated with the exception
that the user is still required in the incremental querying process to specify whether other
component nodes need to be queried and he/she might also intervene to set some param-
eters like the bias towards precision or recall in the computation of information loss and
the threshold for information loss in a query translation. As already mentioned, if the
used desires the query to be answered by accessing other components as well, the query
is translated into the ontology language(s) of the other components. If there is no exact
translation, there might be alternative translations which are generated and evaluated by
the system and the optimal one, which does not surpass the threshold set by the user for
information loss, is chosen.

Applicability to Use Cases Instance transformation and instance unification are both
performed in the querying process. The query processor is responsible for transforming
and correlating query results from the target ontology into the user ontology.

The emphasis in OBSERVER is really on query rewriting. The relationships between
the ontologies, expressed using Description Logics, are used to rewrite the queries from
the user’s ontology to the component ontology.

OBSERVER is a data integration system and as such provides no explicit support for
ontology merging, although in the query processing ontologies are automatically inte-
grated based on the inter-ontology relationships retrieved from the IRM.

Implementation The OBSERVER architecture, depicted in Figure [4.19, consists of a
number of component nodes and the IRM node. A component node contains an Ontology
Server which provides for the interaction with the ontologies and the data sources. It uses
a repository of mappings to relate the ontologies and the data sources and to be able to
translate queries on the ontology to queries on the underlying data sources. The architec-
ture contains one Inter-Ontology Relationship Manager (IRM), which enables semantic
inter-operation between component nodes by maintaining the relationships between the
ontologies.

OBSERVER has been implemented as a prototype for the access of distributed het-
erogeneous data sources in the area of bibliographic data.

CHAPTER 4. THE SURVEY 87

Experiences The authors have reused different existing ontologies in the area of biblio-
graphic data and represented them in CLASSIC for integration in the OBSERVER archi-
tecture. Real-life ontologies and data repositories were used in the prototype. It turned
out that the time required to access the distributed data repositories was the bottleneck for
the prototype.

4.2.4 MOMIS

Summary MOMIS (Mediator envirOnment for Multiple Information Sources) ap-
proach [BCV99, BCVBO01] is an approach to the integration of heterogeneous data sources
using a global ontology, which is the result of a merge of the local data schemas.

The goal of MOMIS is to give the user a global virtual view (cf. [Hul97]) of the
information coming from heterogeneous information sources. MOMIS creates a global
mediation schema (ontology) for the structured and semi-structured heterogeneous data
sources, in order to provide to the user a uniform query interface to these sources.

The first step in the creation of the global mediation schema is the creation of the
Common Thesaurus from the disparate data sources. To do this, first a wrapper is created
for each data source in the ODL s language. ODL s is an object-oriented language with
an underlying Description Logic language OLCD, which enables making inferences (e.g.
subsumption) about the classes expressed in that language.

Using the disparate schemas, a Common Thesaurus is created, which describes intra-
and inter-schema knowledge about ODL ;s classes and attributes of source schemas. The
Common Thesaurus is built in an incremental process in which relationships (between
classes) are added based on the structure of the source schemas, lexical properties of the
source classes and attributes (e.g. WordNet [Fel99] can be used to identify possible syn-
onyms), relationships supplied by the designer, and relationships inferred by the inference
engine.

Once the Common Thesaurus has been created, a tree of affinity clusters is created,
in which concepts are clustered based on their (name and structural) affinity. The name
affinity coefficient is calculated based on the terminological relationships between two
classes. The structural affinity coefficient between two classes is calculated based on the
level of matching of attribute relationships in the Common Thesaurus. The sum of these
two coefficients is the global affinity coefficient, which is used to construct the affinity
tree, in which concepts with a high affinity are clustered together.

For each cluster in the affinity tree, a global class is (interactively) created. For each
global class a mapping (expressed in ODL;3) is maintained to all the source classes.

If we compare MOMIS with OBSERVER we can say that OBSERVER takes a min-
imalist approach to the specification of inter-ontology relationships, specifying only the
bare minimum required for query processing, whereas MOMIS tries to identify all possi-
ble relationships between a set of ontologies, integrating them in one global ontology.

CHAPTER 4. THE SURVEY 88

Ontology Languages A wrapper translates each data schema to the ODL s represen-
tation. MOMIS also deals with semi-structured data by extracting object patterns, which
are used as schema information for the source to generate the corresponding ODL ;s de-
scription.

ODL ;s is an object-oriented language with a translation to the OLCD Description
Logic languages in order to allow inferencing. OLCD is a KL-ONE [BS85] like ontology
language, which allows classes (types), binary roles (attributes), disjunction, negation and
also has a number of base data types (integer, string, Boolean, real).

Mapping Language Source schemas and object patterns are first translated into ODL ;3
descriptions. This translation is performed by a wrapper. Then, a Common Thesaurus is
created based on the ODL s class descriptions and attributes. The Common Thesaurus
consists of four kinds of relationships, which are added to the thesaurus in the following
phases:

1. Schema-derived relationships In this phase, only intra-schema relationships are
considered. Relationships within one particular schema are extracted, e.g. by
exploiting foreign and primary key relationships in order to infer related and
broader/narrower term relationships.

2. Lexical-derived relationships Lexical relationships between names in different
schemas are exploited to extract inter-schema relationships. WordNet [Fel99] is
used to extract synonyms and hypo/hypernyms. Furthermore, synonymous terms
are also extracted from attributes with similar names.

3. Designer-supplied relationships In this phase, the designer can supply relationships
between schemas. A Description Logic reasoner, such as ODB, can be used to
check the relationships for inconsistency.

4. Inferred relationships Description Logic reasoning is used to infer new relation-
ships between ODL;s classes, based on relationships specified in the previous
phases.

In each of the phases, intentional relationships are added to the Common Thesaurus.
The designer can strengthen these intentional relationships by creating extensional rela-
tionships, thereby enabling subsumption reasoning and consistency checking. An inten-
tional relationship can be seen as saying “there exists in general a relationship between
these terms”, whereas an extensional relationship can be seen as saying “this relationship
holds for these particular data sources”.

MOMIS employs hierarchical clustering based on an affinity measure, which indicates
the similarity between classes in a cluster. The affinity measure is based on both the name
and structural similarity.

CHAPTER 4. THE SURVEY 89

The clusters in the hierarchy are used to interactively create new classes for the merged
ontology. Generally, a union is taken of all classes in a particular cluster in order to come
up with the new global class. During the process of creating the global class, mapping
rules between the attributes in the local classes and the global class are established and
stored in the global ontology for later use. Because the global ontology is created on the
basis of the local ontologies, MOMIS takes the global-as-view approach [Lev00], which
means that the global schema is created as a view over the local schemas and all queries
to the global schema can be easily translated to the local representation because of the
presence of mapping rules.

It is not clear how new sources can really be integrated once the system is in place. It
seems that the global schema has to be re-created from the local schemas, although the
computed affinity clusters can of course be reused and if the classes in the new schema to
be integrated fit inside the existing affinity clusters, only the mapping rules between the
new schema and the global schema need to be created.

Automation Support Automation support in the ontology merging task is provided by
the ARTEMIS tool [CdA99]. The ARTEMIS tool provides support in the matching task
by determining the (name and structural) affinity between terms in the ontologies.

Applicability to Use Cases In MOMIS, the Query Manager does query rewriting based
on the mapping rules in the global ontology. The wrapper of each data source rewrites
the query from its ODL ;s representation to the representation of the data source and also
transforms the query results back to the ODL ;s representation. The query manager then
uses the mapping rules to translate the query results back to the global representation in
order to present the results to the user. It is not exactly clear if and how the Query Manager
fuses the query results from the different sources in case of overlap in the result sets.

Implementation A number of components are used to enable the MOMIS architecture.
These components are (see Figure|4.20, taken from [BCVBO1]):

e A wrapper performs the translation of the individual data source into the ODL s
language (and translates the queries back).

e The mediator consists of the query manager (QM) and the global schema builder
(GSB). The QM component breaks up global ODL ;s queries into sub-queries for
the different data sources. Therefore, the GSB is an offline component, which aids
in ontology merging and the QM is a run-time component, which performs the
queries.

e The ARTEMIS tool environment performs the classification (affinity and synthesis)
of classes for the synthesis of the global classes.

CHAPTER 4. THE SURVEY 90

e The ODB-tools engine performs schema validation and inferences for the genera-
tion of the Common Thesaurus, as well as query optimization for the Query Man-
ager.

MEDIATOR

Global Schema |-
Builder

(oery Managere- ...+ oDB-Toot
Sty

[N

Engine

1
- ﬁ
1 i
1 £
File

Figure 4.20: Architecture of the MOMIS system [BCVBO1]

:

[o]
= o

The architecture in Figure 4.20 shows the main tools used to support the overall archi-
tecture. A disadvantage is that there is no integrated tool environment. Any data source
can be connected to the architecture, as long as an ODL ;s wrapper is created.

Experience As far as we are aware, MOMIS has not been used in any major indus-
trial project and is mainly an academic research activity, with toy examples. However,
[CAdVO01] reports the application of ARTEMIS in a research project in the Italian Public
Administration domain.

4.2.5 INFOMIX

INFOMIX [LGR"05b, LGR"05a, LLR02] is a system that supports information integra-
tion by utilizing advanced reasoning capabilities. The INFOMIX system is built in co-
operation with RODAN systems 18 which is a commercial database management system
developer. It uses the DLV reasoning system [LPF05] for the reasoning tasks. The DLV
system is a disjunctive datalog reasoning system and has been delevoped independently

3The web site of RODAN systems can be found at http://www.rodan.pl/en/.

CHAPTER 4. THE SURVEY 91

from INFOMIX. However, INFOMIX uses the DLV system for solving its reasoning

tasks.
INFOMIX / \ l—

Query Formulation Information Model Manager

I Information
Service Level

| 1
I 1
: ;
! Query Rewriter ———| Query Optimizer ——| Query Evaluator I
: [DLV]
I 1
1 Internal :
1

1

4 Integration Level

___________________ Internal

Data Store

T

1
1
I
1
I Data Acquisition and Transformation
1
I
|

Data Acquisition and

Transformation Level ; \
____________________________________ 1
Data Sources @ s a5
DB XML HTML

Figure 4.21: Architecture of the INFOMIX system [LGR05b]

The INFOMIX architecture is depicted in Figure 4.21. It is divided into three levels
and supports two modes:

e adesign mode
Here, the global schema, the source schema and the mapping between them are
specified. Also, the wrappers for the data sources are created or imported. The data
sources consist of relational and XML data.

e a query mode
Here, query answering facilities are provided at run time, including data acquisition,
integration, answer computation and presentation to the user.

In both modes, the INFOMIX system is divided into three levels:

e Information Service Level
Here, a direct interface to the user is provided at run time and to the designer at

CHAPTER 4. THE SURVEY 92

design time. This level deals with global data and provides the interfaces that are
necessary (e.g. for global schema definition and for query formulation.

This level comprises two modules: the Information Model Manager and the
Query Formulation module:

— The Information Model Manager handles the definition of the global schema
and the local schemas, as well as the mapping. User-friendly interfaces for
these tasks, including schema browsers, are provided. Automatic support
for the verification of coherency, redundancy and adequacy of the application
specification is given. Finally, this module presents query results in a suitable
form to the user.

— The Query Formulation module provides a graphical, user-friendly interface
for query formulation over the global schema and query validation facilities.
The query validation facilities check the interactions between the user query
and global integrity constraints to guarantee that query answering is always
decidable.

e Internal Integration Level
This level is based on computational logic and deductive database technology. It is
composed by three modules:

— The Query Rewriter reformulates the user query according to global integrity
constraints. It makes use of a submodule to verify data consistency. This
submodule exploits the mapping and unfolds the user query over the source
relations and activates the corresponding wrappers to retrieve relevant data.
Afterwards, the submodule checks wether there are integrity constraint viola-
tions. If no violations occur, the reformulation produced by the rewriter is a
simple (disjunction free) Datalog program. Otherwise, a suitable disjunctive
Datalog program is generated that performs automatic repair of data, in a way
such that cautious answers to this program evaluated over the data sources
correspond to the certain answers to the query.

— The Query Optimizer provides several optimization strategies which en-
hance the efficiency of the system. In particular, the module exploits some
focusing techniques which are able to isolate the portion of the source database
that is relevant to answer a user query. This is done by pushing constants in
the query towards the sources, i.e. the part of the query that contains constants
is processed first. To this aim, an optimized (possibly disjunctive) Datalog
program is generated by applying advanced binding propagation techniques
similar to the magic sets algorithms that are well-known in the database area.

— The Query Evaluator takes the optimized program and first loads data from
the Internal Data Store and then invokes the DLV system in order to com-

CHAPTER 4. THE SURVEY 93

pute consistent answers. The results are then sent to the Information Model
Manager for suitable presentation to the user.

e Data Acquisition and Transformation Level

This level provides access to external data sources. INFOMIX has an architecture
which allows for the integration of heterogenous types of data sources. The primary
types of data sources are relational, XML, HTML, and object-oriented data sources.
However, it is claimed that arbitrary other types of data sources can be incorporated
easily. All data sources are conceptually transformed into a uniform source data
format, which is a fragment of XML Schema. Data encoded in this uniform source
data format can be browsed. The acquisition and transformation of data is done by
wrappers. A query plan for executing suitable wrappers is generated, which load
data into the Internal Data Store. Constants are pushed to the query wrappers when-
ever it is possible in order to reduce the amount of data retrieved.

Currently, INFOMIX offers three classes of wrappers, which provide different lev-
els of support for query formulation and wrapper code generation:

— Code wrappers are basically a definition of an API and the code implement-
ing it. The internals and characteristics of code wrappers are therefore inac-
cessible to INFOMIX.

— Query wrappers propagate queries to external data sources and treat the re-
sult as a logical data source.

— Visual wrappers support interactive development of wrappers at design time.
Currently, there is support for developing LiXto wrappers and pipes as well as
for Rodans Data Extractor.

Ontology Languages The INFOMIX system supports the following kinds of external
data sources:

e Relational data in the ODBC standard, i.e. especially SQL, is supported.

e Any object-oriented database that conforms to the ODMG standard (cf
http://www.odmg.org/) and which is accessible by the ODMG 2.0 Java binding will
be supported. In particular, the object-oriented database must be accessible by OQL
queries (more specifically, by the subset of OQL supported by the ODMG Java
binding). However, no multimedia data types will be supported although usually
supported by object-oriented database management systems. Currently the support
of object-oriented databases is not available.

e Pure (semi-structured) XML data (according to the XML 1.0 standard) as well as
XML data structured according to a corresponding XML Schema specification is
supported. However, the INFOMIX system does not check the validity of structured
XML data. It also does not take DTD specifications into account.

CHAPTER 4. THE SURVEY 94

e Valid web pages conforming to the HTML 2.0, 3.2 and 4.1 standards are supported.
However, the INFOMIX system does not check the validity of HTML data. Note
that HTML rendered versions of embedded data formats like comma separated val-
ues (CVS), Microsoft Word (planned), Excel and Powerpoint (planned) documents
as well PDF documents are supported. INFOMIX does not support multi-media
data such as image files, sound or movie data.

Data extraction and preprocessing of the data sources is done by LiXto [BFGO1] wrap-
pers and tools.

The data is internally stored in a language called ISDF (INFOMIX source data format)
and has an XML-like syntax. It is specified by a subset of XML Schema. Essentially,
ISDF amounts to a small extension of the relational format, by allowing nesting of data
and multiple attribute values. This format is translated by the query reformulator into
disjunctive Datalog programs extended by aggregate functions.

Mapping Language The mapping is a Global-As-View (GAV) mapping. L.e. there is a
global schema G and a source schema .S which comprises the schemas of all the sources to
be integrated. It consists of a set of logical implications in Datalog. Such an implication
has a conjunction of atoms in S as antecedent and as consequent a relation of G. All
free variables of the body of the implication are quantified. This means that each global
relation is associated with a union of conjunctive queries. Clearly, this mapping language
is not as general as our mapping language which can be grounded to different kinds of
logics and is much more expressive.

Mapping Patterns There are a user-friendly interface and schema browsers for the
global schema, the local schemas and the mappings. However, there does not exist a
concept of mapping patterns. We are not aware of planned extensions to use mapping
patterns.

Automation Support There is no automation support in the creation of mappings be-
tween the local schemas and the global schema. However, the query rewriting and the
data fusion is completely automated based on the mappings between the local schemas
and the global schemas as well as the wrapper specifications between the original data
source formats and the internal storage format.

Applicability to Use Cases Instance transformation and unification can be performed
by the INFOMIX system. Query rewriting is done by the INFOMIX system as well
naturally.

The INFOMIX system does not perform ontology merging. However, it translates the
relevant data into a uniform data format. This can be viewed in some respect as ontology

CHAPTER 4. THE SURVEY 95

merging.

Implementation The kernel of the system is be developed in C++ to achieve better per-
formance. The user interfaces and data-extraction modules are based on Java components.

Experience There is no experience report available yet.

4.2.6 AutoMed

AutoMed [BKL"04] is an integrated system that incorporates the BAV (both as view)
approach. This means that it does not adhere to either the LAV (local as view) approach
or the GAV (global as view) or GLAV (global local as view) approach. BAV subsumes
the expressive power of all these mentioned approaches.

Figure 4.22 shows the architecture of the AutoMed system. The meta data repository
can be viewed as the core and other components of the software architecture are imple-
mented upon it. When a data source is wrapped, a definition of the schema for that data
source is added to the repository. The schema matching tool can then identify related
objects in various data sources by means of the query processor that retrieves data from
schema objects. The template transformation tool is used to generate transformations
between the data sources. A GUI is available for these components.

The repository has two logical components:

e The model defnitions repository (MDR) defines how a data modelling language
is represented (in the hypergraph data model (HDM)). It can be used to configure
AutoMed to handle a particular data modelling language.

e The schema transformation repository (STR) defines schemas in terms of the
data modelling concepts in the MDR and transformations that will be specified
between those schemas. Most tools and users will be concerned with editing this
repository when new databases are added to the repository.

The MDR and STR may be held in the same or in separate persistent storages.

Figure 4.23 gives an overview of the key objects in the repository. The STR contains
a set of Schema descriptions. Each such Schema description contains a set of SchemaOb-
ject instances. Each such SchemaObject instance must be based on a Construct instance
that exists in the MDR. This Construct describes how the SchemaObject can be con-
structed in terms of strings and references to other schema objects, and the relationship
of the construct to the HDM. Schemas are thus easily translatable into HDM which is
the common underlying representation of all the data modelling languages handled in
AutoMed. Note that each Schema may contain SchemaObjects from more that one data

CHAPTER 4. THE SURVEY 96

user
appllcatlon
y
query
processor
f
SQL . YATTA
persistent i o i
sore ~~ MpR ——2— /
. text file
repository sQL ' YATT,
data data
source source

Figure 4.22: Architecture of the AutoMed system [BKL*04]

modelling language. In this way, mappings between different data modelling languages
can be described. Schemas may be related to each other using transformation instances.

For this deliverable the schema matching architecture is most relevant and most im-
portant. Figure shows the architecture of the schema mapping module.

Within AutoMed, five types of semantic relationships between schema objects are dis-
tinguished based on the comparison of their intentional domains, i.e. the sets of real-world
entities represented by the schema objects. These are: equivalence, subsumption, inter-
section, disjointness and incompatibility. Transformation rules that should be performed
on the schemas based on the discovered semantic relationships are defined in [Riz03]. In
AutoMed, the automatic discovery of the semantic relationships are performed by means
of a bidirectional comparison of schema objects.

The relationship discovery process is implemented by means of the architecture in
Figure [4.24, The architecture consists of several modules that exploit different types of
information in order to compute bidirectional similarity degrees of schema objects. The
currently implemented modules compare schema object names, instances, statistical data
over the instances, data types, value ranges and lengths. There are two types of modules:
relationship identification modules attempt to discover compatible pairs of schema ob-
jects, and relationship clarification modules attempt to specify the type of the semantic
relationship in each compatible pair. Initially in the schema matching process, the bidirec-
tional similarity degrees produced by the modules are combined by a Filter that uses the

CHAPTER 4. THE SURVEY 97

Access &N Schema p—=< >—STR
Method |1:1 0: N
22
Transforma
tion
: 1:2
Object 0:N| Schema < >
Scheme |1:1 Object [o:N
Scheme T L Construct kil o Model
MDR

Figure 4.23: Architecture of the AutoMed repository schema [BKL04]

average aggregation strategy in order to separate the compatible from the incompatible
pairs of schema objects. Afterwards, the Aggregator component combines the similarity
degrees of the compatible schema objects with the product aggregation strategy and in-
dicates their semantic relationships. The output of the Aggregator becomes the input of
the Degree Combinator, which is based on the relationship clarification modules and on
the values of the similarity degrees. The Degree Combinator has as output the seman-
tic relationships it has discovered. The user can then validate or reject the discovered
relationships and step ahead to the data integration process.

Ontology Languages The AutoMed system can use different Ontology languages. It
supports RDF and RDFS as well as XML and common relational Databases formats.

Mapping Language The mapping language is the hypergraph data model (HDM). This
is the internal language that is used.

Mapping Patterns Mapping Patterns are not mentioned.

Automation Support There is automatic support for the creation of mappings. The
mappings creation architecture shown in Figure |4.24| displays the components that are
used to create automatic mappings.

Applicability to Use Cases All use cases can be applied.

CHAPTER 4. THE SURVEY 98

semantic relationships

T

thresholds - . -
— Degree Combinator

A

agerevated bidirectional clarification
similarity degrees similarity degrees
‘0oator
goregator

Aop
SO0
bidirectional similarity degrees of compatible objects
| | | \

Filter

=1 1o}

partial bidirectional similarity degrees

| \ |
Sl—*
nmy---(m e |1
o4 »

52—*

a4 3

’

7

"~ o ; 1 . i :
relationship identification modules relationship clarification modules

Figure 4.24: Architecture of the AutoMed mapping system [BKLT04]

Implementation The AutoMed system has been implemented in Java. The different
components of the architecture have been implemented in Java as well.

Experience The authors are not aware of experience reports of the AutoMed system.

4.3 Specific Techniques

In this section we briefly describe some specific techniques for ontology merging such as
FCA-Merge, OntoMorph, and QOM.

4.3.1 FCA-Merge

FCA-Merge [SMO1] is a method for merging ontologies based on Formal Concept Anal-
ysis [GW99]. The FCA-Merge approach is a bottom-up approach, which means that it
is based on application-specific instances of the two ontologies that need to be merged.

CHAPTER 4. THE SURVEY 99

A set of documents that are relevant to both ontologies are provided as input. Using lin-
guistic analysis, instances are extracted from the documents for both ontologies. Now a
pruned concept lattice is generated using the similarity in instances for both ontologies.
These first two steps (lexical analysis and generating the concept lattice) are carried out
fully automatically. In the third and last step of the method, the merged target ontology is
created interactively (i.e. semi-automatically).

4.3.2 OntoMorph

The OntoMorph system aims to facilitate ontology merging and the rapid generation of
knowledge base translators [Cha00]. It combines two powerful mechanisms to describe
KB transformations. The first of these mechanisms is syntactic rewriting via pattern-
directed rewrite rules that allow the concise specification of sentence-level transforma-
tions based on pattern matching, and the second mechanism involves semantic rewriting
which modulates syntactic rewriting via semantic models and logical inference. The in-
tegration of ontologies can be based on any mixture of syntactic and semantic criteria.

In the syntactic rewriting process, input expressions are first tokenized into lexemes
and then represented as syntax trees, which are represented internally as flat sequences
of tokens and their structure only exists logically. OntoMorph’s pattern language and
execution model is strongly influenced by Plisp [Smi90]. The pattern language can match
and de-structure arbitrarily nested syntax trees in a direct and concise fashion. Rewrite
rules are applied to the execution model.

For the semantic rewriting process, OntoMorph is built on top of the PowerLoom®
knowledge representation system, which is a successor to the Loom system. Using se-
mantic import rules, the precise image of the source KB semantics can be established
within PowerLoom (limited only by the expressiveness of first-order logic).

4.3.3 QOM Quick Ontology Mapping

The QOM tool [ESO4a] represents an approach that considers both the quality of mapping
results as well as the run-time complexity. The hypothesis is that mapping algorithms
may be streamlined such that the loss of quality (compared to a standard baseline) is
marginal, but the improvement of efficiency is so tremendous that it allows for the ad-hoc
mapping of large-size, light-weight ontologies. To substantiate the hypothesis, a number
of practical experiments were performed.

The goal is to present an efficient mapping algorithm. The outcome is QOM — Quick
Ontology Mapping. It is defined by the steps of a process model as shown in Figure 4.25.
Mapping one ontology onto another means that for each entity (concept C, relation R, or

Yhttp://www.isi.edu/isd/LOOM/PowerLoom/

CHAPTER 4. THE SURVEY 100

instance /) in ontology O, one tries to find a corresponding entity, which has the same
intended meaning, in ontology Os.

Iteration U \
Input 2 . 4 5 utput
Feature Search Step Similarity Similarity Inter -
@ Engineering Selection Computation Aggregation pretation

Figure 4.25: QOM Mapping Process

1. Firstly, QOM uses RDF triples as features.

2. Second, instead of comparing all entities of the first ontology with all entities of the
second ontology, QOM uses heuristics to lower the number of candidate mappings,
which is a major problem for run-time complexity. In this dynamic programming
approach we only choose promising candidate mappings.

3. The actual similarity computation is done by using a wide range of similarity func-
tions [ESO4b]. An entity is described by the kind of appearance that is found to
hold for this entity for characteristics like: identifiers such as URIs, RDF/S prim-
itives such as subclass and instance relations, or domain specific features e.g. a
hashcode-of-file in a file sharing domain. These features of ontological entities are
compared using String Similarity and SimSet for set comparisons. For efficiency
reasons the similarity computation was disburdened by removing extremely costly
feature-measure combinations such as the comparison of all subclasses of two con-
cepts.

4. These individual measures are all input to the similarity aggregation. Instead of
applying linear aggregation functions, QOM applies a sigmoid function, which em-
phasizes high individual similarities and de-emphasizes low individual similarities.

5. From the similarity values we derive the actual mappings. A threshold to discard
spurious evidence of similarity is applied. Further mappings are assigned based on
a greedy strategy that starts with the largest similarity values first.

6. Through several iteration rounds the quality of the results rises considerably. Even-
tually, the output returned is a mapping table representing the relation mapo, o,.
The table is represented in a proprietary format, but can easily be transformed into
a standardized format.

The evaluation was very promising. Depending on the scenario QOM reaches high
quality mapping levels very quickly. QOM is on a par with other good state-of-the-art
algorithms concerning the quality of proposed mappings, while outperforming them with
respect to efficiency — in terms of run-time complexity (O(n - log(n)) instead of O(n?))
and in terms of the experiments that have been performed on the QOM tool (by a factor
of 10 to 100).

Chapter 5

Comparison of the Methods

5.1 Ontology Languages

We compare the ontology languages supported by the approaches included in this survey.
Because many of the systems included in the survey are database integration systems, the
ontology language is not the only language that counts. For these systems, it also matters
which database schema languages are supported.

In these integration systems, the data schema is often lifted to the ontology level be-
fore the actual integration takes place. Therefore, for the core mapping task we are usu-
ally only concerned with the ontology languages. This lifting process often employed
in database integration systems indicates the need for a comparison of lifting methods
employed by the different systems. This small sub-comparison evaluates to what extent
the schema is actually translated to the ontology. In other words, what we need to know
is: (1) is the translation sound?, i.e. is the translation from the schema to the ontology
correct and semantics preserving? and (2) is the translation complete?, i.e. is the schema
translated completely?

Table 5.1 enumerates the ontology languages supported by the various approaches. It
turns out that integration systems typically do not focus on inter-operability with other
ontology tools. This makes sense, because all tasks (mainly querying) are performed
in a closed environment. In a Semantic Web setting, use of standards is very important
to enable inter-operability. We can see that tools created especially for the Semantic
Web (e.g. MAFRA, RDFT, PROMPT, OntoMap, OMEN) support RDFS and PROMPT
also supports OWL. On the other hand, matchers such as GLUE and S-Match use their
own internal representation. Usually it is not a problem to convert an ontology in any
language to such a representation, which is typically done in more comprehensive tool
environments such as PROMPT.

101

CHAPTER 5. COMPARISON OF THE METHODS

Approach Ontology Language Remarks
Methods and Tools
MAFRA RDFS
RDFT RDFS
PROMPT Protégé-2000 supported Includes support for RDFS, OWL, etc.
GLUE taxonomies
S-Match DAGs
OntoMap proprietary language similar | supports export to RDFS
to OWL Lite™
RDFDiff RDF
OMEN proprietary language similar
to RDF Schema
WSMX Mediation | Flora (soon WSML based) Integrated in the Web Services Model-
ing Toolkit.
DOME Mediation | WSML Based on an abstract mapping language
Integration Systems
InfoSleuth OKBC wrappers are used to integrate data
sources
ONION Directed labeled graphs and | source schemas are translated using
Horn rules wrappers
OBSERVER Description Logics (CLAS- | The ontology server maintains map-
SIC) pings between data schemas and on-
tologies
MOMIS ODL;s relational and semi-structured sources
are translated to ODL s using custom
wrappers
INFOMIX a set of logical implications | INFOMIX has a very rich support for
in Disjunctive Datalog different interfaces and languages
AutoMed HDM XML, RDF(S) and relational databases

are supported

Table 5.1: Ontology Languages

102

CHAPTER 5. COMPARISON OF THE METHODS 103

5.2 Mapping Language

Table 5.2/ enumerates the mapping languages used by the different approaches. In map-
ping languages we can see three general approaches:

e The ontology language and the mapping language are the same. This is the case in
MOMIS, to some extent in OntoMap and OMEN, to some extent in OBSERVER
and to some extent in ONION.

e The mapping language is different from the ontology language. This is the case in
MAFRA, RDFT and AutoMed and to some extent in OBSERVER and INFOMIX.
MAFRA and RDFT both use a meta-ontology to describe types of bridges, which
explicate the relationship between the ontologies. These types of bridges can be
seen as the vocabulary for the mapping languages.

OBSERVER uses to some extent the same languages for the specification of both
the ontologies and the mappings. However, the mapping also allows transformer
functions, which are beyond the ontology language and the mappings between the
ontologies and the data schemas are specified using ERA (Extended Relational Al-
gebra).

e There is no real mapping language. The output of the tool is a similarity measure
between concepts in the ontologies. This is the case for matchers, such as GLUE
and S-Match. The purpose of these matchers is not to create an ontology mapping
as such, but to discover similarities between the ontologies.

MAFRA, RDFT and OntoMap describe an ontology of bridges, called SBO (Semantic
Bridge Ontology), RDFT (RDF-Transformations) and OntoMapO (OntoMap Ontology),
respectively. These bridges are instantiated in the actual ontology mapping in order to
realize the actual mapping specification. In this context, MAFRA has the most elaborate
bridge ontology, i.e. MAFRA has the most expressive mapping language. However,
MAFRA does not support mappings between classes and instances, which is supported
by OntoMap. The specification of such a bridge ontology has many advantages; the main
advantage is that it makes the type of mappings clearer and more understandable to the
user and it allows the user to more easily find suitable mappings between ontologies.

We have not mentioned PROMPT and RDFDiff yet. PROMPT is not used to create a
mapping between ontologies, but to merge ontologies. Therefore, the output of the tool is
not a mapping specification, but a merged ontology, which, in this case, can be exported to
any ontology language supported by Protégé, such as RDFS or OWL. RDFDiff returns as
its output not the mapping between two different ontologies, but the structural difference
between two versions of an ontology in the form of changed, added and deleted triples in
the RDF document.

CHAPTER 5. COMPARISON OF THE METHODS 104

Approach Mapping Language Remarks

Methods and Tools

MAFRA Semantic Bridge Ontology | SBO is a meta-ontology of semantic

(SBO) bridges. It allows arbitrary mappings
between concepts, relations, and at-
tributes, as well as conditional map-
pings and procedural transformations

RDFT RDFT RDFT is a meta-ontology, which
describes types of mappings (bridges).
Only allows class-to-class and
property-to-property bridges

PROMPT - not applicable; PROMPT merges on-
tologies

GLUE similarity measures

S-Match set-based (equal, disjoint,

subset, superset)

OntoMap OntoMapO OntoMapO allows specification of re-
lationships between classes and also
between classes and instances.

RDFDiff changed, added, deleted RDFDiff detects changed, added and
deleted triples between versions of an
RDF document

OMEN Bayesian Network with in-

dividual pairs of matches as

nodes

WSMX Mediation | SEKT Abstract Mapping

Language

DOME SEKT Abstract Map|[ping

Language

Integration Systems

InfoSleuth wrappers no ontology mapping; just mapping
data schemas to ontologies

ONION Articulation rules

OBSERVER Extended Relational Alge-

bra for mapping ontology-

DB and DL and transformer

functions for mapping be-
tween ontologies

MOMIS ODL s wrappers are used to integrate data
sources

INFOMIX Disjunctive Datalog wrappers are used to integrate data
sources

AutoMed HDM wrappers are used to integrate data
sources

Table 5.2: Mapping Language

CHAPTER 5. COMPARISON OF THE METHODS 105

5.3 Mapping Patterns

None of the approaches in this survey uses mapping patterns in the way proposed by
[PGM98]. However, the types of mappings often present in specific mapping languages
(e.g. the bridges in RDFT and MAFRA and articulation rules in ONION) can be seen
as elementary mapping patterns. One could combine a number of these bridges to create
more complex mapping patterns. However, there is no explicit support for such combina-
tions in existing approaches.

5.4 Automation Support

Table enumerates the automation support provided by the different approaches. Both
ontology matchers (GLUE and S-Match) are completely automated, in the sense that after
inputting two ontologies, the similarities between concepts in the ontology are returned
without any user interactions. However, the matching of ontologies is just one step in the
overall mapping process (see Section [1.2). Therefore, these approaches automate only
part of the mapping process.

Mapping (or merging) ontologies is often an interactive process (e.g. in PROMPT),
where the tool suggests mapping or merging actions to the user and the user can choose
to either perform the suggested action, to discard it or to perform a different action. After
the user interaction, the tool has more information to come up with more accurate sug-
gestions. It is not clear if and how such one-shot matchers as GLUE and S-Match could
fit in such an interactive process.

The integration systems ONION and MOMIS use specific tools (SKAT and
ARTEMIS, respectively) for the discovery of similarity between ontologies. These tools
are typically integrated in the system, which allows user interaction in the mapping pro-
cess.

In the context of both MAFRA and RDFT, techniques were described to do ontology
matching. In this context, MAFRA exploits the terms and the structure of the ontolo-
gies for the matching and RDFT exploits the instance descriptions associated with the
ontologies to find similarities.

5.5 Applicability to Use Cases

The integration systems (InfoSleuth, MOMIS, OBSERVER and ONION) in this survey
typically support all instance mediation use cases presented in Chapter 2. This is because
the typical use case for data integration systems is the integrated querying of multiple
data sources using a unified view (ontology). The querying of a unified view can be
decomposed into query rewriting (the query in terms of the global ontology has to be

port. The use of the Mapping
Language enable the possi-
bility to use automation tools
exporting in this language.

CHAPTER 5. COMPARISON OF THE METHODS 106
Approach Automation Support Remarks
Methods and Tools
MAFRA lexical and structural match-
ing and semi-automatic cre-
ation of mappings
RDFT discovery of similarities
based on instance data
PROMPT name & structural matching | semi-automatic ontology merging,
where merge actions are suggested
based on similarities
GLUE multi-strategy machine
learning approach
S-Match matching based on synsets
from thesauri, using a SAT
solver
OntoMap - automation is supported when two on-
tologies are mapped to a common on-
tology
RDFDiff changes between versions are
detected automatically
OMEN mappings that depend on
other mappings can be in-
ferred automatically
WSMX Mediation | String Matching, Wordnet
similarity and real time user
feedback
DOME No specific automation sup-

Integration Systems

InfoSleuth -

ONION term and structural matching
using SKAT

OBSERVER -

MOMIS name and structural matching | affinities computed by ARTEMIS are
using ARTEMIS used to identify candidates for classes

in the global ontology
INFOMIX -
AutoMed bidirectional similarity de-

grees

Table 5.3: Automation Support

CHAPTER 5. COMPARISON OF THE METHODS 107

rewritten in terms of the local data source), instance transformation (query results need
to be translated from the local representation to the global representation) and instance
unification (duplicates and redundancy have to be removed from the query results when
the results from different data sources are combined).

Both MAFRA and RDFT have specific support for instance transformations. In
MAFRA, it is possible to attach an executable piece of code to a Semantic Bridge. In
RDFT, it is possible to associate an XPath expression with a bridge. Because RDFT is
used for transforming XML documents and RDF documents in their XML representation,
the XPath language can be used to express such transformations.

A form of ontology merging is performed in both the ONION and the MOMIS sys-
tems. In both systems, a global ontology is created, based on the local ontologies and
database schemas. The global ontology is, in both cases, a virtual view over the underly-
ing data sources; the local sources remain and mapping rules between the global ontology
and the local ontologies are specified inside the global ontology.

PROMPT, on the other hand, is a pure ontology merging tool. The outcome of the
PROMPT tool is a merged version of the source ontologies; no mappings between the
sources and the merged ontology are created; the merged ontology is assumed to replace
the original ontologies.

5.6 Implementation

Table [5.4 enumerates the type of implementations that have been made for the different
approaches.

As we can see from the table, most approaches have only been implemented as aca-
demic prototypes. For most approaches we are not aware of any planned further develop-
ment of the tools. Exceptions are PROMPT, which is currently under active development
and has recently been adapted for the Protégé OWL plugin; S-Match, which is currently
being extended to take the different semantics of different relations in the ontologies into
account and to optimize the performance of the implementation; and RDFDiff, which will
be further developed in the course of the SEKT project.

5.7 Experiences

Table 5.5 enumerates the experiences with the various approaches reported in the litera-
ture.

Most of the experiences reported in the literature are really toy problems; we feel
that real experience with ontology mapping and ontology-based information integration
is lacking. A cause of this problem is that the Semantic Web has not gained any real

CHAPTER 5. COMPARISON OF THE METHODS

108

Approach Implementation Remarks
Methods and Tools
MAFRA Two prototypes have been
implemented
RDFT Research Prototype
PROMPT Version 2.1.1 PROMPT is still undergoing active de-
velopment
GLUE Research Prototype
S-Match First prototype Work is still under way to improve the
implementation
OntoMap Prototype; under develop-
ment since 2001
RDFDiff Research Prototype The tool will be further developed in
the course of the SEKT project
OMEN first research prototype
WSMX Mediation | Research Prototype
DOME Research Prototype

Integration Systems

InfoSleuth Project Prototype

ONION Research Prototype
OBSERVER Research Prototype

MOMIS Research Prototype
INFOMIX INFOMIX IST Project
AutoMed AutoMed project, LSDI

project, ISPIDER project,
RoDEX project

Table 5.4: Implementation

CHAPTER 5. COMPARISON OF THE METHODS 109
Approach Experience Remarks
Methods and Tools
MAFRA Toy Problems
RDFT Mapping product classifica-
tion schemes in GoldenBullet
project
PROMPT HPKB project; evaluation us-
ing example ontologies
GLUE Toy problems
Semantic Matching | Toy problems Was evaluated against other matchers

OntoMap

Applied to most upper-level
ontologies

RDEFDiff Toy problems
OMEN Toy problems
WSMX Mediation | DIP European Project
DOME DIP European project

Integration Systems

InfoSleuth Two elaborate case studies

ONION Toy Examples

OBSERVER Prototype with real-life bibli-

ographic data

MOMIS Toy Examples ARTEMIS (part of MOMIS) has been
applied in the domain of Italian Public
Administration

INFOMIX -

AutoMed some case studies

Table 5.5: Experience

momentum as yet. Therefore, there are currently not so many ontologies on the Web, al-
though there is some experience with real-life data sources, such as bibliographic sources.

Chapter 6

Conclusions

In this survey we have evaluated and compared several approaches to ontology mapping,
ontology matching, ontology merging and data integration.

Comparing different types of approaches in this survey has made it clear that none
of the approaches exactly fits all our criteria for ontology mediation on the Semantic
Web. The purposes of the approaches in this survey tend to vary. The integration systems
such as MOMIS [BCVBOI1] and ONION [MWKO00, MWO01] have the aim of providing
query answering services over multiple data sources to the user. Matchers such as GLUE
[DMDHO04] and S-Match [GS04] have the more specific goal of finding similarities be-
tween schemas or ontologies. Integration systems often use matchers for the discovery of
mappings (e.g. ONION uses SKAT; MOMIS uses ARTEMIS).

MAFRA [MMSV02] and RDFT [Ome02b] provide meta-ontologies for the specifi-
cations of mappings between ontologies. These mappings can be used for instance trans-
formations. In fact, both approaches include specific means to enable transformation
of instances between different representations. However, whereas InfoSleuth provides
methods for the fusion of query results (instance unification), neither MAFRA nor RDFT
handle this situation. Query rewriting is also not explicitly handled, but this should not
be a problem because bridges between entities in the ontologies are explicitly present and
can be readily used for query rewriting.

This state-of-the-art survey has made clear that work still needs to be done in the
area of ontology mediation on the Semantic Web. We can learn from the data integration
systems, which provide services for query answering over distributed heterogeneous data
sources. However, the current setting of these integration systems is inside the enterprise,
which is still a more-or-less controlled area. On the Web, not much control over the
use of ontologies can be expected and the global integration scenario is not expected to
scale, because eventually different organizations will use different ontologies and will not
want to commit to a new ontology. However, the one-to-one integration approach is also
not expected to scale, because it would require the maintenance of too many mappings

110

CHAPTER 6. CONCLUSIONS 111

Figure 6.1: Ontology “islands”: large ellipses depict locally global ontologies; small
ellipses depict locally local ontologies

between ontologies. Therefore, we expect a hybrid approach will appear, where we have
several “islands” around influential domain ontologies, where within the island there is
a form of global integration; one ontology would be the global ontology of the islands
and a number of local ontologies are mapped to this global ontology. Then, there would
be mappings between the islands, as illustrated in Figure 6.1, In the ontology mediation
solution to be developed within SEKT, we need to take this into account and we need
to combine global integration approaches, such as the ones supported by MOMIS and
ONION, with one-to-one mappings, which are supported by, for example, MAFRA.

From the mapping process (Section [1.2) we can already see that we need different
types of methods and tools for its realization. Most notably, we need an ontology matcher
in order to identify similarities between ontologies and we need a mapping language and a
mapping tool for the specification of ontology mapping. Examples of matchers are GLUE
and S-Match. MAFRA and OntoMap provide mapping languages for the specification of
mappings between ontologies.

From the comparison in Chapter |5/ we can see that current approaches to ontology
mapping have mostly been applied to toy problems and cannot be expected to scale both

CHAPTER 6. CONCLUSIONS 112

in the number of ontologies to be mapped and the number of instances to the transformed
at execution time. Within SEKT we need to take into account the different approaches
that are out there and especially look into database integration approaches, which can
overcome some of the scalability issues with large sets of instances.

Within SEKT the Ontology Mediation plugin called OntoMap is being developed.
Note that OntoMap shares the name with the mediation system developed by Sirma (cf.
Section 4.1.6), but is a completely different system. The OntoMap plugin uses F-Logic as
Ontology Mapping Language and is integrated in OntoStudio which yields an integrated
system. The Ontobroker reasoner is used for reasoning with the ontologies, mediation
rules and data. OntoStudio has support for different kinds of databases and source for-
mats and thus is competitive with the presented integrated systems for mediation. It also
provides facilities for Query Answering. Furthermore, the following use cases can be
implemented by OntoMap:

e Instance Transformation
e Instance Unification

e Ontology Merging

OntoMap supports Mapping Patterns which is not available in any of the systems that
have been surveyed in this state-of-the-art survey.

Thus, OntoMap as a plugin for Ontostudio, can be considered at least competitive
with the presented systems.

Bibliography

[ACO1]

[BCM 03]

[BCVI9]

[BCVBO1]

[Bec03]

[BFGO1]

[BGO4]

[BKL*04]

[BLHLO1]

Maurizio Lenzerini Andrea Cal, Giuseppe De Giacomo. Models for infor-
mation integration: turning local-as-view into global-as-view. In Proc. of
the Workshop on Foundation of Models for Information Integration (FMII
2001), pages 270-284, 2001.

Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele Nardi,
and Peter F. Patel-Schneider, editors. The Description Logic Handbook.
Cambridge University Press, 2003.

Sonia Bergamaschi, Silvana Castano, and Maurizio Vincini. Semantic in-
tegration of semistructured and structured data sources. SIGMOD Record

Special Issua on Semantic Interoperability in Global Information, 28(1),
March 1999.

Sonia Bergamaschi, Silvana Castano, Maurizio Vincini, and Domenico Ben-
eventano. Semantic integration of heterogeneous information sources. Spe-

cial Issue on Intelligent Information Integration, Data & Knowledge Engi-
neering, 36(1):215-249, 2001.

Dave Beckett. RDF/XML syntax specification (revised). Recommendation
10 February 2004, W3C, 2003.

R. Baumgartner, S. Flesca, and G. Gottlob. Visual web information extrac-
tion with LiXto. In Proceedings of VLDB, 2001.

Dan Brickley and Ramanathan V. Guha. RDF vocabulary description lan-
guage 1.0: RDF schema. Recommendation 10 February 2004, W3C, 2004.
Available from http://www.w3.org/TR/rdf-schema/.

M. Boyd, S. Kittivoravitkul, P. Lazanitis, P.J. McBrien, and N. Rizopoulos.
Automed: A bav data integration system for heterogeneous data sources. In
Proceedings of CAiSE04, 2004.

Tim Berners-Lee, James Hendler, and Ora Lassila. The se-
mantic web. Scientific American, 284(5):34-43, May 2001.

113

BIBLIOGRAPHY 114

[BS85]

[CAdVO1]

[CD9Y9]

[CdA99]

[CDGLO1]

[CFF198]

[Cha00]

[Che79]

[Cla99]

[dB04]

[dBP04]

http://www.sciam.com/article.cfm?articleID=00048144-10D2-1C70-
84A9809ECS588EF21 &ref=sciam.

Ronald J. Brachman and James G. Schmolze. An overview of the KL-ONE
knowledge representation system. Cognitive Science, 9(2):171-216, 1985.

Silvana Castano, Valeria De Antonellis, and Sabrina De Capitani di Vimer-
cati. Global viewing of heterogeneous data sources. IEEE Transactions on
Knowledge and Data Engineering, 13(2):277-297, 2001.

James Clark and Steve DeRose. XML path language (XPath) version 1.0.
Recommendation 16 November 1999, W3C, 1999.

Silvana Castano and Valeria de Antonellis. A schema analysis and reconcil-
iation tool environment for heterogeneous databases. In Proceedings of the
1999 International Symposium on Database Engineering & Applications.
IEEE Computer Society, 1999.

Diego Calvanese, Giuseppe De Giacomo, and Maurizio Lenzerini. A frame-
work for ontology integration. In Proc. of the 2001 Int. Semantic Web Work-
ing Symposium (SWWS 2001), pages 303-316, 2001.

Vinay K. Chaudhri, Adam Farquhar, Richard Fikes, Peter D. Karp, and
James P. Rice. OKBC: A programmatic foundation for knowledge base
interoperability. In Proceedings of the Fifteenth National Conference on Ar-
tificial Intelligence (AAAI-98), pages 600-607, Madison, Wisconsin, USA,
1998. MIT Press.

Hans Chalupsky. OntoMorph: A translation system for symbolic knowl-
edge. In Anthony G. Cohn, Fausto Giunchiglia, and Bart Selman, editors,
KR 2000, Principles of Knowledge Representation and Reasoning Proceed-
ings of the Seventh International Conference, pages 471-482, Breckenridge,
Colorado, USA, 2000. Morgan Kaufmann Publishers.

P. Chen. The entity relationship model - toward a unified view of data. ACM
Transactions on Database Systems, 1(1):9-36, 1979.

James Clark. XSL transformations (XSLT) version 1.0. Recommendation
16 November 1999, W3C, 1999.

Jos de Bruijn. Semantic integration of disparate data sources in the cog
project. In Proceedings of the 6th International Conference on Enterprise
Information Systems (ICEIS2004), Porto, Portugal, 2004.

Jos de Bruijn and Axel Polleres. Towards and ontology mapping specifica-
tion language for the semantic web. Technical Report DERI-2004-06-30,
DERI, 2004.

BIBLIOGRAPHY 115

[dBPF04]

[DKO'02]

[DMDHO02]

[DMDHO04]

[DMQO2]

[DRO2]

[DRO5]

[DS04]

[EA]

[ESO4a]

[ESO4b]

[Fel99]

Jos de Bruijn, Axel Polleres, and Dieter Fensel. OWL lite™. Deliverable
d20v0.1, WSML, 2004.
Available from http://www.wsmo.org/2004/d20/v0.1/.

Ying Ding, M. Korotkiy, Borys Omelayenko, V. Kartseva, V. Zykov, Michel
Klein, Ellen Schulten, and Dieter Fensel. GoldenBullet: Automated clas-
sification of product data in e-commerce. In Withold Abramowicz, editor,
Proceedings of BIS 2002, Poznan, Poland, 2002.

AnHai Doan, Jazant Madhavan, Pedro Domingos, and Alon Halevy. Learn-
ing to map between ontologies on the semantic web. In Proceedings of the
World-Wide Web Conference, 2002.

AnHai Doan, Jazant Madhaven, Pedro Domingos, and Alon Halevy. Ontol-
ogy matching: A machine learning approach. In Steffen Staab and Rudi
Studer, editors, Handbook on Ontologies in Information Systems, pages
397-416. Springer-Verlag, 2004.

Dejing Dou, Drew McDermott, and Peishen Qi. Ontology translation by
ontology merging and automated reasoning. In Proc. EKAW2002 Workshop
on Ontologies for Multi-Agent Systems, pages 3—18, 2002.

Hong-Hai Do and Erhard Rahm. COMA - a system for flexible combination
of schema matching approaches. In Proceedings of the VLDB’02, pages
610-621, 2002.

H. Lausen (eds.) D. Roman, U. Keller. Web service modeling ontology.
Technical report, DERI, 2005.

Mike Dean and Guus Schreiber, editors. OWL Web Ontology Language
Reference. 2004. W3C Recommendation 10 February 2004.

P.McBrien E.Jasper, N.Tong and A.Poulovassilis. Generating and optimis-
ing views from both as view data integration rules. In Proc. 6th Baltic Con-
ference on Database and Information Systems (DBIS’04), Riga, June 2004.

Marc Ehrig and Steffen Staab. QOM - quick ontology mapping. Hiroshima,
Japan, November 2004.

Marc Ehrig and York Sure. Ontology mapping - an integrated approach.
In Proceedings of the First European Semantic Web Symposium, Heraklion,
Greece, May 2004.

Christiane Fellbaum, editor. WordNet: An Electronic Lexical Database.
MIT Press, 1999.

BIBLIOGRAPHY 116

[FenO3]

[FMvH 03]

[FNPB99]

[GGMO8]

[Gru94]

[GS04]

[GSYO04]

[GW99]

[HenO5]

[HMO3]

[Hul97]

[Ker05]

Dieter Fensel. Ontologies: Silver Bullet for Knowledge Management and
Electronic Commerce, 2nd edition. Springer-Verlag, Berlin, 2003.

Dieter Fensel, Enrico Motta, Frank van Harmelen, V. Richard Benjamins,
Stefan Decker, Mauro Gaspari, Rix Groenboom, William Grosso, Mark A.
Musen, Enric, Guus Schreiber, Rudi Studer, and Bob Wielinga. The uni-
fied problem-solving method development language upml. Knowledge and
Information Systems(KAIS) journal, 5(1), 2003.

Jerry Fowler, Marian Nodine, Brad Perry, and Bruce Bargmeyer. Agent-
based semantic interoperability in infosleuth. SIGMOD Record, 28(1),
1999.

John H. Gennari, William Grosso, and Mark A. Musen. A method-
description language: An initial ontology with examples. In Proceedings

of the Eleventh Banff Knowledge Acquisition for Knowledge-Bases Systems
Workshop, Banff, Canada, 1998.

T. Gruber. An ontology for engineering mathematics. Technical report,
Knowledge Systems Laboratory, Stanford University, 1994. Report KSL-
94-18.

Fausto Giunchiglia and Pavel Shvaiko. Semantic matching. The Knowledge
Engineering Review, 18(3):265-280, 2004.

Fausto Giunchiglia, Pavel Shvaiko, and Mikalai Yatskevich. S-match: an
algorithm and an implementation of semantic matching. In Proceedings of
ESWS’04, number 3053 in LNCS, pages 61-75, Heraklion, Greece, 2004.
Springer-Verlag.

Bernhard Ganter and Rudolph Wille. Formal concept analysis: Mathemati-
cal Foundations. Springer, Berlin-Heidelberg, 1999.

Jan Henke. Omwg d8.2 editing and browsing design. Technical report,
2005.

Joachim Hammer and Dennis McLeod. An approach to resolving seman-
tic heterogeneity in a federation of autonomous, heterogeneous, database

systems. International Journal on Intelligent and Cooperative Information
Systems, 2(1):51-83, 1993.

Richard Hull. Managing semantic heterogeneity in databases: A theoretical
perspective. In ACM Symposium on Principles of Database Systems, pages
51-61, Tuscon, Arizona, USA, 1997.

M. Kerrigan. Web service modeling toolkit (wsmt). Technical report,
WSMX Working Draft, 2005.

BIBLIOGRAPHY 117

[KFNM]

[KKOF02]

[KleO1]

[KleO4]

[KSO00]

[KSDO1a]

[KSDO1b]

[Len]

[Lev00]

[LGR"05a]

[LGR*05b]

Holger Knublauch, Ray W. Fergerson, Natalya F. Noy, and Mark A. Musen.
The protégé owl plugin: An open development environment for seman-
ticweb applications. In J. Allenet et al., editors, Third International Se-
mantic Web Conference - ISWC 2004, Hiroshima, Japan.

Michel Klein, Atanas Kiryakov, Damyan Ognyanov, and Dieter Fensel.
Finding and characterizing changes in ontologies. In Proceedings of the
21st International Conference on Conceptual Modeling (ER2002), Tam-
pere, Finland, 2002.

Michel Klein. Combining and relating ontologies: an analysis of prob-
lems and solutions. In Asuncion Gomez-Perez, Michael Gruninger, Heiner
Stuckenschmidt, and Michael Uschold, editors, Workshop on Ontologies
and Information Sharing, IJCAI'01, Seattle, USA, August 4-5, 2001.

Michel Klein. Change Management for Distributed Ontologies. PhD thesis,
Free University of Amsterdam, 2004.

Atanas Kiryakov and Kiril Iv. Simov. Mapping of eurowordnet top ontology
to upper cyc ontology. In Proceedings of Ontologies and Text workshop,
EKAW 2000, Juan-les-Pins, French Riviera, 2000.

Atanas Kiryakov, Kiril Iv. Simov, and Marin Dimitrov. Ontomap: The
upper-ontology portal. In Proceedings of ”Formal Ontology in Information
Systems”, Ogunquit, Maine, 2001.

Atanas Kiryakov, Kiril Iv. Simov, and Marin Dimitrov. Trl. ontomap: The
upper-ontology portal. revision 2, Ontotext, 2001.

Maurizio Lenzerini. Data integration: A theoretical perspective. In PODS
2002, pages 233-246.

Alon Y. Levy. Logic-Based Techniques in Data Integration, pages 575-595.
Kluwer Publishers, 2000.

N. Leone, G. Gottlob, R. Rosati, G. Greco, G. Ianni, V. Lio, V. Terracina,
T. Eiter, W. Faber, M. Fink, D. Lembo, M. Lenzerini, M. Ruzzi, E. Kalka,
B. Nowicki, and W. Staniszkis. Data integration by logic programming: The
INFOMIX system. In Proceedings of the Eighth International Conference
on Logic Programming and Nonmonotonic Reasoning (LPNMR), 2005.

N. Leone, G. Gottlob, R. Rosati, G. Greco, G. Ianni, V. Lio, V. Terracina,
T. Eiter, W. Faber, M. Fink, D. Lembo, M. Lenzerini, M. Ruzzi, E. Kalka,
B. Nowicki, and W. Staniszkis. The INFOMIX system for advanced inte-
gration of incomplete and inconsistent data. In Proceedings of the ACM
SIGMOD International Conference on Management of Data, pages 915—
917, 2005.

BIBLIOGRAPHY 118

[LLRO2]

[LPF105]

[LS99]

[MBRO1]

[MFRWO00]

[MGMRO02]

[MIKSO00]

[MMSVO02]

[MNJ04]

[MocO05]

[MPO3]

Domenico Lembo, Maurizio Lenzerini, and Ricardo Rosati. Functional
specification of the infomix system. Technical Report D2.1, University of
Rome, 2002.

N. Leone, G. Pfeifer, W. Faber, T. Eiter, G. Gottlob, S. Perri, and F. Scar-
cello. The dlv system for knowledge representation and reasoning. In ACM
Transactions on Computational Logic, 2005.

Ora Lassila and Ralph R. Swick. Resource description framework (RDF)
model and syntax specification. W3c recommendation, W3C, 1999.
http://www.w3.0rg/TR/1999/REC-rdf-syntax-19990222.

Jayant Madhavan, Philip A. Bernstein, and Erhard Rahm. Generic schema
matching with cupid. In Proc. 27th Int. Conf. on Very Large Data Bases
(VLDB), 2001.

Deborah L. McGuinness, Richard Fikes, James Rice, and Steve Wilder.
An environment for merging and testing large ontologies. In Proc. 7th

Intl. Conf. On Principles of Knowledge Representation and Reasoning
(KR2000), Colorado, USA, April 2000.

Sergey Melnik, Hector Garcia-Molina, and Erhard Rahm. Similarity flood-
ing: A versatile graph matching algorithm. In Proceedings of ICDE, pages
117-128, 2002.

Eduardo Mena, Arantza Illarramendi, Vipul Kashyap, and Amit P. Sheth.
OBSERVER: An approach for query processing in global information sys-

tems based on interoperation across pre-existing ontologies. Distributed and
Parallel Databases, 8(2):223-271, 2000.

Alexander Maedche, Boris Motik, Nuno Silva, and Raphael Volz. Mafra a
mapping framework for distributed ontologies. In Proceedings of the 13th

European Conference on Knowledge Engineering and Knowledge Manage-
ment EKAW-2002, Madrid, Spain, 2002.

P. Mitra, N. F. Noy, and A. R. Jaiswal. Omen: A probabilistic ontology
mapping tool. In Workshop on Meaning coordination and negotiation at the
Third International Conference on the Semantic Web (ISWC), Hiroshima,
Japan, 2004.

A. Mocan. Wsmx data mediation. Technical report, WSMX Working Draft,
2005.

P.J. McBrien and A. Poulovassilis. Data integration by bi-directional schema
transformation rules. In Proceedings of ICDEO3, pages 227 — 238. IEEE,
2003.

BIBLIOGRAPHY 119

[MRBO3]

[MvHO4]

[MWO1]

[MWJ99]

[MWKO00]

[MZ05]

[NFK*00]

[NMO99]

[NMOOa]

[NMOOb]

[NMO3a]

Sergey Melnik, Erhard Rahm, and Philip A. Bernstein. Developing
metadata-intensive applications with rondo. Journal of Web Semantics, 1(1),
December 2003.

Deborah L. McGuinness and Frank van Harmelen. OWL web ontology lan-
guage overview. Recommendation 10 February 2004, W3C, 2004. Avail-
able from http://www.w3.org/TR/owl-features/.

Prasenjit Mitra and Gio Wiederhold. An algebra for semantic interoperabil-
ity of information sources. In IEEE International Conference on Bioinfor-
matics and Biomedical Egineering, pages 174—182, 2001.

Prasenjit Mitra, Gio Wiederhold, and Jan Jannink. Semi-automatic inte-
gration of knowledge sources. In Proceedings of Fusion 99, Sunnydale,
California, USA, July 1999.

Prasenjit Mitra, Gio Wiederhold, and Martin L. Kersten. A graph-oriented
model for articulation of ontology interdependencies. In Proceedings of
Conference on Extending Database Technology (EDBT 2000), Konstanz,
Germany, March 2000.

M. Moran Michal Zaremba. Wsmx architecture. Technical report, WSMO
Working Draft, 2005.

Marian H. Nodine, Jerry Fowler, Tomasz Ksiezyk, Brad Perry, Malcolm
Taylor, and Amy Unruh. Active information gathering in infosleuth. Inter-
national Journal of Cooperative Information Systems, 9(1-2):3-28, 2000.

Natalya F. Noy and Mark A. Musen. Smart: Automated support for on-
tology merging and alignment. Technical Report SMI-1999-0813, Stanford
Medical Informatics, 1999.

Natalya F. Noy and Mark A. Musen. Anchor-prompt: Using non-local con-
text for semantic matching. In Proceedings of the Workshop on Ontologies
and Information Sharing at the Seventeenth International Joint Conference
on Artificial Intelligence (IJCAI-2001), Seattle, WA, USA, 2000.

Natalya F. Noy and Mark A. Musen. Prompt: Algorithm and tool for au-
tomated ontology merging and alignment. In Proc. 17th Natl. Conf. On
Artificial Intelligence (AAAI2000), Austin, Texas, USA, July/August 2000.

Natalya F. Noy and Mark A. Musen. Ontology versioning as an element of
an ontology-management framework. To be published in IEEE Intelligent
Systems, 2003.

BIBLIOGRAPHY 120

[NMO3b]

[OF01]

[Ome02a]

[Ome02b]

[PGMOS]

[RBO1]

[Riz03]

[SaR03a]

[SaR03b]

[SdBOS5]

[Sil02]

Natalya F. Noy and Mark A. Musen. The PROMPT suite: Interactive
tools for ontology merging and mapping. International Journal of Human-
Computer Studies, 59(6):983-1024, 2003.

Borys Omelayenko and Dieter Fensel. A two-layered integration approach
for product information in B2B e-commerce. In Proceedings of the Sec-
ond Intenational Conference on Electronic Commerce and Web Technolo-
gies (EC WEB-2001), Munich, Germany, 2001. Springer-Verlag.

Borys Omelayenko. Integrating vocabularies: Discovering and representing
vocabulary maps. In Proceedings of the First International Semantic Web
Conference (ISWC2002), Sardinia, Italy, 2002.

Borys Omelayenko. RDFT: A mapping meta-ontology for business integra-
tion. In Proceedings of the Workshop on Knowledge Transformation for the
Semantic Web (KTSW 2002) at the 15-th European Conference on Artificial
Intelligence, pages 7683, Lyon, France, 2002.

John Y. Park, John H. Gennari, and Mark A. Musen. Mappings for reuse in
knowledge-based systems. In Proceedings of the 11th Workshop on Know!-
edge Acquisition, Modelling and Management (KAW 98), Banff, Canada,
1998.

Erhard Rahm and Philip A. Bernstein. A survey of approaches to automatic
schema matching. VLDB Journal: Very Large Data Bases, 10(4):334-350,
2001.

N. Rizopoulos. Bav transformations on relational schemas based on seman-
tic relationships between attributes. Technical Report Technical Report 22,
Imperial College London, 2003.

Nuno Silva and Jo ao Rocha. Ontology mapping for interoperability in
semantic web. In Proceedings of the IADIS International Conference
WWW/Internet 2003 (ICWI’2003), Algarve, Portugal, 2003.

Nuno Silva and Jo ao Rocha. Service-oriented ontology mapping system. In
Proceedings of the Workshop on Semantic Integration of the International
Semantic Web Conference (ISWC2003), Sanibel Island, USA, 2003.

Francois Scharffe and Jos de Bruijn. A language to specify correspondences
between ontologies. In Proceedings of the IEEE Signal Image and Internet
Based Systems (SITIS-05), 2005.

N. Silva. Discovering mappings between distributed ontologies. Internal
Report July, University of Karlsruhe, 2002.

BIBLIOGRAPHY 121

[SMO1]

[Smi90]

[Usc00]

[VCI8]

[VIBCS97]

[Wie94]

Gerd Stumme and Alexander Maedche. Fca-merge: Bottom-up merging of
ontologies. In 7th Intl. Conf. on Artificial Intelligence (IJCAI ’01), pages
225-230, Seattle, WA, USA, 2001.

D.C. Smith. Plisp Users Manual. Apple Computers, august, 1990 edition,
1990.

Mike Uschold. Creating, integrating, and maintaining local and global on-
tologies. In Proceedings of the First Workshop on Ontology Learning (OL-
2000) in conjunction with the 14th European Conference on Artificial Intel-
ligence (ECAI-2000), Berlin, Germany, August 2000.

Pepijn R. S. Visser and Zhan Cui. On accepting heterogeneous ontologies
in distributed architectures. In Proceedings of the ECAI98 workshop on ap-
plications of ontologies and problem-solving methods, Brighton, UK, 1998.

Pepijn R. S. Visser, Dean M. Jones, T. J. M. Bench-Capon, and M. J. R.
Shave. An analysis of ontological mismatches: Heterogeneity versus inter-

operability. In AAAI 1997 Spring Symposium on Ontological Engineering,
Stanford, USA, 1997.

Gio Wiederhold. An algebra for ontology composition. In Proceedings
of 1994 Monterey Workshop on formal Methods, pages 56—61, U.S. Naval
Postgraduate School, Monterey CA, 1994.

	Introduction
	Terminology
	The Ontology Mapping Process
	Ontology Mismatches
	Ontology-level Mismatches
	Language-level mismatches

	Integration approaches
	Wrappers and Mediators

	Motivational Use Cases
	Use Cases for Instance Mediation
	Instance Transformation
	Instance Unification
	Query Rewriting

	Ontology Merging
	Creating Ontology Mappings
	Finding Similarities
	Specifying Mappings

	The Evaluation Framework
	The Survey
	Methods and Tools
	MAFRA
	RDFT
	PROMPT
	GLUE
	Semantic Matching
	OntoMap
	RDFDiff
	OntoMerge
	OMEN
	WSMT Data mediation module
	DOME mapping module

	Integrated Systems
	InfoSleuth
	ONION
	OBSERVER
	MOMIS
	INFOMIX
	AutoMed

	Specific Techniques
	FCA-Merge
	OntoMorph
	QOM Œ Quick Ontology Mapping

	Comparison of the Methods
	Ontology Languages
	Mapping Language
	Mapping Patterns
	Automation Support
	Applicability to Use Cases
	Implementation
	Experiences

	Conclusions
	Bibliography

