
EU-IST Integrated Project (IP) IST-2003-506826 SEKT

SEKT: Semantically Enabled Knowledge Technologies

D4.3.1 Ontology Mediation Patterns
Library V1

Jos de Bruijn (DERI Innsbruck)
douglas foxvog (DERI Galway)

Kerstin Zimmerman (DERI Innsbruck)

Abstract.
EU-IST Integrated Project (IP) IST-2003-506826 SEKT
Deliverable D4.3.1 (WP4)
This deliverable describes a library of ontology mapping patterns, as well as a mapping language
based on these patterns. This language, together with the mapping patterns, allows the user to
more easily identify mappings and to describe mappings in an intuitive way. The mappings are
organized in a library in a hierarchical fashion in order to allow for easy browsing and retrieving
of mappings.
Keyword list: Ontology Mapping, Mapping Patterns, Patterns Library

Copyright c© 2005 Digital Enterprise Research Institute, University of Innsbruck

Document Id.
Project
Date
Distribution

SEKT/2004/D4.3.1/v1.0
SEKT EU-IST-2003-506826
February 18, 2005
public

SEKT Consortium

This document is part of a research project partially funded by the IST Programme of the Commission of the European
Communities as project number IST-2003-506826.

British Telecommunications plc.
Orion 5/12, Adastral Park
Ipswich IP5 3RE
UK
Tel: +44 1473 609583, Fax: +44 1473 609832
Contact person: John Davies
E-mail: john.nj.davies@bt.com

Empolis GmbH
Europaallee 10
67657 Kaiserslautern
Germany
Tel: +49 631 303 5540, Fax: +49 631 303 5507
Contact person: Ralph Traphöner
E-mail: ralph.traphoener@empolis.com

Jozef Stefan Institute
Jamova 39
1000 Ljubljana
Slovenia
Tel: +386 1 4773 778, Fax: +386 1 4251 038
Contact person: Marko Grobelnik
E-mail: marko.grobelnik@ijs.si

University of Karlsruhe , Institute AIFB
Englerstr. 28
D-76128 Karlsruhe
Germany
Tel: +49 721 608 6592, Fax: +49 721 608 6580
Contact person: York Sure
E-mail: sure@aifb.uni-karlsruhe.de

University of Sheffield
Department of Computer Science
Regent Court, 211 Portobello St.
Sheffield S1 4DP
UK
Tel: +44 114 222 1891, Fax: +44 114 222 1810
Contact person: Hamish Cunningham
E-mail: hamish@dcs.shef.ac.uk

University of Innsbruck
Institute of Computer Science
Technikerstraße 13
6020 Innsbruck
Austria
Tel: +43 512 507 6475, Fax: +43 512 507 9872
Contact person: Jos de Bruijn
E-mail: jos.de-bruijn@deri.ie

Intelligent Software Components S.A.
Pedro de Valdivia, 10
28006 Madrid
Spain
Tel: +34 913 349 797, Fax: +49 34 913 349 799
Contact person: Richard Benjamins
E-mail: rbenjamins@isoco.com

Kea-pro GmbH
Tal
6464 Springen
Switzerland
Tel: +41 41 879 00, Fax: 41 41 879 00 13
Contact person: Tom Bösser
E-mail: tb@keapro.net

Ontoprise GmbH
Amalienbadstr. 36
76227 Karlsruhe
Germany
Tel: +49 721 50980912, Fax: +49 721 50980911
Contact person: Hans-Peter Schnurr
E-mail: schnurr@ontoprise.de

Sirma AI EAD, Ontotext Lab
135 Tsarigradsko Shose
Sofia 1784
Bulgaria
Tel: +359 2 9768 303, Fax: +359 2 9768 311
Contact person: Atanas Kiryakov
E-mail: naso@sirma.bg

Vrije Universiteit Amsterdam (VUA)
Department of Computer Sciences
De Boelelaan 1081a
1081 HV Amsterdam
The Netherlands
Tel: +31 20 444 7731, Fax: +31 84 221 4294
Contact person: Frank van Harmelen
E-mail: frank.van.harmelen@cs.vu.nl

Universitat Autonoma de Barcelona
Edifici B, Campus de la UAB
08193 Bellaterra (Cerdanyola del Vallès)
Barcelona
Spain
Tel: +34 93 581 22 35, Fax: +34 93 581 29 88
Contact person: Pompeu Casanovas Romeu
E-mail: pompeu.casanovas@uab.es

Executive Summary

The Semantic Web will contain many distributed ontologies with overlapping domains.
In order to allow for interoperation between applications on the Web, these ontologies
need to be related to each other through ontology mapping.

Ontology mapping is a very challenging topic. There exist different ontology lan-
guages with varying expressiveness and there are many kinds of mismatches between
ontologies which need to be resolved through mapping. In this deliverable we address
the language issue by specifying a language-neutral mapping language and the issue of
ontology mismatches by structuring the space of ontology mapping through the introduc-
tion of a library of mapping patterns. A mapping pattern is a frequently recurring type of
mapping and can be used to aid in the discovery of overlap between ontologies and the
specification of ontology mappings. Furthermore, patterns help to rule out user error and
enable reuse.

There exists a bidirectional interaction between the mapping language and the map-
ping patterns. The mapping language is inspired by the patterns. Each mapping pattern
corresponds with an expression in the mapping language. In this deliverable we do not
provide a formal semantics for the mapping language, but rather an abstract syntax which
is associated with a natural language description through mapping patterns.

Mapping patterns are split in simple patterns and complex patterns, where simple
patterns can be seen as elementary types of mappings and complex patterns are composed
of simple patterns to form complex recurring structures in ontology mapping. We provide
simple patterns in this version of the deliverable, because complex patterns only arise
through the practice of ontology mapping. We provide a means to describe and organize
complex patterns.

Contents

1 Introduction 3
1.1 Terminology. 3
1.2 Mapping Language and Mapping Patterns. 7

1.2.1 General Considerations. 7
1.2.2 Relation between Mapping Patterns and the Mapping Language. 8
1.2.3 Relation between Mapping Language and actual mappings. . . . 8

2 Pattern Template 10
2.1 Pattern Templates in Related Work. 11
2.2 A Template for Ontology Mapping Patterns. 12

3 Mapping Examples 15
3.1 Motivating Mapping Scenarios. 15

3.1.1 Join mappings. 15
3.1.2 Attribute - class mapping. 17
3.1.3 Class - instance mapping. 18
3.1.4 Mapping based on conditions of the target ontology. 18
3.1.5 Mapping with built-in(aggregate)s. 19
3.1.6 Introducing Terms in the Translation. 19

4 The Mapping Language 21

5 Patterns 26
5.1 Mappings between Classes. 26

5.1.1 Equivalent Classes. 27
5.1.2 Subclass/Superclass Mapping. 27
5.1.3 Class Intersection. 28
5.1.4 Class Union. 29
5.1.5 Class by Attribute Mapping. 29
5.1.6 Class Mapping by Axiom. 30
5.1.7 Class Join Mapping. 31
5.1.8 Class Attribute Mapping. 32
5.1.9 Class Relation Mapping. 33

1

CONTENTS 2

5.1.10 Class Instance Mapping. 33
5.2 Mappings between Relations. 34

5.2.1 Equivalent Relation Mapping. 34
5.2.2 Subrelation – Superrelation Mapping. 35
5.2.3 Negated Relation Mapping. 35
5.2.4 Relation Mapping by Axiom. 36
5.2.5 Attribute Transitive Closure. 37
5.2.6 Inverse Attribute Mapping. 38
5.2.7 Attribute Value Mapping. 39

5.3 Mappings between Individuals. 40
5.3.1 Equivalent Individual Mapping. 40
5.3.2 Equivalent Relation Instance Mapping. 41

5.4 Attribute Value – Class Equivalence. 41
5.4.1 Subattribute / SuperAttribute Value Mapping. 42

6 Library Organization 44
6.1 Connecting Patterns. 44
6.2 Top-down vs. bottom-up design of Ontology Mappings. 45
6.3 A complete patterns library. 46
6.4 Organizing a library of mapping patterns. 46
6.5 Tool support for a mapping patterns library. 47

7 Conclusions 48
7.1 Outlook . 49

A A hierarchical organisation of the Patterns Library 54

B First-Order Reference Semantics 57

Chapter 1

Introduction

It is envisioned that the Semantic Web [4] will contain many different ontologies [15],
used for the annotation of information on the Web. In order to enable interoperation
between applications on the Semantic Web, these application must either use the same
ontology or some explicit relationships must exist between the ontologies used by the
applications. Relationships between ontologies can be captured in a declarative fashion
with so-calledmapping rules. A coherent set of mapping rules which relate elements in
two ontologies is called anontology mapping.

Ontology mappings can be used for different tasks, such as data transformation and
ontology merging (cf. D4.4.1 [9]). In order to enable automation in these tasks, ontology
mappings must specify the relationship between different ontologies in a formal way.
As such, it is possible to view an ontology mapping as a collection of logical formulae.
Notice, however, that logical formulae are in general very hard to understand and even
harder to model correctly. Thus, it is beneficial to provide guidance in the mapping task
in the form of a human-understandable mapping language and in the form of recurring
patterns of ontology mapping.

In this deliverable we provide a number of ontology mapping patterns, as well as a
language-independent ontology mapping language, based on these patterns.

This section is further structured as follows. We first clarify the terminology used
in this deliverable in Section1.1. In order to understand the relation between mapping
patterns and the mapping language developed in this deliverable, we explain the relation
between the mapping language and the mapping patterns in Section1.2.

1.1 Terminology

In order to make this deliverable self-contained we present here a slightly adapted version
of the terminology clarification we have provided earlier in deliverable D4.2.1 [8].

3

CHAPTER 1. INTRODUCTION 4

This section provides some clarification on the terminology used throughout this deliver-
able. We deem this necessary, because there exist many different understandings of the
terminology in the literature.

Ontology An ontologyO is a 4-tuple〈C,R, I, A〉, whereC is a set of concepts,R is a
set of relations,I is a set of instances andA is a set of axioms. Note that these
four sets are not necessarily disjoint (e.g. the same term can denote both a class
and an instance), although the ontology language might require this. Each concept
can have a number ofattributesassociated with it. An attribute is a special kind of
relation, namely a binary relation associated with a concept.

All concepts, relations, instances and axioms are specified in some logical language.
This notion of an ontology coincides with the notion of an ontology described in
[30, Section 2] and is similar to the notion of an ontology in OKBC [5]. Concepts
correspond with classes in OKBC, slots in OKBC are particular kinds of relations,
facets in OKBC are a kind of axiom and individuals in OKBC are what we call
instances1.

In an ontology, concepts are usually organized in a subclass hierarchy, through the
is-a (or subconcept-of) relationship. More general concepts reside higher in the
hierarchy.

Instance BaseAlthough instances are logically part of an ontology, it is often useful to
separate betweenan ontologydescribing a collection of instances andthe collection
of instancesdescribed by the ontology. We refer to this collection of instances as the
Instance Base. Instance bases are sometimes used to discover similarities between
concepts in different ontologies (e.g. [33], [13]). An instance base can be any
collection of data, such as a relational database or a collection of web pages. Note
that this does not rule out the situation where instances use several ontologies for
their description.

Instances are an integral part of an ontology. However, we expect that most instance
data will be stored in private data stores and will not be shared along with the
ontology. The instances contained in the ontology itself are typically those instances
that are shared.

Note that in a Semantic Web setting, each instance is identified with a URI (or
IRI). Furthermore, a particular individual can be an instance of multiple concepts
which might belong to different ontologies. Since an instance base belongs to one
ontology, an instance can belong to multiple instance base.

Ontology Language The ontology language is the language which is used to represent
the ontology. Semantic Web ontology languages can be split up into two parts: the
logical and the extra-logical parts. Thelogical part amounts to a theory in some

1We use the terms instance and individual interchangeably throughout this document. Note that an
instance is not necessarily related to a class.

CHAPTER 1. INTRODUCTION 5

logical language, which can be used for reasoning. Class (concept) definitions,
property (relation) definitions, and instance definitions correspond with axioms in
the logical language. In fact, such definitions are merely a more convenient way to
write down such axioms.

Theextra-logicalpart of the language typically consists of non-functional proper-
ties (e.g. author name, creation date, natural language comments, multi-lingual
labels; see also Dublin Core [36]) and other extra-logical statements, such as
namespace declarations, ontology imports, versioning, etc.

Non-functional properties (also calledannotations) are typically only for the hu-
man reader, whereas many of the other extra-logical statements are machine-
processable. For example, namespace declarations can be used to resolve Qualified
Names to full URIs and the importing of ontologies can be achieved automatically
by either (a) appending the logical part of the imported ontology to the logical
part of the importing ontology to create one logical theory or (b) using amediator,
which resolves the heterogeneity between the two ontologies (see also the definition
of Ontology Mediation below).

Ontology Mediation Ontology mediation is the process of reconciling differences be-
tween heterogeneous ontologies in order to achieve inter-operation between data
sources annotated with and applications using these ontologies. This includes the
discovery and specification ofontology mappings, as well as the use of these map-
pings for certain tasks, such as query rewriting and instance transformation. Fur-
thermore, themerging of ontologiesalso falls under the term ontology mediation.

Ontology Mapping An ontology mappingM is a (declarative) specification of the se-
mantic overlap between two ontologiesOS andOT . This mapping can be one-way
(injective) or two-way (bijective). In an injective mapping we specify how to ex-
press terms inOT using terms fromOS in a way that is not easily invertible. A
bijective mapping works both ways, i.e. a term inOT is expressed using terms of
OS and the other way around.

Note that an ontology mapping is oftenpartial, which means that the mapping does
not specify the complete semantic overlap between two ontologies, but rather just a
part of this overlap which is relevant for the mapping application.

Mapping Language The mapping language is the language used to represent theon-
tology mappingM . It is important here to distinguish between a specification of
the similarities of entities between ontologies and an actual ontology mapping. The
specification of similarities between ontologies is usually a level of confidence (usu-
ally between 0 and 1) of the similarity of entities, whereas an ontology mapping
actually specifies the relationship between the entities in the ontologies. This is typ-
ically an exact specification and typically far more powerful than simple similarity
measures. Mapping languages often allow arbitrary transformation between on-
tologies, often using a rule-based formalism and typically allowing arbitrary value

CHAPTER 1. INTRODUCTION 6

transformations, as well as renaming and structural transformations.

Mapping Pattern Although not often used in current approaches to ontology mediation,
patterns can play an important role in the specification of ontology mappings, be-
cause they have the potential to make mappings more concise, better understand-
able and reduce the number of errors (cf. [26]). A mapping patterncan be seen
as a template for mappings which occur very often. Patterns can range from very
simple (e.g. a mapping between a concept and a relation) to very complex, in which
case the pattern captures comprehensive substructures of the ontologies, which are
related in a certain way.

Mapping patterns are furthermore useful for graphical ontology mapping tools;
mappings could be treated different in the user interface.

Matching We defineontology matching(sometime also calledmapping discovery) as
the process of discovering similarities between two source ontologies. The result
of a matching operation is a specification of similarities between two ontologies.
Ontology matching is done through application of theMatch operator (cf. [29]).
Any schema matching or ontology matching algorithm can be used to implement
theMatchoperator, e.g. [13, 18, 22, 24].

We adopt here the definition ofMatch given in [29]: “[Match is an operation],
which takes two schemas [or ontologies] as input and produces a mapping between
elements of the two schemas that correspond semantically to each other”.

For the definitions of merging, aligning and relating ontologies, we adopt the defini-
tions given in [12]:

Ontology Merging Creating one new ontology from two or more ontologies. In this
case, the new ontology will unify and replace the original ontologies. This often
requires considerable adaptation and extension.

Note that this definition does not say how the merged ontology relates to the origi-
nal ontologies. The most prominent approaches are theunionand theintersection
approaches. In the union approach, the merged ontology is the union of all entities
in both source ontologies, where differences in representation of similar concepts
have been resolved. In the intersection approach, the merged ontology consists only
of the parts of the source ontology which overlap (c.f. theintersectionoperator in
ontology algebra [37]).

Ontology Aligning Bringing the ontologies into mutual agreement. The ontologies are
kept separate, but at least one of the original ontologies is adapted such that the
conceptualization and the vocabulary match in overlapping parts of the ontologies.
However, the ontologies might describe different parts of the domain in different
levels of detail.

CHAPTER 1. INTRODUCTION 7

Relating Ontologies Specifying how the concepts in the different ontologies are related
in a logical sense, i.e. creating anOntology Mapping. This means that the original
ontologies have not changed, but that additional axioms describe the relationship
between the concepts. Leaving the original ontologies unchanged often implies that
only a part of the integration can be done, because major differences may require
adaptation of the ontologies.

The term “Ontology Mapping” was defined above as a specification of the relationship
between two ontologies. We can also interpret the word “Mapping” as a verb, i.e. the
action ofcreatinga mapping. In this case the term corresponds with the term “Relating
Ontologies”:

Mapping Ontologies Is the same as relating ontologies, as specified above.

Note that most disagreement in the literature is around the termalignment. We do
not use the term alignment as such, but we do use the termontology aligning. In most
literature (e.g. [25]), alignment corresponds with what we callrelating ontologiesor
mapping ontologies. Ontology aligning is also sometimes calledontology reconciliation.

1.2 Mapping Language and Mapping Patterns

The mapping language and mapping patterns described in this deliverable are mutually
dependant. In this section we clarify the relation between the ontology mapping language
and the ontology mapping patterns.

This section is further structured as follows. We first outline some general considera-
tions in the development of a mapping language and mapping patters. We then describe
the relationship between the mapping language and the mapping patterns, after which we
describe the relationship between the mapping language and the actual mappings which
are specified using the language.

1.2.1 General Considerations

Language-independent ontology mapping One of the goals of the mapping language
is to capture general ontology mappings, independent of the particular ontology language.
Unfortunately, this is not always possible, because of the differences in expressiveness and
differences in modeling styles between ontology languages [10]. Our mapping patterns
have a bias towards the ontology languages WSML-Flight [7] and OWL DL [11].

Although WSML-Flight and OWL have certain similarities, there are still major dif-
ferences, which cannot be easily overcome. Since it is the goal of this deliverable to
capture ontology mapping patterns and not to give a formal grounding for the mappings,

CHAPTER 1. INTRODUCTION 8

we leave the formal grounding of the mappings to the SEKT deliverable D4.4.1 [9] and
the DIP deliverable D1.5 [28], which ground the mapping language to OWL DL and
WSML-Flight, respectively. Because the types of formulas which can be written down
in different language have significant differences between the languages, we leave part of
the syntax open in order to allow for language-specific extensions.

Ontology language/meta-model We see an ontology as a 4-tuple〈C, R, I, A〉 with
classesC, relationsR, instancesI and axiomsA. Therefore, we group the elementary
mapping patterns according to these four categories. Furthermore, a concept can have a
number of attributes associated with it. An attribute is a special kind of relation, namely,
a binary relation with a defined domain.

Mapping pattern template For the description of the individual mappings we develop
a template in Chapter2.

1.2.2 Relation between Mapping Patterns and the Mapping Lan-
guage

The mapping patterns presented in Chapter5 of this deliverable correspond with types of
mappings which are expected to be encountered often in the practice of ontology map-
ping. These mapping patterns are very useful in guiding the developer of the ontology
mapping to correctly construct ontology mappings. The mapping patterns can be used
in a visual tool which is used for the specification of ontology mappings. Finally, the
mapping patterns can be used as a guide for developers of ontology matching algorithms.
A mapping pattern corresponds with a type of mapping that can be discovered using such
an algorithm.

The mapping language described in this deliverable (see Chapter4) is derived from the
mapping patterns. However, we have chosen not to create a construct in the mapping lan-
guage for each specific mapping pattern. Instead, the mapping constructs are based on the
most general mapping patterns; additional constructs are introduced to create mappings
which correspond to the more specific mapping patterns, in order to keep the language
concise and understandable. A mapping pattern corresponds with an expression in the
mapping language. For an overview of the correspondence between the mapping patterns
and constructs in the mapping language see TableA.2 of AppendixA.

1.2.3 Relation between Mapping Language and actual mappings

In this deliverable we define only a reference semantics for the mapping language (see
AppendixB). However, we do not require particular users of the mapping language to

CHAPTER 1. INTRODUCTION 9

adhere to this semantics, because the actual semantics of the mappings depends on the
semantics of the ontology language and requiring a particular semantics for the mapping
language would decrease usability across different ontology languages. Therefore, it is
not clear what a mapping specified using this language really means and it is not possible
to execute any tasks with it, because the machine cannot interpret the statements written
down using the language. Nonetheless, the conceptual correspondences between elements
of the ontologies are captured by the language.

There are two considerations in this respect:

1. We believe that it is a good thing that the mapping language does not prescribe a
particular semantics, because this means that the language can potentially be used
for several different ontology languages.

2. For the formal semantics and the use of the mapping language for mapping on-
tologies specified using WSML and OWL, respectively, we refer the reader to the
SEKT deliverable D4.4.1 [9] and the DIP deliverable D1.5 [28].

This report is further structured as follows. Chapter2 presents the template to be used
for the description of the mapping patterns. Chapter3 contains a number of motivating
examples for the mapping patterns and the mapping language. Chapter4 develops the
ontology mapping language, based on the mapping patterns. Chapter5 describes the
mapping patterns identified in this deliverable. Chapter6 describes ways of organizing a
library of mapping patterns. Finally, we present conclusions in Chapter7.

Chapter 2

Pattern Template

Patterns are a literary form of software. Their goal is to create a body of literature to help
software developers resolve recurring problems encountered throughout all of software
development. Patterns help create a shared language for communicating insight and ex-
perience about these problems and their solutions. Formally codifying these solutions and
their relationships let us successfully capture the body of knowledge which defines our
understanding of good architectures.

For a short definition of a pattern we quote [1]: ”Each pattern is a three-part rule,
which expresses a relation between a certain context, a problem and a solution.”

The concept of patterns were first mentioned in architecture by Alexander in 1977 [1],
after which it was transferred to computer science. A system should be developed from a
human and work perspective. The primary focus is not so much on technology as it is on
creating a culture to document and support architecture and design.

Templates are always helpful when you are creating items according to some standard.
It makes it easier for others to recognize the form. So it can be re-used if it apply to a
similar problem, you can search for new patterns according to a specific scheme.

In the context of ontology mapping, patterns are important to classify the different
mappings and to avoid mismatches, as identified in D4.4.1 [9]. In this chapter we develop
a template for the description of such ontology mapping patterns.

In the remainder of this chapter we will look into pattern descriptions in software
engineering and interaction design. Based on this analysis we develop a template for the
description of ontology mapping patterns.

10

CHAPTER 2. PATTERN TEMPLATE 11

2.1 Pattern Templates in Related Work

There are two often-quoted books on the subject of software design using design patterns,
both written in the mid nineties of the twentieth century::

Design patterns: Elements of Reusable Object-Orientated Software investigated and
described by the so-called Gang of Four in [17] and Coplien reporting on the general use
of patterns in software, as well as pattern languages [6].

In 1995 the Gang of Four (GoF) ([17]) has described the following four essential meta
elements in a design pattern:Pattern NAME, PROBLEM Description, SOLUTION
and CONSEQUENCES. The name of a pattern is essential, because it increases the de-
sign vocabulary and makes it possible to talk about the pattern. The problem, which is
addressed by the patterns, as well as the context in which the problem occurs belongs
to the problem description. The abstract description of a design problem and a general
arrangement of elements which solves the problem, are given in the solution. Finally, the
consequences are the results and trade-off of applying the pattern. Except of Name the
three other meta elements refer to the three-part rule which was mentioned at the begin-
ning of this Chapter. These elements contain a complete description of pieces of software
and make it easier for a human reader to understand it. Using the scheme it is more
effective in retrieving the information that is needed for re-used and shared application.

A year after the GoF published their book on design patterns, Coplien has reported
on the general use of patterns in software, as well as pattern languages [6]. He sketched
8 important elements: name, intent, problem, context, forces, solution, sketch, resulting
context. The solution is obviously the heart of a pattern, as Alexander cited out already.
So Coplien added only name and a shorter problem description in comparison to the GoF.
Alias or Known Uses he included in name. For him ’the pattern must work as a seamless
piece of literature’. These eight elements are called the minimal set because it includes
all necessary information to understand a pattern in software design. In comparison to
the GoF template it neglected the community aspects like collaboration, participants,
known uses and implementations.

In 2000 Brad Appleton listed 10 essential elements of a pattern in: Patterns and Soft-
ware: Essential Concepts and Terminology [2]. He focuses clearly on software devel-
opment and named the object-oriented community. Appleton considers design patters as
the basis of software engineering, documenting its best practise and lessons learned. He
refer to following 10 elements: Name, problem, context, forces, solution, example, ratio-
nale, resulting context, related patterns and known uses. These 10 elements are named
the Alexandrian or canonical form because they were first mentioned by Alexander [1].

In 2001 van Welie [35, 34] has described the following pattern template for interaction
patterns in user interface design. Based on the minimal elements of Coplien and the
template by Gamma, Van Welie added two additional ones for his focus of interaction

CHAPTER 2. PATTERN TEMPLATE 12

and usability. These are in detail: Usability Principle to have another term to categorize
the patterns according to human-machine interaction and Counterexample as a lack of
usage.

In the last year there were some new ideas about patterns published electronically. We
will just name them and try to estimate the impact to our work.

Jean-Marc Rosengard and Marian F. Ursu published ’Ontological Representations of
Software Patterns’ [31] in 2004. This paper analyzes existing pattern representations for
automatic organisation, retrieval and explanation of software patterns in the Semantic
Web. They suggest nine terms as ontology representations of patterns. In detail they call
them: name, also known as, intent, applicability, structure, consequences, implementa-
tion, known uses and related pattern. They refer mainly to the pattern template given by
Gamma.

We compare the pattern templates described in the previously mentioned literature.
Table2.1 lists all description elements from each of the mentioned approaches and com-
pares the different templates. We try to find matching patches not only by name but also
by definition and description and group them according to the meta elements identified
by Gamma et al.

As we can see from Table2.1, the number of elements differs from 13 in object-
oriented software design by Gamma et al. to the minimal set of 8 by Coplien as general
patterns in software.

Van Welie has special elements dealing with usability criteria see the last elements in
column 4 which do not have any equivalents. These are in detail: Usability Principle to
have another term to categorize the patterns according to human-machine interaction and
Counterexample as a lack of usage.

Gamma et al. focus more on results see bottom of column 2. So Implementation, Col-
laboration and Participants can be seen as specially important in object-oriented context
where modules are often shared and reused.

2.2 A Template for Ontology Mapping Patterns

Based on the analysis of patterns templates in the literature we now propose a pattern
template for ontology mapping patterns. We structure the elements according to the four
meta elements identified by Gamma et al., namely: name, problem, solution and conse-
quences. A brief description of each element shall help the user to document the concept
and the work done.

• NAME

CHAPTER 2. PATTERN TEMPLATE 13

te
m

pl
at

e
by

:
G

am
m

a
G

oF
C

op
lie

n
Va

n
W

el
ie

A
pp

le
to

n
be

lo
ng

s
to

m
et

a
el

em
en

t
P

at
te

rn
N

am
e

an
d

C
la

ss
ifi

ca
tio

nN
am

e
P

at
te

rn
N

am
e

N
am

e
N

A
M

E
al

so
K

no
w

n
as

N
A

M
E

M
ot

iv
at

io
n

P
ro

bl
em

P
ro

bl
em

D
es

cr
ip

tio
n

P
ro

bl
em

P
R

O
B

LE
M

A
pp

lic
ab

ili
ty

C
on

te
xt

C
on

te
xt

C
on

te
xt

P
R

O
B

LE
M

F
or

ce
s

F
or

ce
s

F
or

ce
s

P
R

O
B

LE
M

S
ol

ut
io

n
S

ol
ut

io
n

S
ol

ut
io

n
S

O
LU

T
IO

N
S

am
pl

e
C

od
e

E
xa

m
pl

e
E

xa
m

pl
es

S
O

LU
T

IO
N

In
te

nt
In

te
nt

R
at

io
na

le
R

at
io

na
le

S
O

LU
T

IO
N

S
tr

uc
tu

re
S

ke
tc

h
C

on
se

qu
en

ce
s

R
es

ul
tin

g
C

on
te

xt
R

es
ul

tin
g

C
on

te
xt

C
O

N
S

E
Q

U
E

N
C

E
S

R
el

at
ed

P
at

te
rn

s
R

el
at

ed
P

at
te

rn
s

R
el

at
ed

P
at

te
rn

s
C

O
N

S
E

Q
U

E
N

C
E

S
K

no
w

n
U

se
s

K
no

w
n

us
es

K
no

w
n

U
se

s
C

O
N

S
E

Q
U

E
N

C
E

S
Im

pl
em

en
ta

tio
n

C
ol

la
bo

ra
tio

ns
P

ar
tic

ip
an

ts
U

sa
bi

lit
y

P
rin

ci
pl

e
C

ou
nt

er
ex

am
pl

e
13

8
11

10
su

m
of

el
em

en
ts

Ta
bl

e
2.

1:
Li

st
ed

pa
tte

rn
el

em
en

ts
by

di
ffe

re
nt

au
th

or
s

CHAPTER 2. PATTERN TEMPLATE 14

Name A meaningful name to refer to the pattern as a word or single phrase. Nick-
names and synonyms can be added under Alias or Also Known as.

• PROBLEM

Problem A statement describing the intent, goals and objectives.

Context The preconditions under which the problem recur, the pattern’s applica-
bility.

Forces A description of relevant forces and constraints, a concrete scenario as mo-
tivation.

• SOLUTION

Solution A description in natural language and mapping language of the pattern.

Examples Sample application of the pattern.

Rationale A justifying explanation of steps or rules in the pattern explaining how
the forces and constraints are orchestrated.

• CONSEQUENCES

Resulting Context State or configuration of the system after the pattern has been
applied, including the consequences.

Related Patterns The static and dynamic relationship between this pattern and
other within the same pattern language or system.

Know Uses Describes known occurrences to validate a pattern.

Chapter 3

Mapping Examples

In this chapter we present a number of example mapping scenarios which help to demon-
strate the need for the mapping patterns and which provide a motivation for the develop-
ment of the mapping language and the mapping patterns.

3.1 Motivating Mapping Scenarios

We present a number of ontology mapping scenarios which motivate particular aspects of
ontology mapping. These mapping scenarios are taken into account in the development
of the mapping language.

In the examples of this section we use F-Logic [20] notation because of its relatively
concise and frame-based syntax. In short, F-Logic allows all of traditional predicate logic,
i.e. function symbolsf, g, h, . . ., predicatesp, q, r, . . ., connectives∧,∨,←,↔,¬, and
quantifiers∀,∃. Notice that a nullary function symbols corresponds with a constant and
a nullary predicate symbol corresponds with a proposition. In the examples, variables
which are not explicitly quantified are implicitly universally quantified.

Additionally, F-Logic allows the following constructs:A : B means thatA is a mem-
ber of classB; A :: B means thatA is a subclass ofB, andA[B ⇒⇒ C] means thatA has
an attributeB with valueC. Furthermore, we also allow the symbolnaf for negation-as-
failure.

3.1.1 Join mappings

Suppose two classes in ontologyO1 are related to one class inO2. In this case, it is
common to either map the union or the intersection (depending on the relation between
the classes) of the classes inO1 to the class inO2, in this case in a unidirectional mapping:

x : C ← x : A ∧ x : B

15

CHAPTER 3. MAPPING EXAMPLES 16

and

x : C ← x : A ∨ x : B

respectively, whereA,B are the classes inO1 andC is the class inO2. Such a union
mapping can be simply decomposed into two subcless mappings as such:

x : C ← x : A

x : C ← x : B

Thus, we only consider the intersection mapping. As we can see, only instances
explicitly asserted to be instance of bothA andB or for which membership of both classes
can be derived are actually mapped to classC. Different ways of relating classes in one
ontology are asserting a subclass relationship and asserting class equivalence.

Now, consider the ontologiesO1 and O2. O1 consists of the classesAnimal and
LegalAgent; O2 consists of the classHuman. Typically, one can relate the classes in the
following way:

x : Human ← x : Animal ∧ x : LegalAgent

However, again we need to know for a specific individual that it is both anAnimal
and aLegalAgent. However, this information might not follow from the ontology.

Now, consider:

∀x, y∃z.z : Human ← x : Animal ∧ y : LegalAgent

For each combination of an animal and a legal agent, a new human is created during
inference, because of the existential. Let’s rewrite the formula using a function symbol:

f(x, y) : Human ← x : Animal ∧ y : LegalAgent

This formula has exactly the same result.

Notice that this condition can be seen as a join in database terms. A join typically has
conditions on which to join. Say we have a condition that if the name of the animal and
the name of the legal agent coincide, then we can map the individual to a human:

f(x, y) : Human ← x : Animal ∧ y : LegalAgent ∧ x.name = y.name

Notice that statements like this are beyond the expressive power of Description Logics.
A rules such as this can be expressed using the Semantic Web Rule Language SWRL [19],
however, it is very cumbersome, because new terms can only be created using existential
value restrictions, instead of using either existentials directly for a named class or using
function symbols1.

Notice that a join mapping is naturally required when combining more than two on-
tologies. If the classesAnimal andLegalAgent would come from two completely dif-

1Note that this problem is overcome in the new First-Order Logic extension of SWRL:
http://www.daml.org/2004/11/fol/

CHAPTER 3. MAPPING EXAMPLES 17

ferent ontologies, a join has to be created to combine the classes and create a new class
Human.

As an example we demonstrate the difference between a class intersection mapping
and a class join mapping. Say, we have two source classesA andB and a target classC.
A class intersection is specified as such:

classMapping(and(A B) C)

The interpretation of this mapping is roughly as follows: every individual that is an
instance ofboth A andB is consequently also an instance ofC. However, this means
that the fractions of the classesA andB which correspond withC already have to be
specified as instances of bothA andB. In a single ontology, assuming the ontology has
been modeled perfectly, this is feasible. However, when dealing with multiple ontologies,
this cannot be assumed, and even within one ontology, the classes are not necessarily
related to each other.

Furthermore, ifA andB are actually not related to each other, this mapping would
not work. SayA andB correspond with (disjoint) parts ofC. In this case, clearlyA and
B do not relate to each other, only viaC. In this case,A andB have to be joined to create
new instances for the classC. This can be specified in the following way:

classMapping(join(A B {condition}) C)

Notice that in order to do a join, acondition on the join has to be given in order to
identify which instances ofA andB are to be joined. Thecondition is between curly
brackets to indicate that it is a formula in the logical language.

3.1.2 Attribute - class mapping

We conjecture that an often occurring mapping pattern is that of relating an attribute with
a class. We illustrate the pattern with the following example:

Example 3.1. Say, we have an ontologyO1 with a classPerson, which has an attribute
(similar: universal value restriction in Description Logic)marriedTo, which has as its
rangePerson.

Say the target ontologyO2 has a classHuman with no attributes and a class
Marriage with the attributeshasParticipant with cardinality2 andhasDate, which
is the date of the marriage.

Clearly, the classPerson can be mapped to the classHuman:

x : Human ← x : Person

However, to relate the attributemarriedTo to classMarriage is harder. We can write
the following mapping rule (where the attributemarriedTo is a binary predicate):

CHAPTER 3. MAPPING EXAMPLES 18

Marriage(f(x, y)) ∧ hasParticipant(f(x, y), x) ∧ hasParticipant(f(x, y), y) ←
Person(x) ∧marriedTo(x, y) ¤

Notice that the final attribute-class mapping could not have been written using an
existential quantifier, because then there is no control over the newly constructed term.

Notice also that in the final rule, we did not explicitly state thatx and y must be
instances ofHuman, since this naturally follows from the first mapping rule and the
range restriction on propertymarriedTo.

3.1.3 Class - instance mapping

Depending on the point-of-view of the ontology engineer, an object can be either a class,
an instance, an attribute or a relation or perhaps even a constraint, although we do not
expect this to be very common and will disregard it in our further treatment.

In the previous section, we have seen an example of an attribute - class mapping. In
this section, we will show a class - instance mapping, which we expect to also be common
on the Semantic Web [32].

x :: Airplane ← x : AirplaneType

Thus, this rule states that each instance of the conceptAirplaneType is actually a
subclass of the conceptAirplane. We can expect this kind of modeling to be common
on the Semantic Web, because for some task, the user might want to query all airplane
types manufactured by a certain manufacturer, which for a different task, one would want
to query for all airplanes of a specific type in service with a specific airline. This kind of
modeling might already be used inside one ontology, but can certainly be expected when
different ontologies are mapped.

3.1.4 Mapping based on conditions of the target ontology

One might want to express in a mapping that instances can only be translated to the target
ontology if certain conditions hold with respect to the target ontology. Alternatively, one
might only want to transform a certain instance if the particular instance does not already
occur in the target ontology.

One such example (withnot being default negation) is:

x : Human ← x : Person ∧ not (y : Human ∧ x.name = y.name)

This can be rewritten as such:

x : Human ← x : Person ∧ not y : Human

x : Human ← x : Person ∧ not x.name = y.name

CHAPTER 3. MAPPING EXAMPLES 19

3.1.5 Mapping with built-in(aggregate)s

[23] shows that mappings with aggregate functions can be expected to occur. In their
example, they relate and attributespouseIn with an attributenoMarriages . Essen-
tially, the number of values for the attributespouseIn is counted to determine the value
for the attributenoMarriages . We can illustrate this with the following rule (with
aggregate functionaggr:count):

noMarriages(x, z) ← Individual(x) ∧ spouseIn(x, y) ∧ aggr : count(z, y)

The aggregate function is used to count the number of values for thespouseIn at-
tribute to determine the number of marriages that the individual is involved in.

Besides aggregate function, we expect many more built-in functions be required to
manipulate data values. For example concatenating strings (first- and lastName vs full-
Name) or basic arithmetic.

3.1.6 Introducing Terms in the Translation

When translating sets of facts (instances), it is often necessary to introduce new terms.
Introducing new terms can be done using existential quantifiers, function symbols (term
constructors) or special term generating functions (typically implemented with a built-in
predicate).

Mapping with existentials We demonstrate mapping with existentials using an exam-
ple taken from [14].

∀a, t1.@yalebib : Inproceedings(a) ∧ String(t1) ∧ (booktitle(a, t1) ↔
(∃p.Proceedings(p) ∧ contains(p, a) ∧ @cmubib : inProceedings(a, p) ∧ @cmubib :
booktitle(p, t1)))

This formula is a so-called bridge axiom. This particular axiom forms a bridge
between the propertyInproceedings in ontology yale_bib and the property
inProceedings in ontologycmu_bib . In yale_bib , the property refers to a string
containing the title of the proceedings, whereas incmu_bib the property refers to an-
other individual, which is actually an instance of the classProceedings . Since there
is no individual in the former ontology corresponding to the actual proceedings, a new
individual is created during inference because of the existentially quantified variablep.

Mapping with term generating functions [14] also shows how the above example can
be written down with term generating functions:

∀a, t1.@yalebib : Inproceedings(a) ∧ String(t1) ∧ (booktitle(a, t1) ↔
(contains(@control : aProc(a), a) ∧ Proceedings(@control : aProc(a)) ∧@cmubib :

CHAPTER 3. MAPPING EXAMPLES 20

inProceedings(a, @control : aProc(a)) ∧ @cmubib : booktitle(@control :
aProc(a), t1)))

In the example,control:aProc is a built-in function, which generated a new term
on the basis of the terms in the input of the function.

Mapping with function symbols The above example can be written down with func-
tion symbols as term constructors:

∀a, t1.@yalebib : Inproceedings(a) ∧ String(t1) ∧ (booktitle(a, t1) ↔
(contains(f(a), a) ∧ Proceedings(f(a)) ∧ @cmubib : inProceedings(a, f(a)) ∧
@cmubib : booktitle(f(a), t1)))

Chapter 4

The Mapping Language

In this chapter we present the mapping language in the form of the abstract syntax. Ap-
pendixB presents a first-order reference semantics for the mapping language through a
mapping to first-order logic. This semantics is given to enhance the understanding of the
mapping language and to provide an intuition as to the intended meaning of the constructs.
We do not, however, require all users of this mapping language to follow this reference
semantics, because of the differences in semantics between ontology languages.

The abstract syntax is written in the form of EBNF, similar to the OWL Abstract
Syntax [27]. Any element between square brackets ‘[’ and ‘]’ is optional. Any element
between curly brackets ‘{’ and ‘}’ can have multiple occurrences.

Each element of an ontology on the Semantic Web, whether it is a class, attribute,
instance, or relation, is identified using a URI [3]. In the abstract syntax, a URI is denoted
with the nameURIReference . We define the following identifiers:

mappingID ::= URIReference
ontologyID ::= URIReference
classID ::= URIReference
propertyID ::= URIReference
attributeID ::= URIReference
relationID ::= URIReference
individualID ::= URIReference

We allow concrete data values. The abstract syntax for data values is taken from the
OWL abstract syntax:

dataLiteral ::= typedLiteral |plainLiteral
typedLiteral ::= lexicalForm ’ˆˆ’URIReference

21

CHAPTER 4. THE MAPPING LANGUAGE 22

plainLiteral ::= lexicalFrom [’@’languageTag]

The lexical form is a sequence of unicode characters in normal form C, as in RDF.
The language tag is an XML language tag, as in RDF.

First of all, the mapping itself is declared, along with the ontologies participating in
the mapping.

mapping ::= ’Mapping(’ [mappingID]
{ ’source(’ ontologyID ’)’ }
’target(’ ontologyID ’)’
{ directive } ’)’

A mapping consists of a number of annotations, corresponding to non-functional prop-
erties in WSMO [30], and a number of mapping expressions. The creator of the mapping
is advised to include a version identifier in the non-functional properties.

directive ::= annotation
|expression

annotation ::= ’Annotation(’ propertyID URIReference ’)’
’Annotation(’ propertyID dataLiteral ’)’

Expressions are either class mappings, relation mappings, instance mappings or ar-
bitrary logical expressions. The syntax for thees logical expressions is not specified; it
depends on the actual logical language to which the language is grounded.

A special kind of relation mappings are attribute mappings. Attributes are binary
relations with a defined domain and are thus associated with a particular class. In the
mapping itself the attribute can be either associated with the domain defined in the (source
or target) ontology or with a subclass of this domain.

A mapping can be either uni- or bidirectional. In the case of a class mapping, this
corresponds with class equivalence and class subsumption, respectively. In order to dis-
tinguish these kinds of mappings, we introduce two different keywords for class, relation
and attribute mappings, namely ‘unidirectional’ and ‘bidirectional’. Individual mappings
are always bidirectional. Unidirectional and bidirectional mappings are differentiated
with the use of a switch. The use of this switch is required.

It is possible, although not required, to nest attribute mappings inside class mappings.
Furthermore, it is possible to write an axiom, in the form of a class condition, which
defines general conditions over the mapping, possibly involving terms of both source

CHAPTER 4. THE MAPPING LANGUAGE 23

and target ontologies. Notice that this class condition is a general precondition for the
mapping and thus is applied in both directions if the class mapping is a bidirectional
mapping. Notice that we allow arbitrary axioms in the form of a logical expression. The
form of such a logical expression depends on the logical language being used for the
mappings and is thus not further specified here.

expression ::= ’classMapping(’ ’unidirectional’|’bidirectional’ { annotation }
classExpr classExpr { classAttributeMapping }
{ classCondition } [’{’ logicalExpression ’}’] ’)’

There is a distinction between attributes mapping in the context of a class and at-
tributes mapped outside the context of a particular class. Because attributes are defined
locally for a specific class, we expect the attribute mappings to occur mostly inside class
mappings. The keywords for the mappings are the same. However, attribute mappings
outside of the context of a class mappings need to be preceded with the class identifier,
followed by a dot ’.’.

classAttributeMapping ::= ’attributeMapping(’ ’unidirectional’|’bidirectional’ attributeExpr
attributeExpr { attributeCondition } ’)’

expression ::= ’attributeMapping(’ ’unidirectional’|’bidirectional’ attributeExpr
attributeExpr { attributeCondition }
[’{’ logicalExpression ’}’] ’)’

expression ::= ’relationMapping(’ ’unidirectional’|’bidirectional’ relationExpr
relationExpr { relationCondition }
[’{’ logicalExpression ’}’] ’)’

expression ::= ’instanceMapping(’ individualID individualID ’)’
expression ::= ’classAttributeMapping(’ ’unidirectional’|’bidirectional’ classExpr

attributeExpr [’{’ logicalExpression ’}’] ’)’

expression ::= ’classRelationMapping(’ ’unidirectional’|’bidirectional’ classExpr
relationExpr [’{’ logicalExpression ’}’] ’)’

expression ::= ’classInstanceMapping(’ ’unidirectional’|’bidirectional’ classExpr
individualID [’{’ logicalExpression ’}’] ’)’

expression ::= ’{’ logicalExpression ’}’

CHAPTER 4. THE MAPPING LANGUAGE 24

For class expressions we allow basic boolean algebra. This corresponds loosely with
Wiederhold’s ontology algebra [37]. Wiederhold included the basic intersection and
union, which correspond with ourand andor operators. Wiederhold’s difference oper-
ator corresponds with a conjunction of two class expressions, where one is negated, i.e.
for two class expressionsC andD, the differentC−D corresponds withand(C,not(D)).

The join expression is a specific kind of disjunction, namely a disjunction with an
additional logical expression which contains the precondition for instances to be included
in the join.

classExpr ::= classID
|’and(’ classExpr classExpr { classExpr } ’)’
|’or(’ classExpr classExpr { classExpr } ’)’
|’not(’ classExpr ’)’
|’join(’ classExpr classExpr { classExpr } [’{’ logicalExpression ’}’] ’)’

Attribute expressions are defined as such, allowing for inverse, transitive close, sym-
metric closure and reflexive closure, whereinverse(A) stands for the inverse ofA,
symmetric(A) stands for the symmetric closure ofA1, reflexive(A) stands for the reflexive
closure ofA2 andtrans(A) stands for the transitive closure ofA:

attributeExpr ::= attributeID
|’and(’ attributeExpr attributeExpr { attributeExpr } ’)’
|’or(’ attributeExpr attributeExpr { attributeExpr } ’)’
|’not(’ attributeExpr ’)’
|’inverse(’ attributeExpr ’)’
|’symmetric(’ attributeExpr ’)’
|’reflexive(’ attributeExpr ’)’
|’trans(’ attributeExpr ’)’

Relation expressions are defined similar to class expressions:

relationExpr ::= relationID
|’and(’ relationExpr relationExpr { relationExpr } ’)’
|’or(’ relationExpr relationExpr { relationExpr } ’)’
|’not(’ relationExpr ’)’

1Notice that the symmetric closure of an attribute is equivalent to the union of the attribute and its
inverse:or(A inverse(A)).

2The reflexive closure of an attributeA includes for each valuev in the domain a tuple with equivalent
domain and rangev: 〈v, v〉.

CHAPTER 4. THE MAPPING LANGUAGE 25

classCondition ::= ’attributeValueCondition(’ attributeID (individualID | dataLiteral) ’)’

classCondition ::= ’attributeTypeCondition(’ attributeID classExpr ’)’

classCondition ::= ’attributeOccurrenceCondition(’ attributeID ’)’

attributeCondition ::= ’valueCondition(’ (individualID | dataLiteral) ’)’

attributeCondition ::= ’typeCondition(’ classExpression) ’)’

Especially when mapping several source ontologies into one target ontology, different
classes and relations need to be joined. Although apparently similar, a join mapping is
fundamentally different from an intersection mapping.

Chapter 5

Patterns

In order to merge ontologies or establish mappings between them, terms in each ontology
need to be related to those in the other ontology. Such mappings are necessary for each
type of term in an ontology: classes, individuals, relations, and meta-terms. In cases in
which the mappings are not one-to-one, either a combination of features in one ontology
can be mapped to the meaning of a term in the other ontology or only a unidirectional
mapping is possible – with one term defined as being more specific than the other.

A non-exhaustive set of some of the most common types of inter-term mappings for
terms in ontologies is presented below.

For the description of the individual mappings, the template described above in Chap-
ter 2 of Name, Problem, Context, Solution, and Examples is followed.

The actual solution description for each pattern consists of two parts, the natural lan-
guage description of the solution and the abstract syntax for the mapping predicate.

In the mapping syntax specification and the examples,A andB are named classes,
C andD are possibly complex class descriptions,R andS are relations,P andQ are
attributes, andI andJ are individuals.O1 andO2 are namespace qualifiers for the source
and target ontologies, respectively. For logical expressions in the examples we use clas-
sic first-order logic where a class is represented by a unary predicate, an attribute by a
binary predicate and a relation by an n-ary predicate. Furthermore, we allow the usual
connectives∨,∧,←,→,↔, the quantifiers∃, forall, the function symbolsf, g, h and
the variablesx, y, z with the usual first-order semantics [16].

5.1 Mappings between Classes

This section presents various types of inter-class mappings: equivalence mappings, sub-
class/superclass mappings, and mappings dependent upon attribute values.

26

CHAPTER 5. PATTERNS 27

5.1.1 Equivalent Classes

Name: Equivalent Class Mapping
Also Known As: equivalentClassMapping
Problem:
A class in one ontology has the same intention as a class in a second ontology. The
terms could have the same name in the different ontologies or different names.
Context:
This is probably the most common pattern in mapping between ontologies.
Solution:
Solution description:
This pattern establishes a bidirectional mapping between classes in two ontologies.
Either may be used as the source ontology with the other one being used as the target
ontology.
Mapping Syntax:
mapping ::= classMapping(bidirectionalA B)
Examples: classMapping(bidirectional O1:Human O2:Person)
Rationale:
Related Patterns: Subclass Mapping, Class Intersection Mapping , Class Union
Mapping

5.1.2 Subclass/Superclass Mapping

Name: Subclass Mapping
Also Known As: subClassMapping
Problem:
A class in one ontology is a subclass of a class in a second ontology but there is no
functional description of the exact mapping. There is no way of expressing additional
properties of the subclass.
Context:
This is a common pattern in which one ontology is more specific than a second on-
tology. It may also occur when different ontologies specify classes of different inter-
mediate specificities.
Solution:
Solution description:

CHAPTER 5. PATTERNS 28

This pattern establishes a unidirectional mapping from a more specific class in one
ontology to a broader class in another ontology. The relation is broadened to allow
class expressions in addition to merely class names.
Mapping Syntax:
mapping ::= classMapping(unidirectionalA B)
Examples:
classMapping(unidirectional O1:Mammal O2:Vertebrate)
classMapping(unidirectional O2:Vertebrate O1:Chordate)
Rationale:
Related Patterns: Equivalent Class Mapping, Class Intersection Mapping , Class
Union Mapping

5.1.3 Class Intersection

Name: Class Intersection Mapping
Also Known As: classIntersectionMapping
Problem:
A class denoted in one ontology is the intersection of two classes in the second on-
tology.
Context:
This is a common pattern in which one ontology expresses an intersection of classes
that may not be useful to distinguish in a second ontology although the individual
classes are.
Solution:
Solution description:
This pattern establishes a mapping between a pair of classes in the first ontology
and a single class in the other. This pattern is agnostic as to whether the mapping
is unidirectional or bidirectional direction of the mapping can be achieved through
combination of the pattern with theequivalentClassMapping or subClassMapping
pattern.
Mapping Syntax:
mapping ::= classMapping(directionand(A1 . . . An) B)
Example:
classMapping(bidirectional and(O1:Human O1:FemaleAnimal)
O2:HumanFemale)
Rationale:
Related Patterns:Equivalent Class Mapping, Class Union Mapping

CHAPTER 5. PATTERNS 29

5.1.4 Class Union

Name: Class Union Mapping
Also Known As: classUnionMapping
Problem:
A class denoted in one ontology is the union of two classes in the second ontology.
Context:
This is a common pattern in which one ontology expresses an union of classes that
may not be useful to distinguish in a second ontology although the individual classes
are.
Solution:
Solution description:
This pattern establishes a mapping between a pair of classes in the first ontology
and a single class in the other. This pattern is agnostic as to whether the mapping
is unidirectional or bidirectional direction of the mapping can be achieved through
combination of the pattern with theequivalentClassMapping or subClassMapping
pattern.
Mapping Syntax:
mapping ::= classMapping(directionor(C1 . . . Cn) D)
Example:
classMapping(bidirectional
or(O1:PersonBornInCanada O1:PersonWithCanadianParent)
O2:CanadianCitizenByBirth)
Rationale:
Related Patterns:Equivalent Class Mapping, Subclass Mapping, Class Intersection
Mapping

5.1.5 Class by Attribute Mapping

Name: Class By Attribute Mapping
Also Known As: classByAttributeMapping
Problem:

CHAPTER 5. PATTERNS 30

A class in one ontology is mapped to a class in the other ontology. However, only
those instance which have a particular attribute value are mapped. This pattern is
agnostic as to whether the mapping is unidirectional or bidirectional direction of the
mapping can be achieved through combination of the pattern with theequivalent-
ClassMapping or subClassMapping pattern.
Context:

Solution:
Solution description:
This pattern establishes a mapping between a class/attribute/attribute value com-
bination in one ontology and a class in another. This pattern is agnostic as to
whether the mapping is unidirectional or bidirectional direction of the mapping can
be achieved through combination of the pattern with theequivalentClassMapping or
subClassMapping pattern.
Mapping Syntax:
mapping ::= classMapping(directionA B attributeValueCondition(P o))
Example:
classMapping(bidirectional O1:Human O2:BlueEyedPerson
attributeValueCondition(O1:Vertebrate.eyeColour O1:Blue))
Rationale:
Related Patterns:Equivalent Class Mapping, Subclass Mapping

5.1.6 Class Mapping by Axiom

A subclass mapping can be defined by a more complex rule that specifies which members
of the class are included. For example an Uncle is defined as being the brother or brother-
in-law of a Parent.

Name: Class Mapping by Axiom
Also Known As: classByAxiomMapping
Problem:
A class in one ontology is mapped to a class in another ontology and the criteria for
membership in the class can are specified by an axiom.
Context:
A subclass relationship holds between classes in two ontologies, but the rule defining
the subclass cannot be described by any of the above patterns.
Solution:
Solution description:

CHAPTER 5. PATTERNS 31

The two classes in two ontologies are provided along with a statement involving ei-
ther one class or both classes. This statement is a precondition for the mapping.
This pattern is agnostic to whether the mapping is unidirectional or bidirectional.
However, if the mapping is bidirectional, the same precondition applies for both di-
rections. The precondition can be an arbitrary logical expression in the language
to which the mapping language is grounded. For illustrative purposes, we use first-
order logic in the example (X is the meta-variable which represents the instance of
the classes in the mapping).
Mapping Syntax:
mapping ::= classMapping(directionA B { logicalExpression})
Examples:
classMapping
(unidirectional O1:Person O2:Uncle {
∃s, k :
(O1:Person.brother(s X) ∨ O1:Person.brotherInLaw(k X)) ∧
O1:Animal.parent(k s) })
Rationale:
Related Patterns:Equivalent Class Mapping, Subclass Mapping

5.1.7 Class Join Mapping

The target instances are created based on the source instances in a database-style join
operation.

Name: Class Join Mapping
Also Known As: classJoinMapping
Problem:
A number of classes in one (or more) ontology(ies) are mapping to one class in an-
other ontology. There exists some overlap between the classes in the source ontology.
However, this overlap has not been made explicit. It is furthermore clear under which
condition the source classes overlap.
Context:
Solution:
Solution description:

CHAPTER 5. PATTERNS 32

First, the source classes are given together with the join condition (there need to
be at least two classes). Then, the target class is given. A join mapping is always
unidirectional and the join must always be given in the source. Note that in the
example we use the ontology identifiersS1,...,Sn to indicate the namespaces of the
source ontologies (since it is expected that join mappings will be most common in
ontology mappings with multiple source ontologies).T depicts the namespace of
the target ontology. In the exampleX1, ..., Xn are meta variables which depict the
instances of the various source classes.Y depicts the newly constructed instances of
the target class.
Mapping Syntax:
mapping ::= classMapping(unidirectional join(A1 . . . An { logicalExpression}) B)
Examples:
classMapping
(unidirectional join(S1:Person S2:Human {X1.ssn =X2.ssn }) T:Person)
Rationale:
Related Patterns:Subclass Mapping

5.1.8 Class Attribute Mapping

A class in one ontology may correspond with an attribute in another..

Name: Class Attribute Mapping
Also Known As: classAttributeMapping
Problem:
A class in one ontology is mapped to an attribute in another ontology.
Context:
Solution:
Solution description:
The class in one ontology and the attribute in the other ontology are provided. Typi-
cally the class for the target attribute depends on an attribute of the source class and
the range of the target attribute depends on a different attribute of the source class.
This pattern is agnostic to whether the mapping is unidirectional or bidirectional.
Mapping Syntax:
mapping ::= classAttributeMapping(direction A B.P attributeMapping(Q1 P)
attributeClassMapping(Q2 B))
Examples:
classAttributeMapping
(O1:Marriage O2:Person.marriedTo
attributeMapping(O1:Marriage.partner1 O2:Person.marriedTo)

CHAPTER 5. PATTERNS 33

attributeClassMapping(O1:Marriage.partner2 O2:Person))
Rationale:
Related Patterns:Equivalent Class Mapping, Subclass Mapping

5.1.9 Class Relation Mapping

A class in one ontology may correspond with a relation in another.

Name: Class Relation Mapping
Also Known As: classRelationMapping
Problem:
A class in one ontology is mapped to a relation in another ontology.
Context:
Solution:
Solution description:
The class in one ontology and the relation in the other ontology are provided. There
are no constructs in the mapping language for linking the arguments of the relation.
For this, a logical expression need to be used (X is the variable representing the
instance of the class;X1, ..., Xn represent the arguments of the relation). This pattern
is agnostic to whether the mapping is unidirectional or bidirectional.
Mapping Syntax:
mapping ::= classRelationMapping(directionA R { logicalExpression})
Examples:
classRelationMapping
(O1:Marriage O2:Marriage
{ X1 = X.partner1 ∧X2 = X.partner2 ∧X3 = X.dateOfMarriage })
Rationale:
Related Patterns: Equivalent Class Mapping, Subclass Mapping, Class Attribute
Mapping

5.1.10 Class Instance Mapping

A class in one ontology may correspond with an instance in another.

CHAPTER 5. PATTERNS 34

Name: Class Instance Mapping
Also Known As: classInstanceMapping
Problem:
A class in one ontology is mapped to an instance in another ontology.
Context:
Solution:
Solution description:
The class in one ontology and the instance in the other ontology are provided.
Mapping Syntax:
mapping ::= classInstanceMapping(A o { logicalExpression})
Examples:
Rationale:
Related Patterns:

5.2 Mappings between Relations

5.2.1 Equivalent Relation Mapping

Name: Equivalent Relation Mapping
Also Known As: equivalentRelationMapping
Problem:
A relation in one ontology has the same intention as a relation in a second ontology
and a mapping between the two ontologies is desired.
Context:
This is probably the most common pattern in mapping relations between ontologies.
The terms could have the same name in different ontologies or different names.
Solution:
Solution description:
This pattern establishes a bidirectional equivalence mapping between relations in two
ontologies. Either may be used as the source ontology with the other one being used
as the target ontology.
Mapping Syntax:
mapping ::= relationMapping(bidirectionalR S)
Examples:
relationMapping(bidirectional O1:Human.children O2:Person.parentOf)
Rationale:
Related Patterns:Subrelation Mapping, Inverse Relation Mapping

CHAPTER 5. PATTERNS 35

5.2.2 Subrelation – Superrelation Mapping

Name: Subrelation Mapping
Also Known As: subRelationMapping
Problem:
A relation in one ontology holds between two terms in that ontology only when a
more general relation should hold between the mapped terms in the second ontology.
However, there is no relation in the second ontology with the same meaning as that
in the first.
Context:
One ontology needs to be able to describe certain relations to a greater degree of
precision.
Solution:
Solution description:

This pattern establishes a unidirectional mapping between relations in two ontologies.
The source ontology is the first ontology specified while the second one specified is
the target ontology.
Mapping Syntax:
mapping ::= relationMapping(unidirectionalR D)
Example:
relationMapping(unidirectional O1:Human.adores O2:Person.likes)
Rationale:
Related Patterns:Equivalent Relation Mapping

5.2.3 Negated Relation Mapping

Name: Negated Relation Mapping
Also Known As: relationNegationMapping
Problem:
A relation in one ontology holds if and only if a relation in another ontology does not
hold for arguments which meet the constraints of the relations.
Context:

CHAPTER 5. PATTERNS 36

This pattern is likely to occur for relations dealing with comparisons. It may only oc-
cur when negation can be expressed in at least one of the ontologies. For calculating
"only if" either a closed world assumption is needed for the predicate being mapped
or some other way of determining the negation of the predicate in (at least) limited
cases is needed.
Solution:
Solution description:
The pattern establishes a mapping between a relation in one ontology and the negation
of a relation in another ontology. This pattern is agnostic as to whether the mapping
is unidirectional (if) or bidirectional (if and only if). Direction of the mapping can
be achieved through combination of the pattern with theequivalentRelationMapping
or subRelationMapping pattern.
Mapping Syntax:
mapping ::= relationMapping(bidirectionalR not(S))
Examples:
relationMapping(bidirectional
O1:Real.greaterThan not(O2:RealNumber.lessThanOrEqual))
Resulting Context:
This pattern establishes a bidirectional negated mapping between relations in two
ontologies. If the relation R1 in the first ontology holds between two arguments,
R2 does not hold between the mappings of those arguments in the second, and vice
versa. Either ontology may be used as the source ontology with the other one being
used as the target ontology. The pattern identifies the incompatibility of relations in
different ontologies, allowing the mapping of rules and ground statements involving
the relations between the two ontologies if negation is allowed in the mapped forms.
Rationale:
Related Patterns:Equivalent Relation Mapping, Subrelation Mapping

5.2.4 Relation Mapping by Axiom

Name: Relation Mapping by Axiom
Also Known As: relationByAxiomMapping
Problem:
A relation in one ontology is mapped to a relation in another ontology and common
tuples of the relations are specified by an axiom.
Context:
A relationship holds between relations in two ontologies, but the rule defining the set
of tuples in both relations cannot be described by any of the above patterns.

CHAPTER 5. PATTERNS 37

Solution:
Solution description:
The two relations in two ontologies are provided along with a statement involving ei-
ther one relation or both relations. This statement is a precondition for the mapping.
This pattern is agnostic to whether the mapping is unidirectional or bidirectional.
However, if the mapping is bidirectional, the same precondition applies for both di-
rections. The precondition can be an arbitrary logical expression in the language to
which the mapping language is grounded. For illustrative purposes, we use first-order
logic in the example (X1, ..., Xn are meta-variables which represent the arguments of
the source relation in the mapping andY1, ..., Yn are meta-variables which represent
the arguments of the target relation in the mapping).
Mapping Syntax:
mapping ::= relationMapping(directionR S { logicalExpression})
Examples:
relationMapping
(O1:DistanceInMiles O2:DistanceInKM {
Y1 = X1 ∧ Y2 = X2 ∧ Y3 = milesToKM(X3) })
Rationale:
Related Patterns:Equivalent Class Mapping, Subclass Mapping

5.2.5 Attribute Transitive Closure

Name:
Attribute Transitive Closure Mapping
Also Known As: attributeTransitiveClosureMapping
Problem:
An attribute in one ontology is the transitive closure of an attribute in a second ontol-
ogy.
Context:
One ontology describes an attribute which a second one does not include, although
the second can express the attribute as a transitive closure of an attribute which it
does possess.
Solution:
Solution description:
This pattern establishes a mapping between an attribute in one ontology and its tran-
sitive closure in a second.
Mapping Syntax:

CHAPTER 5. PATTERNS 38

mapping ::= attributeMapping(directionP trans(Q))
Examples:
attributeMapping(bidirectional trans(O1:Human.parents)
O2:Person.ancestors)
attributeMapping(bidirectional trans(O1:Animal.parents)
O2:Person.ancestors)
Resulting Context:
The pattern can be used to identify a transitive closure mapping between attributes in
different ontologies, allowing the mapping of rules and ground statements involving
the attributes between the two ontologies.
Rationale:
Related Patterns:Subrelation Mapping, Equivalent Relation Mapping

5.2.6 Inverse Attribute Mapping

Name: Inverse Attribute Mapping
Also Known As: attributeInverseMapping
Problem:
An attribute in the one ontology has the same meaning as an attribute in the second
ontology except the domain and range are reversed.
Context:
This is a common pattern in mapping attributes between ontologies.
Solution:
Solution description:
Uses of the attribute in one ontology have their argument order reversed when
mapped to the second ontology. Either ontology may be used as the source ontol-
ogy with the other one being used as the target ontology.
Mapping Syntax:
mapping ::= attributeMapping(directionP inverse(Q))
Examples:
attributeMapping(
O2:RealNumber.lessThanOrEqual inverse(O1:Real.greaterThanOrEqual))
Resulting Context:
The pattern can be used to identify an inverse relationship between attributes in dif-
ferent ontologies, allowing the mapping of rules and ground statements involving the
attributes between the two ontologies.
Rationale:
Related Patterns:Equivalent Relation Mapping, Subrelation Mapping

CHAPTER 5. PATTERNS 39

5.2.7 Attribute Value Mapping

Attribute values are restricted in some ontological languages to individuals and instances
of datatypes, while other languages permit relations, and classes as well. Some languages
distinguish attribute values as a special class of individual.

Name: Attribute Value Mapping
Also Known As: attributeValueMapping
Problem:
Character strings and numbers are often used as attribute values in an ontology in-
stead of reifying the individuals, classes, or relations which they represent. Thus,
there is often a one-to-one correspondence between an attribute value in two ontol-
ogy in the context of some attribute. Either attribute value might be a text string,
number, individual, or class.
Context:
This is the most common pattern in mapping between attribute values.
Solution:
Solution description:
This pattern establishes a mapping between attribute - attribute value pairs in two
ontologies. Either ontology may be used as the source ontology with the other one
being used as the target ontology.
Mapping Syntax:
mapping ::= attributeValueMapping(directionA I B J)

Examples:
attributeValueMapping(bidirectional
(attributeValueCondition O1:PhysObj.color "FF0000")
(attributeValueCondition O2:Object.hasColour "SaturatedRed"))

attributeValueMapping(bidirectional
(attributeValueCondition O1:Address.country Ireland)
(attributeValueCondition O2:Address.country "IE"))
Resulting Context:
The pattern maps an attribute in the source ontology to an attribute value in the target
ontology in the context of specified attributes).
Rationale:
Related Patterns:

CHAPTER 5. PATTERNS 40

5.3 Mappings between Individuals

5.3.1 Equivalent Individual Mapping

The most common type of mapping that is established between individuals in two ontolo-
gies is mapping equivalent terms to each other. The terms could have the same name in
different ontologies or different names.

Name: Equivalent Individual Mapping
Also Known As: equivalentIndividualMapping
Problem:
An individual in the one ontology has the same meaning as an individual in the second
ontology. The terms could have the same name in different ontologies or different
names.
Context:
This is probably the most common pattern in mapping between individuals.
Solution:
Solution description:
This pattern establishes a bidirectional mapping between individuals in two ontolo-
gies. Either may be used as the source ontology with the other one being used as the
target ontology.
Mapping Syntax:
mapping ::= individualMapping(I J)
Examples: individualMapping(O1:GWBush O2:Dubya)
Resulting Context:
The pattern maps an instance in the source ontology to an instance in the target on-
tology. This amounts to far more than an equality assertion between the instances in
the two ontologies. It entails the mapping of every statement involving the instance
in the source ontology into an equivalent statement in the target ontology, if possible,
otherwise to an entailed statement (again, if possible).
Rationale:
Related Patterns:

CHAPTER 5. PATTERNS 41

5.3.2 Equivalent Relation Instance Mapping

Name: Equivalent Relation Instance Mapping
Also Known As: equivalentRelationInstanceMapping
Problem:
A tuple of a relation in the one ontology has the same meaning as a tuple of a relation
in the second ontology.
Context:
This is probably the most common pattern in mapping between relation tuples.
Solution:
Solution description:
This pattern establishes a bidirectional mapping between tuples of relations in two
ontologies. Either may be used as the source ontology with the other one being used
as the target ontology.
Mapping Syntax:
mapping ::= relationInstanceMapping(R(I1, . . . , In) S(J1, . . . , Jn))
Examples: relationInstanceMapping(O1:distanceInKM(location1, location2, 18)
O2:distanceInMiles(location1, location2, 11))
Resulting Context:
Rationale:
Related Patterns:

5.4 Attribute Value – Class Equivalence

Name: Attribute Value – Class Mapping
Problem:
Character strings and numbers are often used as attribute values in an ontology in-
stead of reifying the individuals, classes, or relations which they represent. Thus,
there is often a one-to-one correspondence between an attribute value in one ontol-
ogy and a class in another ontology. The attribute value applies to an instance in the
first ontology if and only if the mapping of that instance is a member of the class in
the second ontology.
Context:
One ontology commonly uses attribute values to make distinctions that another on-
tology makes using classes.

CHAPTER 5. PATTERNS 42

Solution:
Solution description:
This pattern establishes a bidirectional mapping between an attribute value in one
ontology and the attribute with which it is associated and a class in a second ontology.
Either may be used as the source ontology with the other one being used as the target
ontology.
Abstract Syntax:
’attributeClassMapping(’attributeCondition classExpr ’)’
Mapping Syntax:
mapping ::= classMapping(two-wayC D attributeOccurence(A))
Examples:
attributeClassMapping (attributeValueCondition(O1:Person.degreeType "PhD")
O2:PersonWithPhDDegree)
Resulting Context:
The pattern establishes a mapping between the set of all instances with a given at-
tribute value in one ontology with a class in a second ontology.
Rationale:
This is a common type of mapping when two ontologies use different philosophies
for use of attributes vs. definition of subclasses.
Related Patterns:

5.4.1 Subattribute / SuperAttribute Value Mapping

Name: Subattribute Value Mapping
Problem:
An attribute value in the one ontology has a more restrictive meaning than an attribute
value in the second ontology in the context of some attribute. Either attribute value
might be a text string, number, individual or class.
Context:
Anything that has the subattribute value with respect to a given attribute in the first
ontology has the superattribute value (with respect to the corresponding attribute) in
the second ontology, but not the other way around. This allows a mapping in one
direction, but not the other.
Solution:
Solution description:
This pattern establishes a unidirectional mapping between an attribute value condi-
tion in one ontology and one in another.

CHAPTER 5. PATTERNS 43

Abstract Syntax:
’subAttributeValueMapping(’attributeCondition attributeCondition ’)’
Mapping Syntax:
mapping ::= attributeValueMapping(one-wayA I B J)
Example:
subAttributeValueMapping(
(attributeValueCondition O1:PhysObj.color O1:DeepGreen)
(attributeValueCondition O2:Object.hasColour O2:GreenColour))
Resulting Context:
The pattern maps an attribute in the source ontology to an attribute value in the target
ontology in the context of specified attributes).
Rationale:
Attribute - Attribute Value pairs are expressed as attributeConditions to modularize
this pattern, allowing it to be based on a binary instead of quaternary relation.
Related Patterns:Equivalent Attribute Value Mapping

Chapter 6

Library Organization

This chapter presents ways of organizing an Ontology Mediation Patterns Library.

The library is organized in such a way that searching for and reusing patterns is opti-
mized. A hierarchical organization of the patterns presented in Chapter5 can be found in
Appendix .

6.1 Connecting Patterns

Mapping patterns can be connected to each other in different ways. We adopt here the
three ways in which interaction patterns can be connected, as described in [35]:

Aggregation One mapping pattern can be an aggregation of other mapping patterns. This
is the case for complex patterns, which are built-up out of elementary patterns. This
relationship can be seen as apart-of relationship. An example would be a combi-
nation of a class mapping with different attribute mappings. An example of such
a complex pattern could be a mapping between two different style of representing
addresses. The pattern would be made up out of a number of class and attribute
mappings.

Specialization One mapping pattern can be a specialization of another mapping pattern.
An example could be a class mapping with functional attribute, which is a spe-
cialization of the generic class mapping. This relationship can be seen as anis-a
relationship. Specialization is the main relationship used for organization of the
patterns library for elementary patterns.

Association Mapping patterns can be related to each other in other ways. In this case we
have a simplerelated-torelationship. For example, attribute mappings are often a
special kind of relation mapping, because attributes are special kinds of relations.
Association is the secondary way of organizing the current library of elementary

44

CHAPTER 6. LIBRARY ORGANIZATION 45

patterns. Therelated-tofield in the pattern template is used to capture such associ-
ations.

By making the connections between the patterns apparent in the library, the user can
more easily see dependencies between patterns. Furthermore, it also aids the user in
browsing patterns. If, when browsing the library, the user finds a pattern that nearly, but
not completely, fulfills the needs of the user, the user may browse to generalizations or
specializations of this pattern, which might fulfill the needs of the user.

6.2 Top-down vs. bottom-up design of Ontology Map-
pings

We distinguish two major ways of creating an ontology mapping, namely (1) the top-down
approach and (2) the bottom-up approach.

In the top-downapproach, the designer of the mapping starts with a very high-level
mapping pattern (e.g. “map product ontologies” or “map person ontologies”) and iden-
tifies more specific patterns in an iterative process until the designer ends up with only
elementary patterns, which can be used to build the actual mapping. In each iteration,
matching methods can be used to suggest applicable patterns to the user.

In the bottom-upapproach, the designer of the mapping starts with the entities (i.e.
concepts, relations, etc.) in the ontologies and starts to identify (either manually or semi-
automatically) similarities between entities in the source ontologies. These similarities are
then used as a starting point for creating the actual mappings. Elementary patterns can be
used by the designer to come up with more accurate mappings. Groups of elementary
patterns can then be recognized as complex patterns. Because of the current lack of
complex patterns, at the moment only bottom-up design of ontology mappings is possible.

It would be worthwhile to try and find out whether a combination of both approaches
is possible. Often, the user has a clear idea of what he/she wants to achieve with the
mapping and already has a vague idea of how the ontologies relate to each other before
starting the mapping task. In this case, high-level mapping patterns can be used to guide
the mappings process, whereas low-level patterns can be discovered in parallel. At the
end of the mapping process, these should meet to derive the final mapping.

An alternative could be amiddle-outapproach in which parts of ontologies are discov-
ered to fit in certain patterns and such patterns are applied to map parts of the ontologies.

CHAPTER 6. LIBRARY ORGANIZATION 46

6.3 A complete patterns library

A patterns library is said to be complete if all possible instances of the design problem
are covered by patterns in the library [1, 34]. In architecture, this means that each prob-
lem occurring in architectural design is covered by a pattern. In object-oriented software
design, this means that all functionality of the software can be constructed through instan-
tiation of design patterns. In our case of ontology mapping, this means that each possible
ontology mapping can be created by instantiating a (number of) pattern(s).

As pointed out in the literature, it is in general not possible to guarantee completeness
of the patterns library. Even if one would evaluate all possible designs (which is already
infeasible) that have been created and one would find out that all design problems are
covered by patterns in the library, it is impossible to guarantee that in the future no design
problem will arise that is not covered by a pattern in the library.

In our particular case of ontology mapping, we have further restrictions on the kinds of
mappings that can be specified, because we are limited in the formal language that is used
for the specification of the mappings. For any language, no matter how expressive, we
cannot guarantee that every possible mapping can be expressed in the language. There-
fore, we can only define completeness of the library with respect to the expressiveness of
the mapping language.

Another consideration for our case of ontology mapping is that of elementary versus
complex mapping patters. Two questions arise in this respect: (1) Can all possible ontol-
ogy mappings be created with the use of the elementary mapping patterns? and (2) Will
the complex patterns in the library cover all cases of ontology mapping?.

With respect to (2), there is nothing much we can say at this stage, because we have
not yet documented any complex mapping patterns. With respect to (1), we will have to
find out in the practice of ontology mapping whether there exist any elementary mapping
which are not covered by the patterns we have distinguished in this deliverable.

6.4 Organizing a library of mapping patterns

A library of mapping patterns can be organized in different ways in order to enable the
mapping designer to easily find and retrieve relevant mappings.

The library can be organized according to the following relationships between the
patterns: (part-of, is-a andrelated-to). Another possibility is to group patterns based on
some descriptive element in the patterns template. Gamma et al. [17] use a classification
scheme based on the purpose and the scope of the patterns to organize the library.

When taking the hierarchical approach to mapping patterns, the library can be orga-
nized in a hierarchical way with the highest-level patterns at the top and the lowest-level

CHAPTER 6. LIBRARY ORGANIZATION 47

patterns at the bottom. The user can in this way navigate through the mappings, but also
apply high-level mapping patterns, which lead to the application of lower-level mapping
patterns.

Notice that there exist two distinct hierarchies in the patterns library, namely theis-
a hierarchy and thepart-of hierarchy. Currently, only theis-a hierarchy is important
because the current elementary patterns in the library are not connected through thepart-
of relationship. However, when more complex patterns are added to the library, thepart-
of hierarchy will play a major role.

6.5 Tool support for a mapping patterns library

The mapping designer needs to be presented with a convenient interface to the mapping
patterns library in order to find and retrieve patterns necessary for the particular mapping
task. This interface should be integrated in the mapping design environment.

The tool support for the patterns library needs to be three-fold:

1. There needs to be a tool to create/edit/delete mapping patterns in the library. The
tool should provide a convenient interface to the user to create these patterns and
also an interface to the library to perform typical maintenance tasks, such as adding
and deleting patterns from the library, as well as organizing patterns in the library.

2. There needs to be a back-end store for the mapping patterns, which exposes a query
and a management interface for the retrieval and management of patterns in the
library.

3. There needs to be an interface to the mapping patterns library, integrated in the
mapping design tool, so that the user can easily find and retrieve mapping patterns
during the design of the mappings.

At the moment, a tool for editing mapping patterns in the library is not that crucial,
because the library is not expected to be updated as much as it is expected to be used for
the creation of ontology mappings.

Chapter 7

Conclusions

In this deliverable we have attempted to structure the ontology mapping problem by in-
troducing a number of mapping patterns. These mapping patterns are recurring types of
ontology mappings. By traversing the mapping patterns in a patterns library, the user can
find patterns corresponding to a specific mapping problem.

Besides the identification of a number of mapping patterns, we have also described
the syntax of a rudimentary mapping language which is inspired by the mapping patterns.
There exists a translation; each pattern corresponds with an expression in the mapping
language, so that mapping patterns can be readily used to construct mappings between
ontologies.

The mapping language we have introduced does not have a formal semantics and is
thus, to some extent, language neutral. Actually, in the development of the mapping lan-
guage we have mainly taken two ontology languages into account, namely OWL DL [27]
and WSML-Flight [7]. However, we conjecture that the mapping language can be used for
mapping between ontologies expressed in any frame-based ontology language. We must
note here that we do not assume mapping between ontologies in different languages. We
assume that all ontologies involved in a particular mapping are specified using the same
ontology language, although this is not prescribed by the mapping language introduced in
this deliverable. Naturally, it is possible to map between ontologies in different languages
if there exists a translation to a common representation format. The accompanying deliv-
erable “D4.4.1 A Framework for Mediation Management” [9] provides a formal seman-
tics for mapping between OWL DL ontologies. DIP deliverable D1.5 [28] describes a
mapping between WSML-Flight ontologies using the mapping language presented in this
deliverable.

48

CHAPTER 7. CONCLUSIONS 49

7.1 Outlook

We have presented a number of simple mapping patterns in this deliverable. These pat-
terns can guide the user in the creation of actual ontology mappings. However, the patterns
we presented in this deliverable are very fine-grained. More coarse-grained mappings
might be of more help to the user in the ontology mapping task. However, in order to find
such coarse-grained patterns, experience is required from the ontology mapping practice.

In the course of the SEKT project, ontology mapping will be done in the case studies.
The deliverable “D4.6.1 Ontology Mediation in the Case Studies” will provide a guide for
the use of the fine-grained mapping patterns which we have presented in this deliverable,
as well as a guide for the documentation of ontology mappings which are created in the
course of the project. This documentation can then be used to extract patterns of ontology
mappings, which will be document in the next version of this deliverable, to be delivered
at the end of 2005.

Bibliography

[1] Christopher Alexander, S. Ishikawa, and M. Silverstein.A Pattern Language, vol-
ume 2 ofCenter for Environmental Structure Series. Oxford University Press, New
York, New York, USA, 1977.

[2] B. Appleton. Patterns and software: Essential concepts and terminology.
http://www.cmcrossroads.com/bradapp/docs/patterns-intro.html, 2000.

[3] T. Berners-Lee, R. Fielding, U. C. Irvine, and L. Masinter. Uniform resource iden-
tifiers (URI): Generic syntax. RFC 2396, Internet Engineering Task Force, 1998.

[4] Tim Berners-Lee, James Hendler, and Ora Lassila. The se-
mantic web. Scientific American, 284(5):34–43, May 2001.
http://www.sciam.com/article.cfm?articleID=00048144-10D2-1C70-
84A9809EC588EF21&ref=sciam.

[5] Vinay K. Chaudhri, Adam Farquhar, Richard Fikes, Peter D. Karp, and James P.
Rice. OKBC: A programmatic foundation for knowledge base interoperability. In
Proceedings of the Fifteenth National Conference on Artificial Intelligence (AAAI-
98), pages 600–607, Madison, Wisconsin, USA, 1998. MIT Press.

[6] James O. Coplien.Software Patterns. SIGS Books, New York, New York, 1996.

[7] Jos de Bruijn, Holger Lausen, and Dieter Fensel. The WSML Family of Representa-
tion Languages. Deliverable D16v0.2, WSML, http://www.wsmo.org/wsml/, 2004.
Available from http://www.wsmo.org/2004/d16/v0.2/.

[8] Jos de Bruijn, Francisco Martín-Recuerda, Dimitar Manov, and Marc Ehrig. State-
of-the-art survey on ontology merging and aligning v1. Deliverable D4.2.1, SEKT,
2004.

[9] Jos de Bruijn, Francisco Martín-Recuerda, Axel Polleres, Livia Predoiu, and Marc
Ehrig. Ontology mediation management v1. Deliverable D4.4.1, SEKT, 2004.

[10] Jos de Bruijn, Axel Polleres, Rubén Lara, and Dieter Fensel. OWL
DL vs. OWL Flight: Conceptual modeling and reasoning for the seman-
tic web. Technical Report DERI-2004-11-10, DERI, 2004. Available from
http://homepage.uibk.ac.at/ c703239/publications/DERI-TR-2004-11-10.pdf.

50

BIBLIOGRAPHY 51

[11] Mike Dean and Guus Schreiber, editors.OWL Web Ontology Language Reference.
2004. W3C Recommendation 10 February 2004.

[12] Ying Ding, Dieter Fensel, Michel C. A. Klein, and Borys Omelayenko. The semantic
web: yet another hip?Data Knowledge Engineering, 41(2-3):205–227, 2002.

[13] AnHai Doan, Jazant Madhaven, Pedro Domingos, and Alon Halevy. Ontology
matching: A machine learning approach. In Steffen Staab and Rudi Studer, editors,
Handbook on Ontologies in Information Systems, pages 397–416. Springer-Verlag,
2004.

[14] Dejing Dou, Drew McDermott, and Peishen Qi. Ontology translation by ontology
merging and automated reasoning. InProc. EKAW2002 Workshop on Ontologies for
Multi-Agent Systems, pages 3–18, 2002.

[15] Dieter Fensel.Ontologies: Silver Bullet for Knowledge Management and Electronic
Commerce, 2nd edition. Springer-Verlag, Berlin, 2003.

[16] M. Fitting. First Order Logic and Automated Theorem Proving (second edition).
Springer Verlag, 1996.

[17] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides.Design Patterns.
Addison-Wesley Pub., 1995.

[18] Fausto Giunchiglia, Pavel Shvaiko, and Mikalai Yatskevich. S-match: an algorithm
and an implementation of semantic matching. InProceedings of ESWS’04, number
3053 in LNCS, pages 61–75, Heraklion, Greece, 2004. Springer-Verlag.

[19] Ian Horrocks, Peter F. Patel-Schneider, Harold Boley, Said Tabet, Benjamin
Grosof, and Mike Dean. SWRL: A semantic web rule language combining OWL
and RuleML. Available from http://www.w3.org/Submission/2004/SUBM-SWRL-
20040521/, May 2004.

[20] Michael Kifer, Geord Lausen, and James Wu. Logical foundations of object-oriented
and frame-based languages.JACM, 42(4):741–843, 1995.

[21] Alon Y. Levy and Marie-Christine Rousset. Combining horn rules and description
logics in CARIN. Artificial Intelligence, 104:165 – 209, 1998.

[22] Jayant Madhavan, Philip A. Bernstein, and Erhard Rahm. Generic schema matching
with cupid. InProc. 27th Int. Conf. on Very Large Data Bases (VLDB), 2001.

[23] Alexander Maedche, Boris Motik, Nu no Silva, and Raphael Volz. MAFRA - a
mapping framework for distributed ontologies. InProceedings of the 13th European
Conference on Knowledge Engineering and Knowledge Management EKAW-2002,
Madrid, Spain, 2002.

BIBLIOGRAPHY 52

[24] Sergey Melnik, Erhard Rahm, and Philip A. Bernstein. Developing metadata-
intensive applications with rondo.Journal of Web Semantics, 1(1), December 2003.

[25] Natalya F. Noy and Mark A. Musen. Smart: Automated support for ontology merg-
ing and alignment. Technical Report SMI-1999-0813, Stanford Medical Informat-
ics, 1999.

[26] John Y. Park, John H. Gennari, and Mark A. Musen. Mappings for reuse in
knowledge-based systems. InProceedings of the 11th Workshop on Knowledge
Acquisition, Modelling and Management (KAW 98), Banff, Canada, 1998.

[27] Peter F. Patel-Schneider, Patrick Hayes, and Ian Horrocks. OWL web ontology
language semantics and abstract syntax. Recommendation 10 February 2004, W3C,
2004.

[28] Livia Predoiu, Francisco Martín-Recuerda, Axel Polleres, Fabio Porto, Adrian Mo-
can, Kerstin Zimmermann, Cristina Feier, and Jos de Bruijn. Framework for rep-
resenting ontology networks with mappings that deal with conflicting and com-
plementary concept definitions. Deliverable D1.5, DIP, 2004. Available from
http://dip.semanticweb.org/.

[29] Erhard Rahm and Philip A. Bernstein. A survey of approaches to automatic schema
matching.VLDB Journal: Very Large Data Bases, 10(4):334–350, 2001.

[30] Dumitru Roman, Holger Lausen, and Uwe Keller, editors.Web Service Mod-
eling Ontology (WSMO). 2004. WSMO Final Draft D2v1.0. Available from
http://www.wsmo.org/2004/d2/v1.0/.

[31] J.-M. Rosengard and M. F. Ursu. Ontological representations of software patterns.
Lecture Notes in Computer Science (Proceedings of the of KES’04), 3215, 2004.

[32] Guus Schreiber. The web is not well-formed.IEEE Intelligent Systems, 17(2),
2002. Contribution to the section Trends and Controversies: Ontologies KISSES in
Standardization.

[33] Gerd Stumme and Alexander Maedche. Fca-merge: Bottom-up merging of ontolo-
gies. In7th Intl. Conf. on Artificial Intelligence (IJCAI ’01), pages 225–230, Seattle,
WA, USA, 2001.

[34] Martijn van Welie.Task-based User Interface Design. PhD thesis, Vrije Universiteit
Amsterdam, 2001.

[35] Martijn van Welie and Gerrit C. van der Veer. Pattern languages in interaction de-
sign: Structure and organization. InProceedings of Interact ’03, pages 527–534,
Zürich, Switserland, 2003. IOS Press.

BIBLIOGRAPHY 53

[36] S. Weibel, J. Kunze, C. Lagoze, and M. Wolf. Dublin core metadata for resource
discovery. RFC 2413, IETF, 1998.

[37] Gio Wiederhold. An algebra for ontology composition. InProceedings of 1994
Monterey Workshop on formal Methods, pages 56–61, U.S. Naval Postgraduate
School, Monterey CA, 1994.

Appendix A

A hierarchical organisation of the
Patterns Library

In this appendix we present a hierarchical organisation of the elementary mapping patterns
described in this deliverable.

The hierarchy has the form of a classification hierarchy, rather than a formal taxon-
omy. This means that the links in the hierarchy do not have a formal meaning. This means
that a pattern lower in the hierarchy is either a specialisation or a part of the pattern higher
in the hierarchy. The hierarchy of elementary mapping patterns is presented in TableA.1.

These mapping patterns have a correspondence in the mapping language. However,
there is not a one-to-one correspondence between mapping patterns and keywords in the
mapping language. We decided to keep the mapping language itself concise and to allow
only a limited number of keywords. By combining these keywords, the mapping patterns
themselves can be written down in the mapping language, see TableA.2. Notice that not
all patterns have a corresponding statement in the mapping language. This is because
several patterns (e.g.classMapping, relationMapping) have been introduced mostly to
structure the patterns1. Furthermore, these patterns do not have a clear meaning. For ex-
ample, when using the patternclassMapping, it is not immediately clear whether class
equivalence or class subsumption is intended. Therefore, the additional patternssub-
ClassMapping and equivalentClassMapping have been introduced to clarify which
kind of mapping is intended.

In the TableA.2, Ai, Bi are class names,Ri, Si are relation names andIi, Ji are indi-
vidual names. Furthermore,P, Q are attribute names, where attributes are a special kind
of relations, namely, binary relations with a defined domain.

1Notice that these “abstract” patterns can also be used to structure the process of specifying mappings.
When the developer (or matching algorithm) identifies two classes to be similar, an abstractclassMap-
ping can be designated. This can be refined at a further stage. In the specific scenario of ontology matching,
it can be envisioned that a matching algorithm would discover such abstract mappings and that the mapping
engineer would specify the mapping more precisely.

54

APPENDIX A. A HIERARCHICAL ORGANISATION OF THE PATTERNS LIBRARY55

classMapping
equivalentClassMapping
subClassMapping
classIntersectionMapping

equivalentClassIntersectionMapping
subClassIntersectionMapping
...

classUnionMapping
equivalentClassUnionMapping
...

classByAttributeMapping
classByAxiomMapping
classJoinMapping
classAttributeMapping
classRelationMapping
classIndividualMapping

relationMapping
subRelationMapping
equivalentRelationMapping
attributeMapping

attributeTransitiveClosureMapping
attributeInverseMapping
attributeValueMapping

equivalentAttributeValueMapping
subAttributeValueMapping

relationNegationMapping
subRelationNegationMapping
...

relationByAxiomMapping
individualMapping

equivalentIndividualMapping
equivalentRelationInstanceMapping

Table A.1:Hierarchical Organization of Mapping patterns

APPENDIX A. A HIERARCHICAL ORGANISATION OF THE PATTERNS LIBRARY56

Mapping Pattern Corresponding Mapping Statement
equivalentClassMapping classMapping(two-way A B)
subClassMapping classMapping(A B)
equivalentClassIntersectionMapping classMapping(two-way and(A1 . . . An) B)
equivalentClassUnionMapping classMapping(two-way or(A1 . . . An) B)
subClassIntersectionMapping classMapping(and(A1 . . . An) B)
subClassUnionMapping classMapping(or(A1 . . . An) B)
subClassByAttributeMapping classMapping(A B attributeOccurence(P))
subClassByAxiomMapping classMapping(A B { axiom })
subRelationMapping relationMapping(R B)
equivalentRelationMapping relationMapping(two-way R B)
attributeTransitiveClosureMapping attributeMapping(two-way P trans(Q))
attributeInverseMapping attributeMapping(two-way P inverse(Q))
equivalentAttributeValueMapping attributeValueMapping(two-way P I Q J)
subAttributeValueMapping attributeValueMapping(P I Q J)
subRelationNegationMapping relationMapping(R not(S))
subRelationByAxiomMapping relationMapping(R S { axiom })
equivalentIndividualMapping individualMapping(I J)
equivalentRelationInstanceMapping individualMapping(R(I1, . . . , In) S(J1, . . . , Jn))

Table A.2: Correspondence between mapping patterns and statements in the mapping
language

Appendix B

First-Order Reference Semantics

This appendix contains a First-Order Logic (FOL) reference semantics for the mapping
language described in this deliverable, in order to clarify the intention of the mappings.
We have chosen FOL for this purpose, because it can be used to illustrate all aspects of
the language.

Note that in the first-order reference semantics of the language, any first-order formula
can be used in the place of alogicalExpression.

In the remainder of this appendix, we define the mapping functiont, which takes as
argument a mapping specified in the mapping language and which returns a set of first-
order formulas.

It is possible to use a number of meta-variables in logical expressions which are nested
inside other mapping expression (for example, class mappings). The meta-variables
X1, ..., Xn and are syntactically substituted in the translation of the mapping language
to FOL:

t(logicalExpression, Y1, ..., Yn) 7→
logicalExpression[X1 := Y1, ..., Xn := Yn]

Below, the translations of class mappings are specified. First, a two-way class map-
ping is translated into two one-way class mappings. Then, a one-way mapping is trans-
lated as a rule of subtranslations.

t(classMapping(two-wayclassExpr1 classExpr2
attributeMapping 1 ... attributeMapping n

classCondition1 ... classConditionm
logicalExpression1 ... logicalExpressionq)) 7→

t(classMapping(one-wayclassExpr1 classExpr2
attributeMapping 1 ... attributeMapping n

classCondition1 ... classConditionm

57

APPENDIX B. FIRST-ORDER REFERENCE SEMANTICS 58

logicalExpression1 ... logicalExpressionq))
t(classMapping(one-wayclassExpr2 classExpr1

attributeMapping 1 ... attributeMapping n

classCondition1 ... classConditionm
logicalExpression1 ... logicalExpressionq))

t(classMapping(one-wayclassExpr1 classExpr2
attributeMapping 1 ... attributeMapping n

classCondition1 ... classConditionm
logicalExpression1 ... logicalExpressionq)) 7→

t(classExpr1, x) → t(classExpr2, x)∧
t(attributeMapping 1, x) ∧ . . . ∧ t(attributeMapping n, x)
t(classCondition1, x) ∧ . . . ∧ t(classConditionm, x)∧
t(logicalExpression1, x) ∧ ... ∧ t(logicalExpressionq, x).

In the mapping language, for different class expressions different translations are re-
quired. There are no explicit constructs for representing the intersection, union, difference
and join operations in WSML. Therefore, we have to create a new concept and to write
for it the WSML logical expression that defines the intersection, union, complement, and
join, respectively. Note that the or() construct may only be used in the source of a mapping
rule and may not be used in a two-way mapping rule.

t(and(classExpr1 ... classExprn), X) 7→
t(classExpr1, X) ∧ ... ∧ t(classExprn, X)

t(or(classExpr1 ... classExprn), X) 7→
t(classExpr1, X) ∨ ... ∨ t(classExprn, X)

t(not(classExpr), X) 7→ ¬t(classExpr, X)

t(join(classExpr1 ... classExprn logicalExpression1 ...
logicalExpressionn)) 7→

t(classExpr1, f(x2, ..., xn)) ← t(classExpr2, x2) ∧ ...∧
t(classExprn, xn) ∧ t(logicalExpression1, {f(x2, ..., xn), x2, ..., xn}) ∧ ...∧
t(logicalExpression1, {f(x2, ..., xn), x2, ..., xn}) ’.’

One more transformation function is required, for the case when theclassExpr is a
classID(a simple class identifier):

t(classID, X) 7→ classID(X)

APPENDIX B. FIRST-ORDER REFERENCE SEMANTICS 59

Below the translations of attribute mappings are specified. For the two-way attribute
mapping we distinguish three cases: (1) no variables are given as parameters, (2) one
variable is given and (3) two variables are given.

t(attributeMapping(two-wayattributeExpr 1 attributeExpr 2

attributeCondition 1 ... attributeCondition n

logicalExpression1 ... logicalExpressionm)) 7→
t(attributeMapping(one-wayattributeExpr 1 attributeExpr 2

attributeCondition 1 ... attributeCondition n

logicalExpression1 ... logicalExpressionm))
t(attributeMapping(one-wayattributeExpr 2 attributeExpr 1

attributeCondition 1 ... attributeCondition n

logicalExpression1 ... logicalExpressionm))

t(attributeMapping(two-wayattributeExpr 1 attributeExpr 2

attributeCondition 1 ... attributeCondition n

logicalExpression1 ... logicalExpressionm), X) 7→
t(attributeMapping(one-wayattributeExpr 1 attributeExpr 2

attributeCondition 1 ... attributeCondition n

logicalExpression1 ... logicalExpressionm), X)
t(attributeMapping(one-wayattributeExpr 2 attributeExpr 1

attributeCondition 1 ... attributeCondition n

logicalExpression1 ... logicalExpressionm), X)

t(attributeMapping(two-wayattributeExpr 1 attributeExpr 2

attributeCondition 1 ... attributeCondition n

logicalExpression1 ... logicalExpressionm), X, Y) 7→
t(attributeMapping(one-wayattributeExpr 1 attributeExpr 2

attributeCondition 1 ... attributeCondition n

logicalExpression1 ... logicalExpressionm), X, Y)
t(attributeMapping(one-wayattributeExpr 2 attributeExpr 1

attributeCondition 1 ... attributeCondition n

logicalExpression1 ... logicalExpressionm), X, Y)

t(attributeMapping(one-wayattributeExpr 1 attributeExpr 2

attributeCondition 1 ... attributeCondition n

logicalExpression1 ... logicalExpressionm)) 7→
t(attributeMapping(one-wayattributeExpr 1 attributeExpr 2

attributeCondition 1 ... attributeCondition n

logicalExpression1 ... logicalExpressionm), xnew)

t(attributeMapping(one-wayattributeExpr 1 attributeExpr 2

APPENDIX B. FIRST-ORDER REFERENCE SEMANTICS 60

attributeCondition 1 ... attributeCondition n

logicalExpression1 ... logicalExpressionm), X) 7→
t(attributeMapping(one-wayattributeExpr 1 attributeExpr 2

attributeCondition 1 ... attributeCondition n

logicalExpression1 ... logicalExpressionm), X, xnew)

t(attributeMapping(one-wayattributeExpr 1 attributeExpr 2

attributeCondition 1 ... attributeCondition n

logicalExpression1 ... logicalExpressionm), X, Y) 7→
t(attributeExpr 2, X, Y) ← t(attributeExpr 1, X, Y)∧

t(attributeCondition 1, X, t(attributeID 1) ∧ ...∧
t(attributeCondition n, X, t(attributeID 1))∧
t(logicalExpression1, X, Y) ∧ ...∧
t(logicalExpressionm, X, Y)

t(attributeID , X, Y) 7→ attributeID (X,Y)

t(inverse(attributeExpr), X, Y) 7→
t(attributeExpr , Y,X)

t(symmetric(attributeExpr), X, Y) 7→
t(attributeExpr , X, Y)∧ t(attributeExpr , Y, X)

t(reflexive(attributeExpr), X, Y) 7→
t(attributeExpr , X, Y)∧ t(attributeExpr , X,X)

t(trans(attributeExpr), X, Y) 7→ t(attributeExpr , X, Y) ←
t(attributeExpr , X, z) ∧ t(attributeExpr , z, Y)

t(and(attributeExpr 1 . . .attributeExpr n), X, Y) 7→
t(attributeExpr 1, X, Y) ∧ . . . ∧ t(attributeExpr n, X, Y)

t(or(attributeExpr 1 . . .attributeExpr n), X, Y) 7→
t(attributeExpr 1, X, Y) ∨ ... ∨ t(attributeExpr n, X, Y)

t(not(attributeExpr , X, Y) 7→
¬t(attributeExpr , X, Y)

APPENDIX B. FIRST-ORDER REFERENCE SEMANTICS 61

The transformation function forclassConditions andattributeCondition s have the
following definitions (attID is a meta-identifier which is replaced with the actual attribute
identifier during translation):

t(attributeValueCondition(attributeID , individualID), X) 7→
attributeID (X, individualID)

t(attributeValueCondition(attributeID , dataLiteral), X) 7→
attributeID (X,dataLiteral)

t(attributeValueCondition(attributeID , classExpr), X) 7→
∃y(attributeID (X, y) ∧ t(classExpr, y))

t(attributeOccurenceCondition(attributeID), X) 7→
∃y(attributeID (X, y))

t(valueCondition(individualID), X, attID) 7→
attID(X,individualID)

t(valueCondition(dataLiteral), X, attID) 7→
attID(X,dataLiteral)

t(valueCondition(classExpr, X, attID) 7→
∃y(attID(X, y) ∧ t(classExpr, y))

t(expressionCondition(attributeExpr), X, attID) 7→
t(attributeExpr,X, attID)

Having defined the transformations of expressions and conditions in we can start
defining the transformations for the actual mappings.

t(relationMapping(two-wayrelationExpr 1 relationExpr 2

relationCondition 1 ... relationConditionm

logicalExpression1 ... logicalExpressionn)) 7→
t(relationMapping(one-wayrelationExpr 1 relationExpr 2

relationCondition 1 ... relationConditionm

logicalExpression1 ... logicalExpressionn))
t(relationMapping(one-wayrelationExpr 2 relationExpr 1

relationCondition1 ... relationConditionm

logicalExpression1 ... logicalExpressionn))

APPENDIX B. FIRST-ORDER REFERENCE SEMANTICS 62

For each relation mapping,n new variables (x1, ..., xn) are introduced, wheren is the
arity of the relations. Notice that all relations in a relation mapping must have the same
arity.

t(relationMapping(one-wayrelationExpr 1 relationExpr 2

relationCondition 1 ... relationConditionm

logicalExpression1 ... logicalExpressionq)) 7→
t(relationExpr 1, x1, ..., xn) ← t(relationExpr 2, x1, ..., xn)) ’and’

t(relationCondition 1, x1, ..., xn, t(relationID 1)) ∧ ...∧
t(relationConditionm, x1, ..., xn, t(relationID m))∧
t(logicalExpression1, x1, ..., xn) ∧ ...∧
t(logicalExpressionn, x1, ..., xn) ’.’

The transformation functions forrelationExpr and relationConditions are the fol-
lowings (relID is a meta-identifier which is replaced with the actual attribute identifier
during translation):

t(and(relationExpr 1, ..., relationExpr n), X1, ..., Xn) 7→
t(relationExpr 1, X1, ..., Xn) ∧ ... ∧ t(relationExpr 1, X1, ..., Xn)

t(or(relationExpr 1, ..., relationExpr n), X1, ..., Xn) 7→
t(relationExpr 1, X1, ..., Xn) ∨ ... ∨ t(relationExpr 1, X1, ..., Xn)

t(not(relationExpr) , X1, ..., Xn) 7→ ¬t(relationExpr , X1, ..., Xn)

t(relationID , X1, ..., Xn) 7→ relationID (X1, ..., Xn)

t(’instanceMapping(’individualID 1 individualID 2 ’)’) 7→
individualID 1=individualID 2

t(classAttributeMapping(two-wayclassExpr attributeExpr
classAttributeMapping1 ... classAttributeMappingn

attributeMapping 1 ... attributeMapping m

classCondition1 ... classConditionp
attributeCondition 1 ... attributeCondition q

logicalExpression1 ... logicalExpressions)) 7→
t(classAttributeMapping(one-wayclassExpr attributeExpr

classAttributeMapping1 ... classAttributeMappingn

attributeMapping 1 ... attributeMapping m

classCondition1 ... classConditionp
attributeCondition 1 ... attributeCondition q

APPENDIX B. FIRST-ORDER REFERENCE SEMANTICS 63

logicalExpression1 ... logicalExpressions))
t(classAttributeMapping(one-wayattributeExpr classExpr

classAttributeMapping1 ... classAttributeMappingn

attributeMapping 1 ... attributeMapping m

classCondition1 ... classConditionp
attributeCondition 1 ... attributeCondition q

logicalExpression1 ... logicalExpressions))

t(classAttributeMapping(one-wayclassExpr attributeExpr
classAttributeMapping1 ... classAttributeMappingn

attributeMapping 1 ... attributeMapping m

classCondition1 ... classConditionp
attributeCondition 1 ... attributeCondition q

logicalExpression1 ... logicalExpressions)) 7→
(t(attributeExpr , f(x), y) ← t(classExpr, x)∧

t(classCondition1, x) ∧ ... ∧ t(classConditionp, x)∧
t(attributeCondition 1, x) ∧ ... ∧ t(attributeCondition n, x)∧
logicalExpression1 ∧ ... ∧ logicalExpressions)∧
t(classAttributeMapping1, x, f(x)) ∧ ...∧
t(classAttributeMappingn, x, f(x))∧
t(attributeMapping 1, x, f(x)) ∧ ...∧
t(attributeMapping m, x, f(x)).

t(classAttributeMapping(one-wayattributeExpr classExpr
classAttributeMapping1 ... classAttributeMappingn

attributeMapping 1 ... attributeMapping m

classCondition1 ... classConditionp
attributeCondition 1 ... attributeCondition n

logicalExpression1 ... logicalExpressions)) 7→
(t(classExpr, f(x)) ← t(attributeExpr , x, y)∧

t(classCondition1, x) ∧ ... ∧ t(classConditionp, x)∧
t(attributeCondition 1, x) ∧ ... ∧ t(attributeCondition n, x)∧
logicalExpression1 ∧ ... ∧ logicalExpressions)∧
t(classAttributeMapping1, x, f(x)) ∧ ...∧
t(classAttributeMappingn, x, f(x))∧
t(attributeMapping 1, x, f(x)) ∧ ...∧
t(attributeMapping m, x, f(x)).

