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Executive Summary

Different applications on the Semantic Web are expected to use different ontologies for the
annotation and interpretation of data on the Web. Such differences hamper interoperation
between applications and hamper reuse of data and ontologies across applications.

Reuse of data and interoperation between applications on the Semantic Web can be
achieved in two principally different ways: by ontology mapping or ontology merging. In
the case of ontology mappings, semantic overlap between ontologies needs to be detected
and described using a formal language. Such a mapping can then be used for querying
across ontologies, transforming data between representations, etc. Eventually, such map-
pings can be used to integrate autonomous heterogeneous applications over the Semantic
Web. In the case of ontology merging, semantic overlap between ontologies needs to be
detected and, based on this overlap, a new ontology is created which can be shared be-
tween applications which used the original ontology. This ontology can now be used to
enable interoperation between applications on the Semantic Web.

This deliverable describes a framework for ontology mediation. We formalize an on-
tology mapping language which can be used to declaratively specify the overlap between
two different ontologies. We then demonstrate how the mapping language fits in an over-
all framework which enables ontology mediation on the Semantic Web. An important part
of this framework is mapping discovery, a semi-automatic means to find overlap between
different ontologies.
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Chapter 1

Introduction

It is expected that differences between ontologies will cause problems in interoperation
between applications on the Semantic Web, as differences in data schemas cause problems
in interoperation of current information systems.

Several approaches to creating ontology mappings have been described in the litera-
ture, e.g. MAFRA [43] and OntoMerge [22]. However, these approaches do not take into
account the most recent Semantic Web languages and they do not describe how to use the
mappings in order to achieve certain tasks on the Semantic Web.

We provide means to overcome problems of interoperability by describing an ontology
mapping language for the Semantic Web and an ontology mediation framework which can
be used to achieve specific tasks on the Semantic Web.

It is the aim of this deliverable to provide a framework for ontology mediation in the
SEKT project. In order to achieve this, we first describe a number of generic ontology me-
diation use cases as well as a number of application scenarios relevant for SEKT. Based
on these scenarios we develop a framework for ontology mediation with different stages,
namely mapping creation, storage and run-time mediation. In this deliverable we partic-
ularly focus on the mapping creation phase where we describe a method for discovering
ontology mappings, as well an on OWL-based ontology mapping language for the speci-
fication of such mappings. Storage and run-time mediation are subject for the deliverable
D4.5.1: Ontology Mediation as Service Component.

We describe certain preliminaries and their coherence. We then focus on the task
of discovering mappings between ontologies based on lexical and structural similarities
and the application of certain heuristics. We describe how all these preliminaries and the
mapping discovery relate in an overall mediation framework.

In this deliverable we describe a formal mapping language, as well as a framework
for creating and using ontology mappings. The formal mapping language is based on
the mapping language developed in deliverable D4.3.1 [9]. In fact, in this deliverable we
formally ground the mapping language to OWL DL in order to enable mapping between
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CHAPTER 1. INTRODUCTION 4

OWL ontologies. The DIP deliverable D1.5 [57] provides a formal grounding to WSML-
Flight [8] in order to enable mapping between WSML-Flight ontologies.

In the remainder of this introduction we describe the terminology used throughout the
deliverable.

1.1 Terminology

In order to make this deliverable self-contained we present here a slightly adapted version
of the terminology clarification we have provided earlier in deliverables D4.2.1 [11] and
D4.3.1 [9].

This section provides some clarification on the terminology used throughout this deliver-
able. We deem this necessary, because there exist many different understandings of the
terminology in the literature.

Ontology An ontologyO is a 4-tuple〈C,R, I, A〉, whereC is a set of concepts,R is a
set of relations,I is a set of instances andA is a set of axioms. Note that these
four sets are not necessarily disjoint (e.g. the same term can denote both a class
and an instance), although the ontology language might require this. Each concept
can have a number of attributes associated with it. An attribute is a special kind of
relation, namely a binary relation associated with a concept.

All concepts, relations, instances and axioms are specified in some logical language.
This notion of an ontology coincides with the notion of an ontology described in
[59, Section 2] and is similar to the notion of an ontology in OKBC [5]. Concepts
correspond with classes in OKBC, slots in OKBC are particular kinds of relations,
facets in OKBC are a kind of axiom and individuals in OKBC are what we call
instances1.

In an ontology, concepts are usually organized in a subclass hierarchy, through the
is-a (or subconcept-of) relationship. More general concepts reside higher in the
hierarchy.

Instance BaseAlthough instances are logically part of an ontology, it is often useful to
separate betweenan ontologydescribing a collection of instances andthe collection
of instancesdescribed by the ontology. We refer to this collection of instances as the
Instance Base. Instance bases are sometimes used to discover similarities between
concepts in different ontologies (e.g. [63], [20]). An instance base can be any
collection of data, such as a relational database or a collection of web pages. Note

1We use the terms instance and individual interchangeably throughout this document. Note that an
instance is not necessarily related to a class.



CHAPTER 1. INTRODUCTION 5

that this does not rule out the situation where instances use several ontologies for
their description.

Instances are an integral part of an ontology. However, we expect that most instance
data will be stored in private data stores and will not be shared along with the
ontology. The instances contained in the ontology itself are typically those instances
that are shared.

Ontology Language The ontology language is the language which is used to represent
the ontology. Semantic Web ontology languages can be split up into two parts: the
logical and the extra-logical parts. Thelogical part amounts to a theory in some
logical language, which can be used for reasoning. Class (concept) definitions,
property (relation) definitions, and instance definitions correspond with axioms in
the logical language. In fact, such definitions are merely a more convenient way to
write down such axioms.

Theextra-logicalpart of the language typically consists of non-functional proper-
ties (e.g. author name, creation date, natural language comments, multi-lingual
labels; see also Dublin Core [68]) and other extra-logical statements, such as
namespace declarations, ontology imports, versioning, etc.

Non-functional properties (also calledannotations) are typically only for the human
reader, whereas the other extra-logical statements are made for machine processing.
For example, namespace declarations can be used to resolve Qualified Names to
full URIs and the importing of ontologies can be achieved automatically by either
(a) appending the logical part of the imported ontology to the logical part of the
importing ontology to create one logical theory or (b) using amediator, which
resolves the heterogeneity between the two ontologies (see also the definition of
Ontology Mediation below).

Ontology Mapping An ontology mappingM is a (declarative) specification of the se-
mantic overlap between two ontologiesOS andOT . This mapping can be one-way
or two-way. In a one-way mapping we specify how to express terms inOT using
terms fromOS in a way that is not easily invertible. A two-way mapping works both
ways, i.e. a term inOT is expressed using terms ofOS and the other way around.

Ontology Mediation Ontology mediation is the process of reconciling differences be-
tween heterogeneous ontologies in order to achieve inter-operation between data
sources annotated with and applications using these ontologies. This includes the
discovery and specification ofontology mappings, as well as the use of these map-
pings for certain tasks, such as query rewriting and instance transformation. Fur-
thermore, themerging of ontologiesalso falls under the term ontology mediation.

Matching We defineontology matching(sometime also calledmapping discovery) as
the process of discovering similarities between two source ontologies. The result
of a matching operation is a specification of similarities between two ontologies.
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Ontology matching is done through application of theMatch operator (cf. [58]).
Any schema matching or ontology matching algorithm can be used to implement
theMatchoperator, e.g. [20, 28, 42, 47].

We adopt here the definition ofMatch given in [58]: “[ Match is an operation],
which takes two schemas [or ontologies] as input and produces a mapping between
elements of the two schemas that correspond semantically to each other”.

Mapping Language The mapping language is the language used to represent theon-
tology mappingM . Mapping languages often allow arbitrary transformation be-
tween ontologies, often using a rule-based formalism and typically allowing arbi-
trary value transformations.

Mapping Pattern Although not often used in current approaches to ontology mediation,
patterns can play an important role in the specification of ontology mappings, be-
cause they have the potential to make mappings more concise, better understand-
able and reduce the number of errors (cf. [55]). A mapping patterncan be seen
as a template for mappings which occur very often. Patterns can range from very
simple (e.g. a mapping between a concept and a relation) to very complex, in which
case the pattern captures comprehensive substructures of the ontologies, which are
related in a certain way.

For the definitions of merging, aligning and relating ontologies, we adopt the defini-
tions given in [16]:

Ontology Merging Creating one new ontology from two or more ontologies. In this
case, the new ontology will unify and replace the original ontologies. This often
requires considerable adaptation and extension.

Note that this definition does not say how the merged ontology relates to the origi-
nal ontologies. The most prominent approaches are theunionand theintersection
approaches. In the union approach, the merged ontology is the union of all entities
in both source ontologies, where differences in representation of similar concepts
have been resolved. In the intersection approach, the merged ontology consists only
of the parts of the source ontology which overlap (c.f. theintersectionoperator in
ontology algebra [69]).

Ontology Aligning Bringing the ontologies into mutual agreement. The ontologies are
kept separate, but at least one of the original ontologies is adapted such that the
conceptualization and the vocabulary match in semantically overlapping parts of the
ontologies. However, the ontologies might describe different parts of the domain in
different levels of detail.

Relating Ontologies Specifying how the concepts in the different ontologies are related
in a logical sense, i.e. creating anOntology Mapping. This means that the original
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ontologies have not changed, but that additional axioms describe the relationship
between the concepts. Leaving the original ontologies unchanged often implies that
only a part of the integration can be done, because major differences may require
adaptation of the ontologies.

The term “Ontology Mapping” was defined above as a specification of the relationship
between two ontologies. We can also interpret the word “Mapping” as a verb, i.e. the
action ofcreatinga mapping. In this case the term corresponds with the term “Relating
Ontologies”:

Mapping Ontologies Is the same as relating ontologies, as specified above.

Note that most disagreement in the literature is around the termalignment. We do
not use the term alignment as such, but we do use the termontology aligning. In most
literature (e.g. [51]), alignment corresponds with what we callrelating ontologiesor
mapping ontologies. Ontology aligning is also sometimes calledontology reconciliation.

The remainder of this deliverable is structured as follows.

Chapter2 presents a number of use cases and scenarios for ontology mediation. These
use cases and scenarios give the reader an idea about where and how to apply ontology
mediation in Semantic Web applications. Chapter3 describes the overall framework for
ontology mediation. Chapter4 describes a number of consideration with respect to on-
tology mediation. Chapter5 describes APFEL, a method for the automatic discovery
of ontology mappings. ChapterA describes the abstract mapping language which was
developed in deliverable D4.3.1 [9], and described a formal grounding for the mapping
language to mediate between OWL ontologies. We present related work in Chapter7 and
conclusions in Chapter8.



Chapter 2

Use Cases and Scenarios for Ontology
Mediation

This chapter describes the three generic use cases we see in the area of Ontology Media-
tion, as well as a number of typical scenarios which illustrate these use cases.

A use case, as in UML, corresponds to a generic task and thus abstracts from par-
ticular applications. An application scenario describes an actual application of ontology
mediation in a particular application domain. One or more use cases might be applicable
to this particular scenario.

The use cases and scenarios motivate the application of ontology mediation in the
SEKT context. They will form the basis for the development of the mediation framework.

2.1 Generic Use Cases

This section describes the core technical use cases which need to be supported by the
Ontology Mediation framework. We distinguish two use cases, which are detailed in the
remainder of this section:

• Instance Mediation

• Ontology Merging

The first use case, Instance Mediation, addresses the tasks of instance transformation,
unification and query rewriting. The second use case, Ontology Merging, addresses the
way two source ontologies can be merged into one target ontology. The third use case,
Creating Ontology Mappings, is about actually finding similarities between ontologies
and creating mappings between the ontologies.

8
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O2O1
mapping

i2i1 transformation

ro1

Figure 2.1:Instance Transformation

2.1.1 Use Cases for Instance Mediation

The following use cases are the typical use cases for instance mediation, where the em-
phasis is on instance transformation and unification.

Instance mediation as the process of overcoming differences between two instance
bases, each described by an ontology. This includes the discovery and specification of
ontology mappings, as well as the use of these mappings for certain tasks, such as query
rewriting, instance transformation and instance unification.

As we can see from the above, instance mediation also requires the discovery and
specification of ontology mappings. This makes apparent the inter-dependencies between
the different use cases. We do not describe the discovery and specification of ontology
mappings here; instead, these use cases are discussed later, because of the use in different
other areas of ontology mediation.

Instance Transformation

For the instance transformation use case we assume two separate applications with sepa-
rate instance stores both described by ontologies. The task to be performed is the transfor-
mation of an instance of a source ontology, sayOS, to an instance of the target ontology
OT . Figure2.1 illustrates the process of instance transformation. An instancei1, which
refers to ontologyO1, is transformed into instancei2, which refers to ontologyO2. What
is important to note here is that the transformation itself is derived from the mapping be-
tween the two ontology and that both the original and the transformed instance provide
information about the same real-world object.

This kind of transformation needs to be supported by the ontology mapping in the
sense that the ontology mapping specifies the relationship between instances of the source
ontologyOS and instances of the target ontologyOT .

When an instance has been translated fromOS toOT , it is often necessary to detect
whether the transformed instance corresponds to an existing instance in the instance store
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i2i1

ro1

O1

i0

Figure 2.2:Instance Unification

of the target application in order to avoid duplication of information and in order to find
out more about the instances in the knowledge base. We discuss this issue below.

Instance Unification

The instance unification problem can be summarized as follows:

Say, we have an ontologyO and two instancesI1 andI2 of that ontology. We want to
check whetherI1 andI2 refer to the same real-world object. In this case we need to unify
I1 andI2 into a newly created instanceI0, which is the union ofI1 andI2. Therefore,
the instance unification task can be decomposed into (1) the identification of instances
referring to the same real-world object and (2) taking the union of the two instances in
order to obtain the unified instance.

If the instancesI1 and I2 have been identified as referring to the same real-world
object, but contain contradictory information, it is not possible to create a unified instance
and the user should be informed of the inconsistency.

Figure2.2 illustrates the process of instance unification. Two instances (i1 andi2) of
the same ontologyO1, which refer to the same real-world objectro1, are unified into one
new instance,i0, which is the union of both instances, is also an instance of the ontology
O1 and also describes to the same real-world objectro1.

The problem of instance unification is highly related to the problem of data and tuple
matching. There has been much research in this area, e.g. [20, 41].

Instance transformation and instance unification are often required in a querying sce-
nario where an applicationA queries another applicationB and the query results (con-
sisting of instances) are transformed to the representation ofA and unified with instances
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O2O1
mapping

rewriting
query1 query2

Figure 2.3:Query Rewriting

in the instance base ofA.

In order to be able to query a data source which uses a different (unknown) ontology,
the query originally formulated in terms of the application’s ontology needs to be rewritten
in terms of the other ontology. The next section describes the generic query rewriting use
case.

Query Rewriting

An operation occurring very frequently in Knowledge Management application is query-
ing of information sources. We want to allow an application to query different heteroge-
neous information sources without actually knowing about all the ontologies. In order to
achieve this, a query written in terms of the application’s ontology, needs to be rewritten
using the terms in the target data source’s ontology.

Say, we have an applicationA, which uses an ontologyOA for its information repre-
sentation. Say now that this applications want to query a different data source, which uses
ontologyOB, butA does not know about the structure of this ontology. The application
A now formulates a queryQA in terms of ontologyOA. In order to execute this query
on the target data source, it needs to be rewritten onto queryQB, which is formulated in
terms of ontologyOB. This rewriting process is illustrated in figure2.3.

After execution of the query, the results are transformed back to theOA representation
and unified with the local instances using the techniques for instance transformation and
unification described above.

2.1.2 Ontology Merging

Besides the instance transformation and unification and query rewriting, we see another
major use case for ontology mediation: Ontology Merging.

In the case of Ontology Merging [52], two source ontologies shall be merged into one
target ontology1 based on the source ontologies. In the general case, the source ontologies

1This merged ontology would be the union of the two source ontologies.
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would disappear and only the target (merged) ontology remains. A special case is when
the source ontologies remain, along with mappings to the merged ontology.

In the case where the source ontologies are discarded after the merge, the complete
instance stores of the source ontologies have to be merged. In the latter case, the source
ontologies can maintain their instance stores and during run-time of the application,
processes of instance transformation and instance unification (cf. the previous subsec-
tion) are necessary.

Of course, when the source ontologies do not have instance stores associated with
them, these problems do not occur. However, in the general case an ontology will have
one or more instance stores associated with it. In special cases, such as the (distributed)
development of ontologies, there will not be instance stores.

2.2 Scenarios for Ontology Mediation

This section describes a number of typical scenarios for ontology mediation.

2.2.1 Data Integration

Data Integration is concerned with the use of data from different sources in one applica-
tion. The data from the different sources needs to be presented to the user in a unified
way.

Using a Relational Database in a Semantic Web application

Relational databases are currently the most popular data storage paradigm in enterprises.
As was shown in [66], a large amount of the information currently available over the Web
is actually stored in relational databases. This clearly demonstrates the necessity of the
ability to use a relational database source in a Semantic Web application.

Typically, a Semantic Web application would not want to deal with the peculiarities of
a specific database schema. Especially since legacy database schemas are often specified
using incomprehensible, organization of application-specific relation and attribute names,
such as ‘TAJO003’.

In order for the application to use a Relational Database, the database schema has
to be “lifted” to the ontology level2, after which an ontology mapping can be created
between the ontology used by the application and the ontology based on the database
schema. Examples of relating relational database schemata to ontologies can be found in
[7, 45, 67].

2This lifting can be done either directly by rewriting the database schema into an ontology (cf. [67]) or
indirectly by relating the database schema to an existing ontology [7].
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Once a relational data schema has been lifted to the ontology level and provided that
the connector lifting the ontology3 performs a two-way translation, i.e. it translates both
instances from the relational representation to the ontology representation and queries
from the ontology to the relational representation, the relational data source can be used
in a Semantic Web application. In fact, the relational source can then be treated as an on-
tology with a corresponding instance store. The ontology corresponding to the relational
database needs to be mapped to other ontologies on the Semantic Web in order to enable
reuse of the database.

Using different heterogeneous Ontologies in a Semantic Web application

Larger applications typically make use multiple data sources to fulfill the information
needs of its users. For instance, in an enterprise it could be the case that customer infor-
mation and employee information are stored in separate sources. An application which
wants to provide a search facility to search through all people known to the enterprise
would have to integrate these separate sources.

We distinguish two cases for the use of different ontologies by one application. In the
first case, the application uses a global ontology, where all specific local ontologies are
mapped to the global ontology. In the second case, we assume a peer-to-peer like setting,
where each application has it’s own ontology and mappings exist between these different
applications.

Using a Global Ontology Because one-to-one mappings between all involved ontolo-
gies do not scale in the general case (cf. [65, 64]), it is often preferred to have a central,
global ontology to which all local ontologies are mapped.

We do not think of one global upper-level ontology for the Semantic Web, but rather
different islands, consisting of a central ontology and local ontologies, along with the
mappings between them, with mappings between the islands where appropriate. This lay-
ering could again define a hierarchy, where other central ontologies can combine several
of these islands and so forth.

One could think of creating an ontology for a specific integration problem in an organ-
isation or take the (more preferred) approach of relating the local ontologies to a domain
ontology, which is a conceptual description of the domain and thus can be shared with
others.

A clear advantage of this approach is that each application can use its own terminol-
ogy, while still being able to communicate with other applications, which use different
terminologies.

3This lifting involves mediation again which can be viewed as another ontology mediation problem as
such using different “ontology languages”, for example OWL and SQL. However, in this paper we restrict
ourselves to mediation between ontology in the same language.
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Using only Local Ontologies In the case of using only local ontologies, an ontology
mapping needs to exist between every pair of ontologies, if one wants to mediate be-
tween. This approach is not very scalable in general, because it requiresO(n2) ontology
mappings, wheren is the number of ontologies.

However, in some special cases, where there are very few ontologies or where using a
global ontology is just not possible, this scenario can occur.

2.2.2 Ontology Evolution

One can expect ontologies to evolve over time. This holds also for ontologies that partic-
ipate in mappings to other ontologies.

If either of the two ontologies involved in an ontology mapping changes (evolves), the
mapping might become invalid. Therefore, the mapping between the ontologies needs to
evolve together with the ontologies and versioning of both the ontologies and the mapping
is required, as we explain below.

Evolving Ontology Mappings

Not only ontologies evolve, but also mappings evolve, especially in early stages of the
mapping design.

For this scenario we assume static (non-evolving) ontologies and a changing (evolv-
ing) mappings between the ontologies. There are various reasons why a mapping may
evolve. Examples are evolving insights into the source and target ontology and their sim-
ilarities, new requirements on the mapping (e.g. a new subpart of the ontologies needs to
be mapped, which was not considered before) and inadequate or faulty specification of
the mapping.

This scenario does not only indicate the need for evolution support for ontology map-
pings, but also for versioning. Each change of the mapping requires a new uniquely iden-
tifiable and accessible version of the mapping, so that applications which use a certain
version do not break because of changes in the mapping.

Mapping different versions of Evolving Ontologies

The evolution of ontology mappings is relatively simple compared to the mapping of
evolving ontologies. In this case, both the source and the target ontology evolve over
time and the mapping between the ontologies needs to evolve accordingly. The mapping
between an evolving source ontology and a target ontology might even make apparent the
need for the target ontology to evolve along with the source ontology in order to enable
inter-operation.
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The evolution of ontologies has the following implications for the mappings between
ontologies:

• Versioningof the ontologies is required and the ontology mapping needs to be speci-
fied betweenspecific versionsof the source and target ontology. The mapping needs
to refer to specific versions of the ontology.

• Evolution of ontologies indicates the need forevolution of ontology mappings. In
many cases, when a new version of an ontology is created, a new version of each of
the mappings in which the ontology is involved needs to be created. If the changes
in the ontologies are formally and explicitly documented, these changes can be used
as the basis for changes to be made to the mapping. We believe that in many cases,
the evolution of the mapping can be done semi-automatically.

• Evolution of an ontologyOB which is mapped to an ontologyOA is mapped, might
indicate the need for subsequent evolution ofOA. An example of this is a case of
database integration, using the local-as-view (cf. [39]) paradigm, whereOB is the
global ontology andOA is the local ontology. Evolution of ontologies indicates
evolution of the domain and if two ontologies present a view on the same domain,
both ontologies need to evolve.

Mappings between different Ontology Versions

When an ontology on the Semantic Web evolves, some mappings to the old ontology
might become invalid. This problem can be solved by either evolving the mapping or by
mapping to a specific version of the ontology.

When mapping to a specific version, problems may occur, for example because the
instance base of the ontology evolves with the ontology. It is not feasible to maintain an
instance base for each version of an ontology, because this can easily lead to inconsisten-
cies and would actually be a maintenance nightmare. A way to deal with this problem is
by providing a mapping between different versions of the ontology.

2.2.3 Browsing and Querying

One core use case for knowledge management is information access. Users have the need
to not only create and process the information, but to access it in an easy and comprehen-
sive way. This section focuses on the two access techniques browsing and querying and
shows their intersection with mapping considerations.
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Browsing

Browsing through the internet is a most common expression nowadays. The same sense
can be used in the context of knowledge. People using a knowledge management sys-
tem typically look for specific information which they expect to find in the system. As
the users often don’t exactly know what they are looking for, it is often easier to start
with related information and then navigate to the goal object. This navigation is done
most intuitive through graphical access as known from internet browsers. Extending this
functionality for semantics is one core issue of the semantic web.

As an example the Spectacle Cluster Map4 [27] is an application for the visualization
of instantiated taxonomies such as class and concept hierarchies. A user can select the
instances of which class to display from a list of all classes. The Cluster Map visualizes
overlap between classes through shared instances. This way, the user can see clearly how
the classes relate to each other, because of the instances that they share. This makes it
very useful for analysis of hierarchically organized datasets. Figure2.4shows the Cluster
Map Viewer displaying an example repository. All classes are represented by large green
spheres. The smaller yellow spheres represent instances. All instances are connected to
one or more classes through the balloon-shaped edges, which indicate the class member-
ship. This is just a simple example, because it consists of a limited number of classes and
instances, and there is not a lot of opportunity for overlap between classes (e.g., a resource
is unlikely to be both an artist and an artefact).

Figure 2.4:Screenshot of the Spectacle tool

Currently the systems are more and more distributed i.e. a big number of different
ontologies arise, not only from one single PC but across peers. To allow efficient brows-
ing the user only wants to be confronted with one coherent structure, without worrying

4Now called AutoFocus, see also http://www.aduna.biz/
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about the original structure and source. Through integration of the various ontologies it is
possible to achieve this singular view. And integration requires mediation.

Querying

Slightly related to the browsing task is the concept of querying information. Querying can
be applied if the user exactly knows what she is looking for. Through complex queries she
expects to directly receive the correct information. Such a query is shown in the following
example:

SELECT
Author, Paper

FROM
{Paper} <rdf:type> {<foo:Paper>};

<foo:keyword> {"RDF", "Querying"};
<dc:author> {Author}

Unfortunately, again as for browsing as well, there may be different representations
of the same thing. Context of the query and context of the result may differ. To allow
a query system to find the correct answer it is necessary to translate the original query
into a format processable by the result repository. This process is commonly known as
query rewriting. Afterwards, when a result has been found the result again has to be
translated back into the format of the original context. To create these rewriting rule
ontology mediation comes back into play.

From the scenarios described in this chapter the need for ontology mediation becomes
clear. On the basis of these use cases and scenarios we will describe a general ontology
mediation framework in the following.

Note that the set of use cases and scenarios described in this chapter is by no means
complete. The practice of ontology mediation will have to show which scenarios present
themselves in practice.



Chapter 3

Ontology Mediation Framework

Taking the use cases and the scenarios of the previous chapter as a motivation for ontol-
ogy mediation, we develop a general ontology mediation framework in this chapter. We
describe the creation, storage and usage of mappings, as well as merging of ontologies.

3.1 Mapping Creation

Re-interpreting a bit [3]: “ the result of a mapping process of two (or more) ontologies
produces a set of mappings across ontologies which allow ontology coordination1; said
differently, mappings are tools that may enable the “flow” of information across het-
erogeneous ontologies by describing the relations existing between entities of different
ontologies.”

Three dimensions of heterogeneity at the conceptual level can affect the definitions of
mappings between ontologies [3]:

• Coverage: mapped ontologies can cover different domains (with possible overlap
or not). If there is no overlap, mapping is not possible because they represent dis-
joint domains. On the other hand, overlap between different domains can also drive
to inconsistencies that should be considered during the exploitation process.

• Granularity : although several mapped ontologies can describe the same domain,
they can use different level of detail in their descriptions. This situation can difficult
very much the mapping process, since the reasonable approach is to equalize the
different level of detail.

1 Ontology Coordination: broadest term that applies whenever knowledge from two or more ontologies
must be used at the same time in a meaningful way (e.g. to achieve a single goal) [3].
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• Perspective: ontologies represent the point of view of its designers, so mapped
ontologies can represent different point of views of the same domain. In this case,
the pre-processing process should provide a way of “rotating” the perspective of an
ontology, or to shift its viewpoint. For some forms of heterogeneity, this can be
done systematically and in a relatively simple way (e.g. for indexical descriptions);
however, in general the change of perspective is a very hard task for any ontology
alignment method.

[3] characterizes the mapping process as the generation of a mapping specification, A, be-
tween two ontologies o and o’. Several parameters can enrich the definition of mapping
process by including a set of external resources (r), restricting or parameterize the map-
ping process. Given that the mapping process can be considered a cyclic process where a
continuous refinement can be applied to improve the mapping results, previous mapping
specification can be considered as a part of the input of a mapping process.

Based in the definition of Alignment process that [3] provides, the mapping process
can be defined as a function f which, from a pair of ontologies o and o’ to align, an input
alignment A, a set of parameters p, a set oracles and resources r, returns a new alignment
A’ between these ontologies: A’ = f(o; o’; A; p; r).

In order to finish the characterization of the mapping process, we will adapt the pro-
posal of [43] to divide the mapping process in five fundamental phases:

• Pre-processing (Lift & Normalization) . Ontologies are first imported in a uniform
representation formalism that facilitates later operations. Then the vocabulary of the
ontology is normalized by eliminating lexical and semantic differences (like special
characters, upper case letters and acronyms). As a refinement step, [23] proposes a
set of heuristics to reduce the number of candidate mapping pairs in order to gain
in efficiency.

• Discovery (Similarity). In this step, similarities between ontology entities are cal-
culated. [43] proposes the use of a combination of different matchers that improve
the result of the identification of equivalent terms. [61] include an extensive survey
of different techniques.

• Specification (Semantic Bridging). After having defined the similarities between
entities in the different ontologies, a mapping needs to be specified between the
similar entities of the ontologies. This specification is usually a manual process,
but it can be aided by a tool. PROMPT [52], for example, comes up with concrete
proposals for merge operations, so that for many operations the user only needs
to say “execute”, instead of having to specify the complete operation. In many
cases (e.g. PROMPT), there is a feedback loop from this phase to the previous
phase. Typically, the tool can offer more precise similarity measures when the
user has already specified part of the mapping. Many matching algorithms do not
include this feedback loop. However, these algorithms can often be readily applied
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in an overall algorithm which executes the match algorithm in each iteration in the
process.

• Exploitation (Execution). When the mappings are specified, the next step is to use
the ontologies and their mapping in a meaningful way. [43] focused this phase in
instance transformation from the source ontology representation into the represen-
tation of the target ontology by evaluating the transformation functions associated
with the mapping defined in the previous stage.

• Post-processing. Based in the exploitation results, the mapping specification is
again analyzed to improve the quality of the exploitation tasks. For instance, the
identification of inconsistencies as a result of the mapping process can be tack-
led by using techniques for repairing inconsistencies or the selection of reasoning
techniques based in paraconsistent approaches that can provide meaningful answers
from inconsistencies sources.

3.2 Merging Ontologies

Ontology Merging can be seen conceptually as taking the union of two ontologies, as in
Wiederhold’s ontology algebra [69], resolving the overlap between the ontologies. This
can be written down as:

C = A ∪B (3.1)

WhereC is the resulting ontology from the merge of ontologiesA andB.

Notice thatC is not literally the union ofA andB. We assume that in the merged on-
tology, all overlap in concepts, relations, instances and axioms has been resolved. Ideally,
a new conceptC would be created for each pair of concepts fromA andB that overlap.
Similarly for relations, instances and axiom.

Thus, for ontology merging we envision an approach as in PROMPT [52]. PROMPT
takes the two source ontologies as input and supports the user in creating a new target
ontology, based on the source ontologies. PROMPT detects overlap in classes in the
source ontologies and suggests new classes to be created in the target ontology, based
on this overlap. Classes in the source ontologies that do not overlap are typically copied
directly from the source to the target ontology.

Ontology Mappings in Ontology Merging When performing ontology in an interac-
tive process as in PROMPT [52], mapping do not really seem to fit in, because classes
and relations in the target ontology are created directly, based on the source ontologies.
However, during the merging process, overlap between classes and relations in the source
ontologies is detected. In ontology mapping, this detected overlap is used to specify
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ontology mappings. In ontology merging, this detected overlap is used to create new
classes/relations in the target ontology.

In ontology merging as in PROMPT the detected overlap is not made explicit. Instead,
it is implicit in the newly created entities in the target ontology. Therefore, it seems
advantageous to create an ontology mapping first and do the ontology merging based on
this mapping. If the ontology mapping has been specified, the relationships between the
ontologies have been made explicit and this can then be used to aid in creating the target
ontology. Another advantage of using an ontology mapping as a basis of the ontology
merging, is that algorithms and tools that have been developed to aid in the development
of ontology mappings can be reused for the ontology merging problem.

3.3 Storage

Mapping and merged ontologies need to be stored. Important aspect is the relationship
with the overall ontology management.

Storage of merged ontologies is equivalent to the storage of any other ontology and
thus we will not pay attention to this aspect here. We do pay additional attention to the
problem of ontology storage. To our knowledge this problem of storage and retrieval of
ontology mappings has not yet been addressed explicitly in the literature, although when
viewing a mapping as a set of instances of a mapping ontology (e.g. MAFRA [43]), a
regular ontology store can be used for storing mappings.

An ontology mapping repository should implement methods for the basic storage and
retrieval of ontology mappings. It should be possible to store any ontology mapping and
to retrieve an ontology mapping based on the identifier of the mapping. Furthermore, it
should also be possible to query for ontology mappings based on the source and/or target
ontology. In other words, if the user knows the ontologies he/she wants to map and there
already exists a mapping, the user must be able to find the existing mapping.

Besides storing and retrieving, a mapping repository should also support basic ver-
sioning of ontology mappings. Users might want to use specific versions of an ontology
mapping and also, a specific version of a mapping would map between specific versions
of the source and target ontologies.

3.4 Run-time Mediation

Mappings between ontologies are established in order to solve a particular problem in
interoperability between ontologies. The question now is: How to use the mappings?
What good are they?

The most important use case for ontology mapping throughout this deliverable was
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querying. A mapping between ontologies enables querying one ontology in terms of the
other. This type of querying need to be supported by the mediation component.

Such querying can be achieved in two principled ways: (1) by loading the source
and target ontologies, together with the mapping rules, in the reasoner and then posing
queries and (2) by rewriting queries in terms of the target ontology to queries in terms of
the source ontology and then querying the source knowledge base, after which the query
answers must be transformed to the target ontology.

Both ways have advantages and disadvantages. In case all ontologies along with the
mapping rules are loaded in the reasoner, one can pose simple queries and immediately
retrieve the answers in terms of the target ontology. The additional steps of rewriting the
query and transforming the answers are not required. Disadvantage is that the reasoner
must have access to the instance store which corresponds with the source ontology. Such
an instance store would typically be a relational database and thus the reasoner must
be aware how to translate queries on the ontology concepts to queries in the relational
database and have access to the database to execute the queries.

In the second case, the additional steps of query rewriting and transformation of the
query results are required. Especially query rewriting is a very complicated and costly
task. This scenario is appropriate in case the source knowledge base exposes only a
simple query interface and there is no access to the instance store.

In this chapter we have described a general ontology mediation framework. In the
remainder of this deliverable we will focus on the mapping creation phase, where we
distinguish two distinct activities: automatic discovery of mappings and refinement and
additional specification of mappings. We describe a method for the automatic discovery
of mappings, called APFEL, and we describe a mapping language for the mapping of
OWL ontologies.



Chapter 4

Ontology Mediation Preliminaries

In this chapter we describe a number of consideration relevant for ontology mediation. In
particular, we consider here ontology languages, mapping languages, ontologies, mapping
patterns, mapping, instance bases and an ontology mapping tool.

4.1 Ontology Language

An essential part of the ontology mediation framework is the language which is used
to specify the ontologies. This ontology language restricts the way mappings between
ontologies can be expressed. We identify the following requirements and critical compo-
nents for a general mediation framework concerning the underlying ontology languages.

4.1.1 Expressivity and Language Mismatches

In the simpler case we assume that we only want to establish mappings between ontolo-
gies in the same ontology language.

In a more complicated scenario you might also want to map between languages of
different expressivity. Here, when mapping between a language with richer language fea-
tures to a language with less expressivity information loss might be inevitable. The other
way around should be less problematic. Even worse there might be semantic differences
with languages which only overlap semantically, i.e. either language has some features
not expressible in the other and vice versa.

When mapping or merging ontologies in different ontology languages we might en-
counter two general scenarios. Either (i) only mappings between the fragments of the
ontologies where the semantics overlaps are allowed or (ii) a merged ontology is defined
in terms of an ontology language which provides a superset of the respective underlying
ontology languages. In other words, we require in a mediation framework dealing with
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different ontologies the definition of the (i) intersection of different ontology languages
and (ii) a minimal unifying ontology language covering and unifying all expressive fea-
tures of the underlying ontology languages.

4.1.2 Combinability with Rules

Mappings are typically expressed by some form of rules. Here, logic programming style
rules, offering the expressivity of a powerful query language are often the choice. There
is a whole bunch of literature on combining rule languages with ontology languages (cf.
[40, 21, 29, 50, 25]. Note that a mapping language might need much more features than
expressible in simple Horn rules. While Horn-rules are sufficient to express conjunctive
queries on Relational Databases for several advanced mapping additional features such as
an exhaustive set of pre-defined functions, aggregations, negation, etc. might be needed.

4.1.3 Scalability and Decidability

Expressivity of an ontology language usually comes at cost. This is also a reason why
certain ontology languages restrict expressivity in order to keep computational cost of
deciding certain reasoning tasks low. Therefore most ontology languages are layered.
Depending on your application, the user might decide which expressivity is needed for
the ontology at hand.

In most of the approaches to combine rules with ontology languages decidability is-
sues are the major concern. For instance, inferencing in Ontologies expressed in Descrip-
tion Logics style might become undecidable when rules are simply added to the language,
an example of such an undecidable combination of rules with an ontology languages is
the rule language SWRL [31] as an extension of the Web ontology language OWL (more
specifically its OWL DL fragment).

On the contrary, certain inferences in the ontology language itself might already be
undecidable which is for instance the case for OWL Full. So, in order to have a decid-
able language, one has to find a reasonable tradeoff between expressivity of the mapping
language and the ontology language.

4.1.4 Grounding Mappings to Different Ontology Language

We focus in this deliverable on mappings between Ontologies in OWL and the WSML
ontology languages. This indicates that we require for our ontology mapping language
a clear specification of the semantics of mapping between ontologies in either language.
Since we want to keep the definition of mappings as general as possible, we need to
specify for each pair of ontology languagesA,B and elementary mapping patternm:
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1. Whether the respective mappingm might be used to map fromA to B.

2. What the semantics ofm in terms of source ontology languageA and target ontol-
ogy languageB is.

4.1.5 Tool support

The requirements on the tool support for the ontology language depend on what kind
of ontology languages will be supported (both syntaxes and semantics) and what kind of
internal representation is used for the actual mediation. Depending on these requirements,
several translators between different representation languages might be required. Given
a source ontologyOA in a specific ontology languageA and a target ontology language
B the tools should allow for identification of the respective subset ofOA which can be
mapped to ontology languageB and/or which parts ofOA are incompatible with the
expressivity of languageB. The tools should only allow for the definition of compatible
mappings with respect to the source ontology languages as identified in Section4.1.4

4.2 Mapping Language

The mapping language itself is used to specify the actual mappings between the ontolo-
gies. This mapping language interacts with the patterns in order to enable the reuse of
patterns and in order to make the mappings more easily understandable.

We use the language-independent mapping language specified in SEKT deliverable
D4.3.1 [9] (see also AppendixA). As can be seen from D4.3.1, this language is highly
related with the elementary mapping patterns described in that deliverable.

Tool support A reasoner is required that can deal with the mapping language. The kind
of reasoner which is required depends on the actual grounding of the mapping language.
In Chapter6 we ground the mapping language to OWL DL. Such a grounding requires a
Description Logic reasoner in order to work with the mappings. In the case of mapping
between Logic Programming-based grounding, such as grounding to WSML-Flight [57],
a Logic Programming or deductive database engine is required for reasoning.

In the case of grounding to SWRL (which is a straightforward extension of the ground-
ing to OWL DL) full first-order theorem prover is required.

4.3 Ontologies

Ontologies are the actual representations we want to mediate between and therefore form
an integral part of the mediation framework. In order to create a mapping or in order to
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discover mappings, the source and target ontologies need to be imported in the respective
tools. For many run-time tasks, reasoning with the source and target ontologies is also
required.

Certain types of mappings can only be applied to certain (kinds of) ontologies. It
is also to be expected that there will be many mappings between ontologies within a
particular domain, whereas between domains, there will not be many mappings between
ontologies. Also because there is not much overlap between the different domains.

Tool support Mechanisms need to be in place to access ontologies, both at the design-
time, when the mapping is created, and at run-time when the actual mediation is per-
formed. We assume here that there are already ontology management facilities in place
and we do not see this to be within the scope of the ontology mediation effort.

4.4 Mapping Patterns

The mapping patterns capture recurring patterns found in ontology mappings. These pat-
terns are defined in D4.3.1 and used in the mediation framework.

Tool support Mapping patterns need to be stored and retrieved from the patterns library.
This patterns library is described in more detail in D4.3.1.

4.5 Mappings

The mappings themselves are used to enable mediation between different representations.
Important aspects related to the mappings are the creation of mappings using specific
tools, as well as the representation of mappings themselves through the mapping lan-
guage.

One important aspect to keep in mind is that there might be several versions of an
ontology mapping, along with several versions of the source and target ontologies. Often
a change in either the source or target ontology would require a change in the ontology
mapping.

Tool support Mappings need to be stored and retrieved. It might be possible to store
them alongside the ontologies.
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4.6 Instance Bases

Instance Stores are used to store large sets of instances (instance bases) related to ontolo-
gies. Connectors are used to import sets of instances into the mediation framework in
order to do achieve certain tasks.

Essentially, these data source connectors are not specific for the mediation framework.
In fact, a Semantic Web application, which uses a large data source, would use such a data
source connector orwrapper.

4.7 Mapping Tool

The mapping tool is used to create the actual mappings and perform the actual merging
of ontologies and heavily relies on user interaction. Therefore, the GUI presented by the
tool is an essential part of the tool.

Another important part of the tool is the connection to a matching algorithm, which
can be used to partially automate the detection of similarities between ontologies. These
similarities are used to assist the user in creating mappings or performing the merging of
ontologies.



Chapter 5

Mapping Discovery

The first phase in the ontology mediation framework described in the previous chapter
is mapping creation. Manually creating mappings between ontologies is a very tedious,
time-consuming and error-prone task. We therefore propose to create mappings in an au-
tomated fashion. This chapter of the deliverable provides new insights on full-automatic
methods for mapping discovery.

In recent years different methods for automatic ontology mapping have been proposed
to deal with this challenge (Figure5.1). Thereby, the proposed methods were constricted
to one of two different paradigms: Either,(i), proposals would include a manually prede-
fined automatic method for proposing mappings, which would be used in the actual map-
ping process (cf. [23, 26, 53]). They typically consist of a number of substrategies such
as finding similar labels. Or,(ii) , proposals would learn an automatic mapping method
based on instance representations, e.g. bag-of-word models of documents (cf. [1, 18]).
Both paradigms suffer from drawbacks. The first paradigm suffers from the problem that
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Figure 5.1:Ontology Mapping

it is impossible, even for an expert knowledge engineer, to predict what strategy of map-
ping entities is most successful for a given pair of ontologies. Furthermore, it is rather
difficult to combine the multiple different substrategies to behave optimally. This is espe-
cially the case with increasing complexity of ontology languages or increasing amounts of
domain specific conventions. The second paradigm is often hurt by the lack of instances
or instance descriptions, because not in every case an ontology has many instances and in
many cases instances exist only for some part of the ontology. Also, knowledge encoded
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in the intensional descriptions of concepts and relations is only marginally exploited by
this way.

Hence, there remains the need to automatically combine multiple diverse and com-
plementary mapping strategies ofall indicators, i.e. extensionaland intensional descrip-
tions, in order to produce comprehensive, effective and efficient semi-automatic mapping
methods. Such methods need to be flexible to cope with different strategies for various
application scenarios, e.g. by using parameters. We call them “PArameterizable Mapping
Methods” (PAMM).

5.1 Bootstrapping with APFEL

In the course of SEKT, we have developed a bootstrapping approach for acquiring the
parameters that drive such a PAMM. We call our approach APFEL for “Alignment Process
Feature Estimation and Learning”.

APFEL is based on four major considerations. First, at the level ofexecuting the
mapping method, APFEL is based on the general observation that mapping methods like
QOM [23] or PROMPT [53] may be mapped onto a generic mapping process. Major
steps of this generic process include:

1. Feature Engineering, i.e. select small excerpts of the overall ontology definition to
describe a specific entity (e.g., theLABEL to describe the conceptO1:DAIMLER ).

2. Search Step Selection, i.e. choose two entities from the two ontologies to compare
(e.g.,O1:DAIMLER andO2:MERCEDES).

3. Similarity Assessment, i.e. indicate a similarity for a given description of two enti-
ties (e.g., simillabel(O1:DAIMLER ,O2:MERCEDES)=0).

4. Similarity Aggregation, i.e. aggregate multiple similarity assessment for one pair of
entities into a single measure (e.g., simil(O1:DAIMLER ,O2:MERCEDES)=0.5).

5. Interpretation, i.e. use all aggregated numbers, some threshold and some in-
terpretation strategy to propose the equality for the selected entity pairs
(map(O1:DAIMLER )=‘⊥’).

6. Iteration, i.e. as the similarity of one entity pair influences the similarity of neigh-
boring entity pairs, the equality is propagated through the ontologies (e.g., it may
lead to a new simil(O1:DAIMLER ,O2:MERCEDES)=0.85, subsequently resulting in
map(O1:DAIMLER )=O2:MERCEDES).

Second, at the meta level ofrepresenting a mapping method, APFEL parameterizes
each of these steps by maintaining a declarative representation of features engineeredQF ,
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similarity assessmentsQS for the features, a weighting schemeQW for such similarity as-
sessments and a thresholdQT to feed into the interpretation strategy (see Section5.3.1).1

Third, such a declarative representation, e.g. of QOM or PROMPT, can be given
to a parameterizable mapping method, PAMM, for execution such as indicated in Fig-
ure 5.1. In fact, we initialize PAMM with the representation of a QOM-like strat-
egy, PAMM(QOM), before some initial mappings of two given ontologies are gener-
ated through it. The mappings are then handed over to the user for validation (cf. Sec-
tion 5.3.2).

Fourth, APFEL generates hypotheses of useful featuresHF for a domain-specific
pair of ontologies and proposes similarity assessmentsHS for these hypotheses (cf. Sec-
tion 5.3.3). APFEL uses the validated initial mappings for machine learning the weighting
scheme. The aggregation scheme recurs to all feature/similarity combinations under con-
sideration, which are represented byDF := QF ∪ HF andDS := QS ∪ HS. Finally, it
outputs the weighting schemeDW and the threshold it has learnedDT (cf. Section5.3.4).

The APFEL process is summarized in Figure5.3 and will be explained in detail in
Section5.3. The result of APFEL is a representation of an mapping scheme. The scheme
then has been optimized by machine learning to consider the indicators initially used for
bootstrapping as well as the newly generated domain/ontology-specific indicators. Thus,
it may integrate indicators working at the level of intensionaland extensional ontology
descriptions to result in a comprehensive improved mapping method (cf. Section5.4).

5.2 General Mapping Process
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Figure 5.2:General Mapping Process in PAMM

We briefly introduce our definition of the generic mapping process that subsumes all
the mapping approaches we are aware of. It has previously been presented in [23, 24].
Here, we only focus on its definition to the extent that is necessary to understand how
APFEL operates on the steps of the generic process. Figure5.2 illustrates the six main
steps of the generic mapping process. As input, two ontologies are given which are to be
mapped. The steps are illustrated through examples where necessary.

1. Feature engineeringselects only parts of an ontology definition in order to describe

1Unlike done in QOM [23], we do not vary the search step selection, as QOM was about the trade-off
between efficiency and effectiveness and in this paper we focus on effectiveness alone. Further, we do not
vary the interpretation and iteration strategies to limit the exploration space.
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a specific entity. Implicitly, [26] made a similar observation. For instance, mapping
of entities may be based only on a subset of all RDFS primitives in the ontology.
A feature may be as simple as the label of an entity, or it may include intensional
structural descriptions such as super- or sub-concepts for concepts, or domain and
range for relations. Instance features may be instantiated attributes. Further, we use
extensional descriptions.

<rdf:Description rdf:about=‘‘o1:Daimler’’>
<rdf:type rdf:resource=‘‘auto:automobile’’>
<rdf:type rdf:resource=‘‘auto:luxury’’>
<auto:speed rdf:resource=‘‘fast’’>

</rdf:Description>

Example 1: Fragment of First Example Ontology.

<rdf:Description rdf:about=‘‘o2:Mercedes’’>
<rdf:type rdf:resource=‘‘auto:automobile’’>
<auto:speed rdf:resource=‘‘fast’’>

</rdf:Description>

Example 2: Fragment of Second Example Ontology.

In our Examples 1 and 2 we have fragments of two different ontologies, one de-
scribing the instanceDAIMLER and one describingMERCEDES. Both O1:DAIMLER

and O2:MERCEDEShave a generic feature calledTYPE. The values of this feature
are(i), AUTOMOBILE andLUXURY , and,(ii) , AUTOMOBILE, respectively. As stated
before also domain ontology-specific features are included through this step e.g.
SPEED, the value of which isFAST for both the first and second entity.

The reader may note that another generic feature in our running example could
be ISINPROJECTIONOFRELATION. For O1:DAIMLER andO1:BEETLE andO1:PICKUP

the corresponding feature-value pair would beISINPROJECTIONOFRELATION SPEED.
As one may imagine in this context, the domain ontology-specific feature-value pair
(SPEED FAST) will be more important to correctly and only mapO1:DAIMLER and
O2:MERCEDESthan the generic (ISINPROJECTIONOFRELATION SPEED), which would
not have the domain knowledge that both ontologies useFAST for characterization.

Nevertheless manually determining the correct features for ontology mapping is a
difficult process. In the next section we will present an approach using machine
learning to identify the most important features.

2. Selection of Next Search Steps.The derivation of ontology mappings takes place in
a search space of candidate pairs. This step may choose to compute the similarity
of a restricted subset of candidate concepts pairs{(e, f)|e ∈ EO1 , f ∈ EO2} and
to ignore others. For the running example we simply select every possible entity
pair as an mapping candidate. In our example this means we will continue the
comparison ofO1:DAIMLER andO2:MERCEDES.
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3. Similarity Assessmentdetermines similarity values of candidate pairs. We need inex-
act heuristic ways for comparing objects i.e. similarity functions such as on strings
[38], object sets [6], checks for inclusion or inequality, rather than exact logical
identity. The result lies within a range between 0 and 1. Returning back to our
example we use a similarity function based on the instantiated results, i.e. we check
whether the two concept sets, parent concepts ofO1:DAIMLER (AUTOMOBILE and
LUXURY ) and parent concepts ofO2:MERCEDES(only AUTOMOBILE), are the same.
In the given case this is true to a certain degree, effectively returning a similarity
value of 0.5. The corresponding feature/similarity assessment (FS1) is represented
in Table5.1. For APFEL we refer to them asQF /QS assessments.

FS1: if parent concepts are the same, the instances are also the same to a certain degree
Comparing No. FeatureQF Similarity QS

Instances FS1 (parent,X1) set equality(X1, X2)

Table 5.1:Informal and Formal Feature/Similarity Assessment

4. Similarity Aggregation. In general, there may be several similarity values for a can-
didate pair of entities (e, f ) from two ontologiesO1, O2, e.g. one for the similarity
of their labels and one for the similarity of their relationship to other terms. These
different similarity values for one candidate pair must be aggregated into a single
aggregated similarity value. This may be achieved through a simple averaging step,
but also through complex aggregation functions using weighting schemesQW . For
the example this leads to: simil(O1:DAIMLER ,O2:MERCEDES)=0.5.

5. Interpretation uses the aggregated similarity values to map entities fromO1

and O2. Some mechanisms here are e.g. to use thresholdsQT for sim-
ilarity [53], to perform relaxation labelling [18], or to combine struc-
tural and similarity criteria. simil(O1:DAIMLER ,O2:MERCEDES)≥0.5 leads to
map(O1:DAIMLER )=O2:MERCEDES.

6. Iteration. Several algorithms perform an iteration (see also similarity flooding [46])
over the whole process in order to bootstrap the amount of structural knowledge.
Iteration may stop when no new mappings are proposed, or if a predefined number
of iterations has been reached. Note that in a subsequent iteration one or several of
steps 1 through 5 may be skipped, because all features might already be available
in the appropriate format or because some similarity computation might only be
required in the first round. We use the intermediate results of step 5 and feed them
again into the process and stop after a predefined number of iterations.
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5.3 Supervised Learning of an Ontology Mapping
Process
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Figure 5.3:Detailed Process in APFEL

In this section the APFEL process is explained in detail following the Figure5.3. Data
structures are illustrated through white boxes and process steps through colored boxes.
We will describe first the data structures, then the process steps. Finally, we describe how
the result of APFEL is applied. Some steps are still work in progress and research will be
continued in the scope of SEKT.

5.3.1 Data Structures

We here describe the data structures on which APFEL operates. APFEL requires two
ontologiesO1 andO2 as inputs to its processing. Either these are the ontologies for which
the further mapping process will be optimized directly. Or, they exemplarily represent a
type or domain which requires an optimized mapping method.

Core to APFEL is the representation of the generic mapping process. Relevant data
structures for representation include:

(i) QF : features engineered (e.g. label, instances, domain), (ii ) QS: similarity as-
sessments corresponding to the features ofQF (e.g. equality, subsumption), (iii ) QW :
weighting scheme for an aggregation of feature-similarity assessments (e.g. weighted av-
eraging), and (iv) QT : interpretation strategy (e.g. mappings occur if similarity is above
the fixed threshold).

Such a declarative representation can be given to a parameterizable mapping method,
PAMM, for execution. In fact, we can initialize PAMM with a representation of
different strategies. Thus, an initial mapping function, mapinit , may be defined by
mapinit :=PAMM(PROMPT) or mapinit :=PAMM(QOM).

Then, APFEL uses user validationsMV of the initial proposals of mapinit .

In general, the described input does not explicitly require a knowledge engineer. The
two ontologies, an arbitrary (predefined) mapping method, and the validation of the initial
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mappings may be processed by a typical user as well.

The output of APFEL is an improved mapping method, maplearn, defined as
maplearn:=PAMM(APFEL(O1, O2, QF , QS, QW , QT ,MV )). The parameters that char-
acterize APFEL(O1, O2, QF , QS, QW , QT ,MV ) constitute the tuple (DF , DS, DW , DT ).

The reader may note that maplearn and mapinit both are functions, such that
the result of mapinit (O1:DAIMLER , O1, O2) might be ‘⊥’ and differ from the result of
maplearn(O1:DAIMLER , O1, O2) = O2:MERCEDES.

5.3.2 Generation and Validation of Initial Mappings

Machine learning as used in this paper requires training examples. The assistance in their
creation is necessary as in a typical ontology mapping setting there are only a small num-
ber of really plausible mappings available compared to the large number of candidates,
which might be possible a priori. Presenting every candidate for validation makes the
process tiring and inefficient for the human user.

Therefore, we use an existing parametrization as input to the Parameterizable map-
ping Method, e.g. mapinit=PAMM(QOM) to create the initial mappingsAI for the given
ontologiesO1 andO2. As these results are only preliminary, PAMM does not have to use
very sophisticated processes: very basic features and similarities (e.g. label similarity)
combined with a näıve simple averaging and fixed threshold are sufficient in most cases.
Resulting pairs are stored starting with the highest probability mappings first as shown in
Table5.2.

Entity 1 Entity 2 User Mark

car car to be rated
auto automobile to be rated

wheel tire to be rated
speed hasSpeed to be rated
driver gear to be rated

Table 5.2:Initial Mappings Returned for Validation

This allows the user to easily validate the initial mappings and thus generate correct
training dataAV . If the user further knows additional mappings he can add these map-
pings to the validated list. Entity pairs not marked by the user are by default treated as
disjunct entities. Obviously the quality of the later machine learning step depends on the
quality and quantity of the validated mappings done at this point.
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5.3.3 Generation of Feature/Similarity Hypotheses

As mentioned in the introduction it becomes difficult for the human user to decide which
features and similarity heuristics make sense in indicating an mapping of two entities.
Our approach therefore generates these feature/similarity combinations automatically.

The basis of the feature/similarity combinations is given by an arbitrary mapping
method such as PAMM(QOM) with which we have achieved good results (see [33]).

Further, from the two given ontologies APFEL extracts additional featuresHF by
examining the ontologies for overlapping features. Those being part of both ontologies
are added. At this point domain-specific features are integrated into the mapping process.
These features are combined in a combinatorial way with a generic set of predefined
similarity assessments including similarity measures for, e.g., equality, string similarity,
or set inclusion. Thus, APFEL derives similarity assessmentsHS for featuresHF .

{
extras
licensenumber

}
×

{
equality
inclusion

}
⇒

Comparing No. FeatureHF Similarity HS

Cars FS1 (extras,X1) set equality(X1, X2)
Cars FS2 (extras,X1) subset(X1, X2)
Cars FS3 (license no.,X1) equality(X1, X2)
Cars FS4 (license no.,X1) substring(X1, X2)

Figure 5.4:Generation of Additional Hypotheses

Figure5.4illustrates this process for generating hypotheses for feature/similarity com-
binations. In the given example two domain attributesEXTRAS andLICENSE NUMBER are
compared using theEQUALITY and theINCLUSION heuristic. All feature/similarity combi-
nations are added for now. Some feature/similarity combinations will not be very useful,
e.g. FS4, comparing whether one license number is a substring of another license number.
However, in the subsequent training step machine learning will be used to pick out those
which improve mapping results.

From the feature/similarity combinations of (QF , QS) and of the extracted hypotheses
(HF , HS) we derive an extended collection of feature/similarity combinations (DF , DS)
with DF := QF ∪HF andDS := QS ∪HS.

5.3.4 Training

After determining the classification of two entities of being mapped or not (AV ), all vali-
dated mapping pairs are processed with the previously automatically generated collection
of features and similarities. From each set a numerical value is returned which is saved
together with the entity pair as shown in Table5.3.
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Entity1 Entity2 Mark FS1 FS2 FS3 FS4

car car 1 1.0 1.0 0.8 0.0
auto automobile 1 0.7 1.0 0.7 0.0

wheel tire 0 0.0 1.0 0.8 0.0
speed hasSpeed 1 0.7 0.0 0.0 1.0
driver gear 0 0.2 0.0 0.0 0.0

Table 5.3:Training Data for Machine Learning (including user validation and value re-
turned by each feature/similarity combination FSi)

We can now apply machine learning algorithms to the automatically generated fea-
turesDF and similaritiesDS using the example training mappingsMV . More specifically,
the numerical values of all feature/similarity combinations are the input for the algorithm.
The classification of being mapped or not marks the output. Different machine learning
techniques for classification (e.g. decision tree learner, neural networks, or support vector
machines) assign an optimal internal weightingDW and thresholdDT scheme. Machine
learning methods like C4.5 (J4.8 in Weka) capture relevance values for feature/similarity
combinations. Feature/similarity combinations which do not have any (or only marginal)
relevance values for the mapping are given a weight of zero and can thus be omitted.

To give the reader an intuition of the results of this training step we refer to Example
3, a decision tree. Depending on the output of each individual rule we traverse the tree
and reach a leaf indicating either that two entities are mapped (1) or not (0).

rule0 <= 0.5
| rule4 <= 0
| | rule3 <= 0.196429: 0 (149.0/3.0)
| | rule3 > 0.196429
| | | rule5 > 0.964286
| | | | rule2 <= 0.267857: 1 (22.0)
| | | | rule2 > 0.267857: 0 (10.0)
| | | rule5 <= 0.967612: 1 (50.0/12.0)
| rule4 > 0: 1 (10.0/4.0)
rule0 > 0.5: 1 (32.0/1.0)

Example 3: Decision Tree Output.

From this we finally receive the most important feature/similarity combina-
tions (featuresDF and similarity DS) and the weightingDW and thresholdDT

thereof. With this we can set up the final ontology mapping method which we call
maplearn:=PAMM(APFEL(O1, O2, QF , QS, QW , QT ,MV )). Depending on the complex-
ity of the mapping problem it might be necessary to repeat the step of test data generation
(based on the improved mapping method) and training.

From first evaluation results one can derive that decision tree learning yields the best
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results, although one has to be aware that the current evaluation is only preliminary and
based on a restricted set of ontologies. Apart from that, a typical advantage of deci-
sion trees is that they may be understood by users. The features and similarities can
be transformed into natural language and serve as an explanation for the automatically
found mappings: “If labels are similar to a degree of 0.5 or more, the involved entities are
mapped.” Thus, the black box of ontology mapping becomes more transparent for users.

As with every machine learning approach the results are dependent on the number of
training examples. Simple feature/similarity combinations such as labels/syntactic simi-
larity can probably be learned with as little as ten examples. More complex combinations
based on less frequent features, will only be included in the result with larger numbers
of training examples. An upcoming thorough evaluation of our approach will provide the
correct numbers soon.

5.4 Application

The final system is parameterized withDF , DS, DW , andDT . It allows for fully or
semi-automatic mapping of the two ontologies — and further uses domain-specific opti-
mization of the mapping system. Depending on the weighting and threshold scheme this
may also include an explanation facility which provides evidence why two entities are
mapped.

The presented approach is currently being implemented in Java using the capabilities
of the KAON2-framework (based on [34]), which can handle OWL-DL ontologies. The
optimized (learned) mapping method maplearn will be applied in the mediation frame-
work presented in this deliverable. We expect to provide a high quality automatic ontol-
ogy mapping approach for SEKT.

5.5 Related Work

The tools PROMPT and AnchorPROMPT [53] use labels and to a certain extent the struc-
ture of ontologies. However, their focus lies on ontology merging, i.e. how to create one
ontology out of two. Potential matches are presented to the user for confirmation, thus
making it a semi-automatic tool. In their tool ONION [48] the authors use rules and infer-
encing to execute mappings, but the inferencing is based on manually assigned mappings
or heuristics simpler than PROMPT. Besides equality first steps are taken in the direction
of complex matches. These could also include concatenation of two fields such as “first
name” and “last name” to “name”[17]. [4] further present an approach for semantic map-
ping based on SAT-solvers. In their approach an mapping can only be created if there are
no inherent semantic rules restricting this. In [44] the authors present a practical approach
and a manual tool to map ontologies.
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[18] use machine learning in their approach GLUE. However, their learning is re-
stricted on concept classifiers for instances based on instance descriptions, i.e. the content
of web pages. From the learned classifiers they derive whether concepts in two schemas
correspond to each other. Additional relaxation labelling is based solely on manually en-
coded predefined rules. Nevertheless, from all ontology mapping approaches their work
is closest to APFEL. In [19] the same authors introduce the notion of the use of domain
specific attributes, thus restricting their work on databases.

In this chapter we have described a way to automatically discover mappings between
ontologies. However, such mappings are not guaranteed to be correct or complete. Thus,
the domain expert needs to have the opportunity to refine the discovered mappings and to
introduce new mappings which have not been discovered before. Such mappings, as well
as the output of the discovery process, need to be specified using an ontology mapping
language. In the next chapter we describe such a language for the mapping of OWL DL
ontologies.



Chapter 6

Ontology Mapping Language

The output of the mapping creation phase in the ontology mediation framework is a spec-
ification of the ontology mappings. Furthermore, the outcome of the mapping discovery
(in the mapping creation phase) is also a specification of ontology mappings. In order
to adequately specify such mappings we describe an ontology mapping language in this
chapter.

This chapter will analyze the requirements on the mapping language as well as the
elementary mapping patterns in D4.3.1 [9] as a starting point and define the ontology
mapping language. After that we describe the syntax, semantics and pragmatics of the
language.

6.1 Requirements on the Ontology Mapping Language

This section shall present a number of requirements on the Ontology Mapping Specifi-
cation Language, partly derived from the use cases and scenarios presented in Chapter2
and the ontology mismatches which surveyed [35]. Furthermore, we present a number of
additional requirements that follow from our setting.

Particularly, we identify the following requirements on an Ontology Mapping Speci-
fication Language:

Mapping on the Semantic Web Our goal is to develop an ontology mapping language
for the Semantic Web. Therefore, we must be able to specify mappings between
ontologies on the Web and the ontology mapping itself must also be available on
the Web. The current standard for specifying ontologies on the web is the Web
Ontology Language OWL [14]. We must therefore support mapping between on-
tologies written in OWL. An important species of OWL is OWL DL, which is a
syntactical variant of theSHOIN (D) Description Logic language [30]. There-
fore, mappings between OWL DL ontologies can be reduced to mappings between

39
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Description Logic ontologies.

Specify Instance Transformations It follows from the generic use cases presented in the
previous section that the ontology mapping language must support transformations
between instances of the different ontologies. In fact, [58] defines the mapping
process as the set of activities required to transform instances of the source ontology
into instances of the target ontology. Also MAFRA [43] explicitly addresses the
transformation of instances on the basis of a mapping between two ontologies.

In instance transformation, we identify two dimensions: structural transformation
and value transformation:

• A structural transformation is a change in the structure of an instance. This
means that an instance might be split into two instances, two instances might
be merged into one, properties might be transformed to instances, etc. For
example, an instance of the conceptPhD-Student in one ontology might need
to be split into two instances, one ofStudent and one ofResearcher, in the
target ontology. A different example is the use of aggregate functions. An
ontologyOS might have a conceptParent with a propertyhasChild, whereas
the ontologyOT might also have a classParent, but in this case only with
the propertynrOfChildren. An aggregate function is required to count the
number of children of a specific parent inOS in order to come up with a
suitable property filler fornrOfChildren.

• A value transformation is a simple transformation from one value into an-
other. An example of such a value transformation is the transformation from
kilograms into pounds

An example of a transformation, which requires both a structural and two value
transformations is the transformation from a full name to separate first and last
names. Splitting the full name instance into both the first and the last name requires
structural transformation. After the structural transformation, two value transfor-
mations are required; on for the first and one for the last name.

Specify Instance Similarity Conditions One of the generic use cases presented in
Chapter2 is the instance unification use case. It turned out in this use case that
when instances need to be unified, first the similarity between the instances must
be established. In order to detect the similarity, one can compare the values of all
properties and describe the similarity as a function over all the individual property
similarities. The other extreme is to designate one property as the identifying prop-
erty (cf. primary keys in relational databases) and designate instances that have
equivalent values for these designated properties as equivalent and unify them1.

1Note that, as with primary keys in relational databases, it is possible to designate several properties as
the unique identification for instances
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We shall take a hybrid approach, where it is possible to specify equality of instances
as a logical condition over its property values. We call this theexactapproach for
instance unification. In the second case, theprobabilistic approach, it is possible
to specify a matching function over the property values, which yields a probability
between 0 and 1, specifying the similarity between the instances. When combined
with a threshold, this function also becomes a condition for similarity.

We are currently not aware of any existing approach which addresses the specifica-
tion of instance similarity in the same sense we do here.

Query Rewriting and Ontology Merging The Query Rewriting and Ontology Merging
use cases presented in the previous chapter indicate the need for the ontology map-
ping to not only map instances of the ontologies but to also map concepts and
relations in the source and target ontologies. This is necessary for the case when
a query written in terms of ontologyOS needs to be executed on an instance base,
which is described by ontologyOT . The mapping needs to specify exactly how
concepts and relations inOS relate to concepts in relations inOT in order to enable
the rewriting.

After execution of the query, the result instances need to be transformed back toOS

which involves all requirements for instance transformation described above. The
querying use case scenario does, however, indicate the need for a mapping which
supports query rewriting in one direction and instance transformation in the other
direction.

One mapping for all tasks It is clearly advantageous to have one common declarative
mapping language, which suffices for the different use cases of instance transfor-
mation, instance unification, query rewriting and ontology merging.

MAFRA [43] combines relating entities (such as concepts and relations) in ontolo-
gies with instance transformations. So-calledsemantic bridgesspecify the relation-
ship between entities in different ontologies. Each instance of a semantic bridge
has a transformation attached to it, which specify the instance transformations. The
semantic bridges can be used for query rewriting and ontology merging, whereas
the attached transformations can be used for instance transformation.

Use of Mapping patterns It is our expectation that many similar ontologies will appear
on the Semantic Web. When many similar ontologies exist in a specific domain,
the mappings between the ontologies will also be similar. In order to capture these
similarities and to reuse existing mapping specification we aim to identify recurring
mapping patterns. A mapping pattern can be seen as a template for mappings be-
tween classes of ontologies, which can be instantiated to create specific mappings
between specific ontologies (cf. [55]).

Mapping patterns furthermore reduce the complexity of a mapping for the user and
can be used as a way to modularize a mapping.
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Versioning support The ontology mapping language must support constructs for the ver-
sioning of the mapping and for referring to specific version of the source and target
ontologies.

The latter of course depends on the scheme chosen for ontology versioning. In the
case of a new name for each new version of the ontology, no additional provisions
have to be taken in the mapping language. This is currently the only way to do
versioning in the Web Ontology Language OWL. Therefore, we will assume this
situation.

Treating classes as instancesDifferent ontologies might be modeled within slightly dif-
ferent domains with different granularity. What is seen as a class in one ontology
might be seen as an instance of a different class in another ontology [60]. In order to
support inter-operation between two ontologies with such differences, classes need
to be mapped to instances and vice versa.

In fact this can be seen more general. The mapping language should support the
mapping of any entity in the source ontology, whether it is a class, instance, relation,
to any entity in the target ontology. For example, it should be possible to have a
relation-instance mapping, aclass-relation mapping, etc.

Mappings of different cardinalities It might be necessary to map a class in one ontol-
ogy to a number of different classes in the other ontology. It might also be neces-
sary to map a class in one ontology to a class and a relation in the other ontology.
In other words, the language needs to support mappings of arbitrary cardinalities.
One-to-one mappings are not enough.

6.2 Relation between the Ontology Language and the
Mapping Language

We have introduced a language-independent ontology mapping language, based on a set
of mapping patters, in deliverable D4.3.1 [9]. This mapping language is independent of
the ontology language used for the source and target ontologies, because it does not have
a formal semantics associated with it. A major limitation of this approach is that it is
not possible to automate any tasks with this mapping. Nonetheless, the user can still do
interesting things with the language, such as specifying the relations between elements
in different ontologies on a conceptual level and easily discovering relations between
different ontologies by inspecting the mapping.

In order to automate tasks on the Semantic Web which require multiple ontologies, a
formal semantics is required for the mapping language. The conceptual mapping language
has serious drawbacks in its expressiveness, because of lacking built-in functions and
other limitations in expressiveness, such as writing down arbitrary formulae.
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The mapping language accounts for lacking expressiveness by allowing arbitrary log-
ical expressions. These logical expressions, however, depend on the actual formal lan-
guage which is used for the mapping. The formal language to which the mapping lan-
guage is grounded might pose some restrictions on the use of several constructs of the
mapping language, because such constructs are beyond the expressive power of the for-
mal language.

There are several considerations when choosing a formal language for the grounding
of the mapping language:

Reasoning support When automating tasks on the Semantic Web, tool support is re-
quired. We assume the formal mapping language to be a declarative logical lan-
guage and thus working with this language requires a reasoner. A reasoner could
provide support in, e.g. query answering or subsumption reasoning. The availabil-
ity of efficient reasoners is a prerequisite for ontology mediation on the Semantic
Web.

Compatibility with the Ontology language An expression in the mapping language de-
notes a relation between elements in two (or more) ontologies. These ontologies
(we assume) are expressed using a formal ontology language. Clearly, in order to
reason with the mapping and the ontologies, some level of compatibility is required
between the mapping language and the ontology language. This is because in most
tasks to be automated, some form of reasoning with statements in the source and
target ontologies is required.

In case the mapping language is equivalent to or strictly more expressiveness than
the ontology language, no problems with reasoning will occur, because the reasoner
can reason with both the ontologies and the mapping. If, however, the ontology lan-
guage has different or more expressiveness than the mapping language, issues may
occur when attempting to reason over the ontologies and the mapping. In this case,
the reasoner should support the union of the mapping and the ontology languages.
This is often hard to achieve in an efficient manner. If one wants to fully inte-
grate, for example, the Logic Programming and the Description Logic paradigms,
a full first-order theorem prover with extensions to handle nonmonotonic negation
is required.

Map between ontologies in different languagesThere are currently several languages
being proposed for the specification of ontologies on the Semantic Web. In this de-
liverable we focus on the Description Logic-based language. DIP deliverable D1.5
[57] provides a grounding to the Logic Programming-based WSML-Flight [10].
In order to allow interoperation between ontologies expressed on both languages,
ideally, it should be possible to map between ontologies in different languages.

It is not trivial to map between ontologies in different language because of differ-
ences in expressiveness of the language. As pointed out above, the reasoner which
reasons with the mapping needs to reason with the source and target ontologies as
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well. As also pointed out above, we would require a first-order theorem prover with
nonmonotonic extensions to handle the nonmonotonic negation coming from Logic
Programming. Furthermore, we would need to specify a new logical language for
this. Finally, in order to properly map between ontologies in different languages
there need to be constructs in the mapping language which link different kinds of
entities in the different languages. This would lead to an overly complex mapping
language. Last but not least, the tool used for specifying the mapping would require
to have additional mapping primitives in order to allow mapping between ontolo-
gies in different languages.

We argue that it is not feasible to create a mapping between ontologies expressed in
different languages. In order to reason with a mapping, the mapping, as well as the source
and target ontologies, need to be loaded into the reasoner. Thus, in order to reason with
the mapping, the ontologies need to be translated to a common format anyway. In order to
keep the mapping tool usable, only one type of constructs should be used and the user of
the tool should not be bothered with different constructs coming from different ontology
languages. Finally, the mapping language would become overly complex and there would
be no efficient reasoners for dealing with the language.

We argue that in order to map between two ontologies, both ontologies need to be
expressed in the same language. This way the mapping language is kept simple and we
can use existing reasoner implementations to reason over the ontologies. However, this
does not make it impossible to map between ontologies expressed in different languages.
There is a clear layer of interoperation between WSML-Flight and OWL DL through
WSML-Core [10]. Thus, in this way it is always possible to map a subset of an OWL DL
ontology to a WSML-Flight ontology or to map a subset of a WSML-Flight ontology to
an OWL DL ontology.

6.3 Built-ins in Ontology Mapping

As argued in Section6.1, instance transformation can be split into two types of transfor-
mations:

• Structural transformations, which include composing several instances from one
instance and splitting one instance into several instances. When the instance is
a string data value, this corresponds with concatenating strings and taking sub-
strings, respectively. Structural transformations often correspond with granularity
mismatches.

• Valuetransformations, which are required to overcome mismatches in theencoding
of values in the different ontologies [36].
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Structural transformation can either be applied to abstract individuals or to concrete
data values. Let’s take composition as example. When composing a new abstract individ-
ual from a number of source individuals, a new individual is created based on the source
individual. When composing a new concrete individual from source concrete individuals,
built-in functions need to be applied to create the new data value. For example, if the
source values and the target value are all strings, string concatenation would be common.
When the source individuals are abstract individuals, the situation becomes more com-
plex. However, the target would often be a count of source individuals. In this case, a
built-in aggregate function can be used.

Value transformation can only be applied to concrete data values. Both the source and
the target are data values. The transformation would often be a simple function which
does, for example, a string permutation or a simple calculation, such as converting kilo-
meters to miles.

As we can see from the above, built-ins are typically required as soon as we are dealing
with concrete data values. Therefore, the implementation of the transformation engine
should ideally include a large number of built-in functions, including aggregate functions,
which are not all that common in current implementations. However, some practical
implementations, such as OntoBroker [15] and DLV [37], do offer a large number built-in
operators.

We do not require support for specific built-ins from the implementation of the lan-
guage. Rather, built-in operators are referred to using URIs. If a specific built-in is not
supported by the implementation, the user should be alerted of this fact and should be
given a choice how to proceed.

6.4 Mediation between OWL ontologies

This section contains the formal grounding in OWL for the ontology mapping language.

In the mapping, we refer to productions in the OWL abstract syntax specification [56].

We translate all statements in the mapping language to OWL abstract syntax through
the mapping functiont(). The functiont() takes an expression in the mapping function
as argument and returns an OWL DL statement in OWL abstract syntax.

6.4.1 Translating expressions and conditions

The logical expressions that may be written down in the mapping correspond with the
axioms that may be written down in OWL DL:

logicalExpression
.
= axiom
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Class identifiers in the mapping language and in OWL are equivalent:

t(classID )
.
= classID

An attribute identifier in the mapping language is mapped to a property identifier in
OWL. However, OWL makes a distinction between individual and data valued properties.

Of course the mapping language is agnostic as to whether the properties are individual
valued or data valued. Because OWL makes a strict distinction between individual valued
and data valued properties, it is only possible to map between two individual valued or
two data valued properties2.

t(attributeID ) 7→ individualvaluedPropertyID | datavaluedPropertyID

The same holds for the relation identifiers. OWL only supports binary relations in
the form of properties. However, this should not be a problem because we only allow
mapping between two OWL ontologies.

t(relationID ) 7→ individualvaluedPropertyID | datavaluedPropertyID

Different class expressions in the mapping language correspond to different types of
descriptions in OWL:

t(’and(’ classExpr 1 . . . classExpr n ’)’) 7→ ’intersectionOf(’ t(classExpr 1) . . .
t(classExpr n) ’)’

t(’or(’ classExpr 1 . . . classExpr n ’)’) 7→ ’unionOf(’ t(classExpr 1) . . . t(classExpr n)
’)’

t(’not(’ classExpr ’)’) 7→ ’complementOf(’ t(classExpr ) ’)’

Because OWL is based on the function-free two-variable fragment of First-Order
logic, it is not possible to do a join mapping, because a join mapping requires a func-
tion symbol in order to construct a new term based on several existing terms. Thus, join
mappings are not allowed in a mapping between OWL ontologies if the mapping lan-
guage is grounded in OWL. Note that is a more expressive rule language would be used
for mapping between OWL ontologies, the join mapping could be re-introduced.

The types of attribute expressions in OWL is also limited. OWL allows inverse, sym-
metric and transitivity of mappings.

In OWL it is possible to directly assert that a property is the inverse of another prop-
erty. However, it is not possible to use the transitivity and symmetry of a particular prop-
erty in an axiom. It is only possible to state symmetry and transitivity of a particular
property.

2This restriction would not necessarily apply if we map between two OWL ontologies using a mapping
language which is more expressive than OWL. However, we are using OWL as the mapping language here
and thus this restriction applies. It would be possible, for example, to have a certain mapping table between
data values and individuals values or to have a mapping function which produces data values based on
individual values or the other way around, in order to achieve the mapping.
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There are two different ways to deal with this limitation in the mapping language: we
can either create a new property, state that it subsumes the original property and assert
symmetry and/or transitivity for this new property or assert symmetry and/or transitivity
for the original property. The problem with the latter is that it changes the definition of
the original property and it also affects other mapping axioms which involve this property.
Therefore, we choose the former solution:

Thus, we have a translation:

t(’symmetric(’ attributeExpr ’)’) 7→ Rnew

With Rnew a newly introduced property:

’ObjectProperty(’ t(attributeExpr ) ’super(’ Rnew ’)’ ’)’

’ObjectProperty(’ Rnew ’Symmetric’ ’)’

and

t(’trans(’ attributeExpr ’)’) 7→ Rnew

With Rnew a newly introduced property:

’ObjectProperty(’ t(attributeExpr ) ’super(’ Rnew ’)’ ’)’

’ObjectProperty(’ Rnew ’Transitive’ ’)’

For inverse we apply a similar trick:t(’inverse(’ t(attributeExpr ) ’)’) 7→ Rnew

With Rnew a newly introduced property:

’ObjectProperty(’ t(attributeExpr ) ’inverseOf(’ Rnew ’)’ ’)’

’ObjectProperty(’ Rnew ’)’

We map the attribute value condition in the following form:

t(’attributeValueCondition(’ attributeID (individualID | dataLiteral ) ’)’) 7→ ’restric-
tion(’ t(attributeID ) ’value(’ t(individualID | dataLiteral ) ’))’

t(’attributeTypeCondition(’ attributeID classExpr ’)’) 7→ ’restriction(’ t(attributeID )
’someValuesFrom(’ t(classExpr ) ’))’

We map the attribute occurrence condition in the following way: v

t(’attributeOccurrenceCondition(’ attributeID ’)’) 7→ ’restriction(’ t(attributeID ) ’min-
Cardinality(1))’

The mapping of the attribute conditions (i.e. conditions that are allowed inside a map-
ping) takes a parameter which is the identifier of the attribute (calledAttID:

t(’valueCondition(’individualID | dataLiteral ’)’, AttID) 7→ ’restriction(’ t(AttID)
’value(’ t(individualID | dataLiteral ) ’)’ ’)’
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t(’valueCondition(’ classExpr ’)’, AttID) 7→ ’restriction(’ t(AttID) ’value(’
t(classExpr ) ’)’ ’)’

Expression conditions cannot be mapped.

Translating mappings to OWL

For expressing mappings between ontologies in OWL we rely on the ontology import
mechanism of OWL, which is expressed through annotation properties in the OWL ab-
stract syntax (in casemappingID is missing, it is simply omitted from the resulting OWL
ontology).

t(’Mapping(’ mappingID ’source(’ ontologyID 1 ’)’ . . . ’source(’ ontologyID n−1 ’)’ ’tar-
get(’ ontologyID n ’)’ directive 1 . . . directive n ’)’) 7→
’Ontology(’ t(mappingID ) ’Annotation(owl:imports’ t(ontologyID 1) ’)’ . . . ’Annota-
tion(owl:imports’ t(ontologyID n) ’)’ t(directive 1) . . . t(directive n) ’)’

A directive is either an annotation or a mapping expression. We translate annotations
in the following way:

t(’Annotation(’ propertyID propertyValue ’)’) 7→ ’Ontology(’ t(propertyID )
t(propertyValue ) ’)’

A mapping expression can be a class mapping, an attribute mapping, a relation map-
ping, an instance mapping or a mapping between these.

Note that a class mapping which omits the’two-way’ is equivalent to a class mapping
which has the’one-way’ integrated.

t(’classMapping(’ [ ’one-way’ ] classExpr 1 classExpr 2 classAttributeMapping 1 . . .
classAttributeMapping n classCondition 1 . . . classCondition n [ ’{’ logicalExpres-
sion ’}’ ] ’)’) 7→
’SubClassOf(’ ’intersectionOf(’ t(classExpr 1) t(classAttributeMapping 1) . . .
t(classAttributeMapping n) t(classCondition 1) . . . t(classCondition n) ’)’
t(classExpr 2) ’)’ t(logicalExpression)

A two-way mapping simple translated to a class equivalence axiom:

t(’classMapping( two-way’ classExpr 1 classExpr 2 classAttributeMapping 1 . . .
classAttributeMapping n classCondition 1 . . . classCondition n [ ’{’ logicalExpres-
sion ’}’ ] ’)’) 7→
’EquivalentClasses(’ ’intersectionOf(’ t(classExpr 1) t(classAttributeMapping 1)
. . . t(classAttributeMapping n) t(classCondition 1) . . . t(classCondition n) ’)’
t(classExpr 2) ’)’ t(logicalExpression)

There exist two kinds of attribute mappings, namely attribute mappings inside class
mappings and attribute mappings separate of class mappings. Because of limitations in
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OWL, attributes can only be mapped outside of the context of the class. Furthermore,
attribute conditions are not allowed, because they cannot be applied in property axioms
in OWL.

t(’attributeMapping(’ [’one-way’ ] attributeExpr 1 attributeExpr 2 [ ’{’ logicalExpres-
sion ’}’ ] ’)’) 7→
’SubPropertyOf(’ t(attributeExpr 1) t(attributeExpr 2) t(logicalExpression)

t(’attributeMapping( two-way’ attributeExpr 1 attributeExpr 2 [ ’{’ logicalExpression
’}’ ] ’)’) 7→
’EquivalentProperties(’ t(attributeExpr 1) t(attributeExpr 2) t(logicalExpression)

When mapping between OWL ontologies, attributes are equivalent to relations, be-
cause OWL only has the concept of binary relations:

t(’relationMapping(’ [’one-way’ ] relationExpr 1 relationExpr 2 [ ’{’ logicalExpression
’}’ ] ’)’) 7→
’SubPropertyOf(’ t(relationExpr 1) t(relationExpr 2) t(logicalExpression)

t(’relationMapping( two-way’ relationExpr 1 relationExpr 2 [ ’{’ logicalExpression ’}’
] ’)’) 7→
’SubPropertyOf(’ t(relationExpr 1) t(relationExpr 2) t(logicalExpression)

An instance mapping is simply equivalent to individual equality in OWL:

t(’instanceMapping(’ individualID 1 individualID 2 ’)’ ) 7→
’SameIndividual(’ t(individualID 1) t(individualID 2)

Expressiveness of OWL vs. expressiveness of the Mapping language

It turns out that not all concepts in the mapping language can be mapped to OWL. This in-
dicates that OWL is clearly lacking expressiveness for mapping between ontologies. The
major problem is that OWL does not allow chaining over predicates. The expressiveness
of OWL which is not captured in the mapping language are the enumeration of individu-
als and the universal value restrictions. Existential value restrictions are captured through
theattributeValueCondition. The mapping language also does not allow to specify cardi-
nality directly. However, it is possible to write down arbitrary OWL axioms and thus the
language is in the end exactly as expressive as OWL.

6.4.2 Mappings not allowed in OWL

When compared with full first-order logic, OWL DL has severe limitations. Namely,
function symbols are not allowed (although their expressiveness can be simulated using
existential quantification and equality), only unary and binary predicates are allowed and
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Mapping construct Feature
join Join mappings are not allowed because they require function

symbols, which are not in OWL
classAttributeMapping Vocabularies of classes and properties in OWL are disjoint
classRelationMapping Vocabularies of classes and properties in OWL are disjoint
classInstanceMapping Vocabularies of classes and individuals in OWL are disjoint
reflexive It is not possible in OWL DL to use the same variable in both

positions in a binary predicate
and for attribute and
relation mappings

OWL DL does not allow conjunction of properties

or for attribute and re-
lation mappings

OWL DL does not allow disjunction of properties

not for attribute and
relation mappings

OWL DL does not allow negation of properties

Table 6.1:Mapping constructs not allowed in OWL DL mapping

it is not possible to chain variables over predicates, because OWL DL stays in the so-
called two-variable fragment of first-order logic, which guarantees decidability of the
satisfiability problem, but which does impose severe restrictions on expressiveness.

Table 6.1 lists all constructs of the mapping language which are not supported in
the grounding to OWL along with the feature missing in OWL which would allow this
construct.

OWL DL allows only limited logical expressions, namely OWL DL axioms. OWL DL
does not support built-in predicates3, which we identified as very important for ontology
mapping (Section6.3).

6.4.3 Extending the mapping language to SWRL

The Semantic Web Rule Language SWRL [32] is an extension of OWL DL to a full-
fledged rule language (without function symbols). It might be worthwhile to discuss how
SWRL could be used to exploit more of the mapping language for mapping between OWL
ontologies. The advantage of using SWRL for this is that the inter-operation between
OWL ontologies and SWRL rules is clear. SWRL is a direct extension of OWL DL and
is thus a strict superset. A drawback of SWRL is that there are currently no efficient
implementations which can handle a significant amount of instance data. In fact, the only
reasoners of which we are aware that they can deal with SWRL are full first-order theorem
provers. Theorem provers are not guaranteed to terminate4 and perform poorly if many

3Note that there exist extensions of OWL DL which do allow the use of built-ins, e.g. OWL-E [54].
4Actually, any reasoner that can deal with SWRL cannot guarantee to terminate, because entailment in

SWRL is undecidable.
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entailment checks are required for a reasoning task (e.g. query answering). There exist
subsets of SWRL which are known to be decidable, but such subsets either reduce the
expressiveness of the Description Logic fragment (thus imposing limitations on the use
of OWL constructs in the ontology) or the rules component [40]. A limitation of OWL
DL which fits nicely in the rules world is OWL DL− [13], which is based on Description
Logic Programs [29].

SWRL defines a comprehensive set of built-in predicates for use with data values. As
we have argued above (Section6.3), we expect built-ins to play a major role in ontology
mapping. However, we are not aware of any implementation for SWRL which can handle
such built-ins, as theorem provers usually do not support the use of built-ins and typically
require axiomatization of the entire datatype domain.

In this chapter we have described an ontology mapping language for OWL ontologies.
This concludes our treatment of the mapping creation phase and the mapping framework.
In the following we will describe related work and conclusions.



Chapter 7

Related Work

In this chapter we describe two major efforts in ontology mapping, namely OntoMerge
[22] and MAFRA [43]. We have chosen these efforts because they represent the two
major directions in ontology mapping: the use of bridging axioms to describe ontology
mappings (OntoMerge) and the use of instance transformation procedures (MAFRA).

7.1 OntoMerge

[22] introduce an approach to ontology mediation “ontology translation be ontology
merging and automated reasoning”. In this approach, ontologies are merged by taking
the union of both ontologies, where all terms are separated through the differences in the
namespace. So-calledBridging Axiomsare used to connect the overlapping part of the
two ontologies.

In general, when merging ontologies, one would either create a new namespace for
the merged ontology or import one ontology into the other, so that the merged ontology
uses the namespace of the importing ontology. Having in the end an ontology which
uses different namespaces in its definitions can be very confusing for the user, since an
ontology is intended to besharedamong multiple parties. Furthermore, the bridging
axioms in the merged ontology might also be very confusing for the user, since they serve
no other purpose than linking together related terms in the ontology. Thus, the merged
ontology contains a lot of clutter, which makes the ontology hard to understand and hard
to use. The clutter in the ontology consists of: (1) terms with different namespaces, (2)
similar and equivalent terms exist in the ontology and (3) bridging axioms between the
related terms. These three factors impede usability and especially sharing of the ontology.

On the other hand, [22] does not propose to use the merged ontologies as such, but to
merely use them for three different tasks:

52
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1. Dataset translation(cf. instance transformation in [12]). Dataset translation is the
problem of translating a set of data (instances) from one representation to the other.

2. Ontology extension generation. The problem of ontology extension generation is
the problem of generating an extensionO2s, given two related ontologiesO1 and
O2 and an extension (subontology)O1s of ontologyO1. The example given by the
authors is to generate a WSDL extension based on an OWL-S description of the
corresponding Web Service.

3. Querying different ontologies. This relates very much to the query rewriting de-
scribed in [12]. However, query rewriting is a technique for solving the problem
of querying different ontologies, whereas the authors of [22] merely stipulate the
problem.

As we have also suggested in [12], [22] uses mappings between ontologies in order to
enable the translation. In fact, the ontology translation (except for the extension genera-
tion) can be seen as run-time mediation [12].

Dou et al. use an internal representation for the ontologies, calledWeb-PDDL, which
is a typed first-order logic language. They support im- and export of DAML+OIL and
OWL, but im- and exporters for other languages could be written as well, because Web-
PDDL is able to capture many different ontology languages, because of its expressiveness.

Dataset translation Dou et al. perform dataset translation in two distinct steps. First,
given the source dataset (a set of facts) and the merged ontology, all possible inferences
are drawn from the source facts. Secondly, the results are projected on the target vocabu-
lary, retaining only the results expressed in terms of the target ontology. These two steps
guarantee that a maximal translation is performed, with respect to the merged ontology
and the source dataset.

In their practical evaluation of the system, the authors only work with very small
datasets consisting of several thousands of facts. The fact that they use a theorem prover
leaves open questions about scalability for large numbers of facts.

Ontology extension generation Say you have two related ontologiesO1 andO2 and
a subontologyO1s of O1. It is now possible, using the relationships between the two
ontologies, to automatically generate a subontologyO2s of O2 which corresponds with
O1s.

The subontologyO2s is identified by creating skolem constants during inference with
the merged ontology and then creating predicates based on these skolem constants. The
new predicates should be made sub-predicates of the existing predicates, in which the
skolem constant is.
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The major disadvantage to this approach for ontology extension generation, identi-
fied by the authors, is that the generated subontology only contains subproperty axioms,
whereas many subontologies might be specified using general axioms.

Querying through Different Ontologies Querying is done in OntoMerge by selecting
the merged ontology which merges the query ontology and the other ontology. Then, a
query selection and reformulation module (not described in detail) is used to select sub-
queries and reformulate the subqueries. Each subquery is executed on respective knowl-
edge bases and the results are combined.

In fact, what we call anOntology mappingis very similar to a set of bridging axioms in
[22]. However, we do not presume the source and target ontologies use the same language
as the mapping, whereas [22] requires the merged ontology to consist of the source and
target ontologiesand the bridging axioms.

A major drawback of OntoMerge is that bridging axioms need to be written using a
first-order language. Only very few people are familiar with the first-order logic.

7.2 MAFRA

MAFRA (MApping FRAmework for distributed ontologies) [43, 62] is a framework for
mapping between ontologies. Figure7.1outlines the conceptual architecture of MAFRA
where a set of main phases is identified and organized along two dimensions. Horizontal
modules correspond to five fundamental phases in the ontology mapping process (Lift
& Normalization, Similarity, Semantic Bridging, Execution and Post-processing). The
vertical modules (Evolution, Domain Knowledge & Constraints, Cooperative Consensus
building and GUI) interact with the horizontal phases during the entire ontology mapping
process.

The horizontal dimension is subdivided into the following five modules:

• Lift & NormalizationDefines a uniform representation (in RDF(S)) in order to nor-
malize the ontologies we want to map. In this step, differences (like special charac-
ters, upper case letters and acronyms) are eliminated and the semantic differences
are slightly reduced.

• Similarity It is a multi-strategy process that calculates similarities between ontol-
ogy entities using different approaches. The combination of all of the matchers
proposed by Maedche and colleagues allow the system to obtain better results in
this phase.
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Figure 7.1:MAFRA Conceptual Architecture [43]

• Semantic BridgingSemantically relate entities (i.e. classes, relations, attributes)
from the source and target ontologies, encapsulating all necessary information to
transform instances of an entity in the source ontology into instances of one (or
more) target ontology entity. The result is close to the notion ofarticulation ontol-
ogy in ONION[49].

• ExecutionThis module actually transforms instances from the source ontology rep-
resentation into the representation of the target ontology by evaluating the semantic
bridges which have been defined in the previous phase. There are two possible op-
erational modes: offline (all the transformations are executed one time) and online
(the transformations are continuously executed, and modifications in the source or
target ontologies are immediately reflected).

• PostprocessingTake the results of the execution module to check and improve the
quality of the transformation results (e.g. object identity: recognize that two in-
stances represent the same real-world object).

The vertical dimension comprises the following modules:

• Evolution Synchronize the changes in the source and target ontologies with the
semantic bridges defined by the Semantic Bridge module.
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• Cooperative Consensus BuildingFrom multiple alternative possible mappings the
tool helps to set up a consensus between the various proposals of people involved
in the mapping task.

• Domain constraints and Background KnowledgeThe tool allows users to include
extra information (e.g. lexical ontologies like Wordnet can help in the identification
of synonyms) in order to improve the quality of the mapping.

• GUI Visualization of the elements of the source and target ontologies makes the
mapping task a lot easier in the same way as do the semantic bridges established to
represent the mapping between entities.

The main goal in MAFRA is to transform instances of the source ontology into in-
stances of the target ontology. Semantic Bridges specify how to perform these trans-
formations and categorize them between concept bridges and property bridges. Concept
bridges define the transformations between source instances and target instances, whereas
property bridges specify the transformations between source properties and target proper-
ties.

MAFRA includes a formal representation to specify the mappings. The formalism that
is used to describe the Semantic Bridges is based in an ontology specified in DAML+OIL,
called the Semantic Bridging Ontology (SBO), which includes the following concepts:

• Classes Concepts, Relations and AttributesRepresent the main type of entities that
can be found in the source and target ontologies.

• Class Semantic BridgeThis is the most generic bridge and defines the relations
between source and target entities. It allows for the definition of Abstract Semantic
Bridges, which allow users to define common characteristics that can be used in the
definition of other (concrete) semantic bridges. Abstract Semantic Bridges does not
define concrete relations between source and target entities.

• Class ServiceThese are reference resources that are responsible to connect to or to
describe transformations.

• Class RuleRepresent constraint specifications and relevant information for a trans-
formation.

• Class TransformationThis class specifies a transformation procedure for each se-
mantic bridge, and it is obligatory (except in abstract semantic bridges).

• Class ConditionRepresent the conditions that should hold before a semantic bridge
can be executed.

• Composition modeling primitivesAllow each semantic bridge to aggregate several
different bridges that will be processed one by one when the transformations of the
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parent semantic bridge are executed. This modeling primitive belongs to the class
Semantic Bridge.

• Alternative modeling primitivesSupported by the class SemanticBridgeAlt; its
function is to group several mutually exclusive semantic bridges.

We adopt the different phases of the MAFRA ontology mapping process in the map-
ping creation phase of out mediation framework. The major differences between our ap-
proach and MAFRA’s approach are that MAFRA only considers mapping between RDFS
ontologies, whereas we consider mapping between and merging of ontologies specified
in different ontology languages, with a special emphasis on OWL DL. MAFRA only con-
siders the use case of instance transformation, whereas we address the wider ontology
mediation problem and also support querying and ontology merging.



Chapter 8

Conclusions

In this deliverable we have motivated ontology mediation through a number of use cases
and application scenarios. Furthermore, we have described an ontology mediation frame-
work inspired by these use cases and scenarios. We have focussed on the mapping creation
step in the mediation process which can be divided into two parts: automated discovery
of mappings and further refinement and specification of these mappings. We have ad-
dressed the mapping creation problem by describing a method for mapping discovery,
called APFEL, and an ontology mapping language based on OWL DL.

In this deliverable we have described a formal grounding in OWL DL for the ontol-
ogy mapping language which was originally developed in SEKT deliverable D4.3.1 [9].
A formal mapping enables performing certain tasks across ontologies, such as querying
of remote knowledge bases in terms of a local ontology and the transformation of data
between different representations.

Besides the formal grounding of the mapping language we have provided an overall
framework for ontology mediation. An important part of this mediation framework is the
discovery of ontology mappings. We have described an approach called APFEL (Align-
ment Process Feature Estimation and Learning) which can be used to estimate parameters
for a so-called PArameterized Mapping Method (PAMM). Such an alignment method can
be used to actually discover mappings between ontologies.

The mapping discovery and the mapping language are the major components in the
overall mediation framework. Mapping discovery is used to discover mappings between
ontologies which are then presented to the user. The user can then refine these mappings
or choose to add or remove mapping rules.

Two other important components are storage and retrieval of mappings and the actual
use of mappings in run-time mediation.

We have briefly touched on the topic of ontology merging. Our main focus, however,
is on ontology mapping and the use of such mappings in querying and data transforma-
tion. Future versions of the mediation framework might develop more in the direction of
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ontology merging, depending on the requirements of the SEKT case studies.
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Appendix A

Ontology Mapping Language Abstract
Syntax

This Appendix contains the Abstract syntax, which was developed in Deliverable D4.3.1:
“Ontology Mediation Patterns Library V1” [9]. This appendix is a direct copy of the
corresponding appendix of D4.3.1 and is only included in order to make this deliverable
self-contained.

The abstract syntax is written in the form of EBNF, similar to the OWL Abstract
Syntax [56]. Any element between square brackets ‘[’ and ‘]’ is optional. Any element
between curly brackets ‘{’ and ‘}’ can have multiple occurrences.

Each element of an ontology on the Semantic Web, whether it is a class, attribute,
instance, or relation, is identified using a URI [2]. In the abstract syntax, a URI is denoted
with the nameURIReference . We define the following identifiers:

mappingID ::= URIReference
ontologyID ::= URIReference
classID ::= URIReference
propertyID ::= URIReference
attributeID ::= URIReference
relationID ::= URIReference
individualID ::= URIReference

We allow concrete data values. The abstract syntax for data values is taken from the
OWL abstract syntax:

dataLiteral ::= typedLiteral |plainLiteral
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typedLiteral ::= lexicalForm ’ˆˆ’URIReference
plainLiteral ::= lexicalFrom [’@’languageTag ]

The lexical form is a sequence of unicode characters in normal form C, as in RDF.
The language tag is an XML language tag, as in RDF.

First of all, the mapping itself is declared, along with the ontologies participating in
the mapping.

mapping ::= ’Mapping(’ [ mappingID ]
{ ’source(’ ontologyID ’)’ }
’target(’ ontologyID ’)’
{ directive } ’)’

A mapping consists of a number of annotations, corresponding to non-functional prop-
erties in WSMO [59], and a number of mapping expressions. The creator of the mapping
is advised to include a version identifier in the non-functional properties.

directive ::= annotation
|expression

annotation ::= ’Annotation(’ propertyID URIReference ’)’
’Annotation(’ propertyID dataLiteral ’)’

Expressions are either class mappings, relation mappings, instance mappings or ar-
bitrary logical expressions. The syntax for thees logical expressions is not specified; it
depends on the actual logical language to which the language is grounded.

A special kind of relation mappings are attribute mappings. Attributes are binary
relations with a defined domain and are thus associated with a particular class. In the
mapping itself the attribute can be either associated with the domain defined in the (source
or target) ontology or with a subclass of this domain.

A mapping can be either uni- or bidirectional. In the case of a class mapping, this
corresponds with class equivalence and class subsumption, respectively. In order to dis-
tinguish these kinds of mappings, we introduce two different keywords for class, relation
and attribute mappings, namely ‘unidirectional’ and ‘bidirectional’. Individual mappings
are always bidirectional. Unidirectional and bidirectional mappings are differentiated
with the use of a switch. The use of this switch is required.

It is possible, although not required, to nest attribute mappings inside class mappings.
Furthermore, it is possible to write an axiom, in the form of a class condition, which
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defines general conditions over the mapping, possibly involving terms of both source
and target ontologies. Notice that this class condition is a general precondition for the
mapping and thus is applied in both directions if the class mapping is a bidirectional
mapping. Notice that we allow arbitrary axioms in the form of a logical expression. The
form of such a logical expression depends on the logical language being used for the
mappings and is thus not further specified here.

expression ::= ’classMapping(’ ’unidirectional’—’bidirectional’ { annotation }
classExpr classExpr { classAttributeMapping }
{ classCondition } [ ’{’ logicalExpression ’}’ ] ’)’

There is a distinction between attributes mapping in the context of a class and at-
tributes mapped outside the context of a particular class. Because attributes are defined
locally for a specific class, we expect the attribute mappings to occur mostly inside class
mappings. The keywords for the mappings are the same. However, attribute mappings
outside of the context of a class mappings need to be preceded with the class identifier,
followed by a dot ’.’.

classAttributeMapping ::= ’attributeMapping(’ ’unidirectional’—’bidirectional’ attributeExpr
attributeExpr { attributeCondition } ’)’

expression ::= ’attributeMapping(’ ’unidirectional’—’bidirectional’ attributeExpr
attributeExpr { attributeCondition }
[ ’{’ logicalExpression ’}’ ] ’)’

expression ::= ’relationMapping(’ ’unidirectional’—’bidirectional’ relationExpr
relationExpr { relationCondition }
[ ’{’ logicalExpression ’}’ ] ’)’

expression ::= ’instanceMapping(’ individualID individualID ’)’
expression ::= ’classAttributeMapping(’ ’unidirectional’—’bidirectional’ classExpr

attributeExpr [ ’{’ logicalExpression ’}’ ] ’)’

expression ::= ’classRelationMapping(’ ’unidirectional’—’bidirectional’ classExpr
relationExpr [ ’{’ logicalExpression ’}’ ] ’)’

expression ::= ’classInstanceMapping(’ ’unidirectional’—’bidirectional’ classExpr
individualID [ ’{’ logicalExpression ’}’ ] ’)’

expression ::= ’{’ logicalExpression ’}’
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For class expressions we allow basic boolean algebra. This corresponds loosely with
Wiederhold’s ontology algebra [69]. Wiederhold included the basic intersection and
union, which correspond with ourand andor operators. Wiederhold’s difference oper-
ator corresponds with a conjunction of two class expressions, where one is negated, i.e.
for two class expressionsC andD, the differentC−D corresponds withand(C,not(D)).

The join expression is a specific kind of disjunction, namely a disjunction with an
additional logical expression which contains the precondition for instances to be included
in the join.

classExpr ::= classID
|’and(’ classExpr classExpr { classExpr } ’)’
|’or(’ classExpr classExpr { classExpr } ’)’
|’not(’ classExpr ’)’
|’join(’ classExpr classExpr { classExpr } [ ’{’ logicalExpression ’}’ ] ’)’

Attribute expressions are defined as such, allowing for inverse, transitive close, sym-
metric closure and reflexive closure, whereinverse(A) stands for the inverse ofA,
symmetric(A) stands for the symmetric closure ofA1, reflexive(A) stands for the reflexive
closure ofA2 andtrans(A) stands for the transitive closure ofA:

attributeExpr ::= attributeID
|’and(’ attributeExpr attributeExpr { attributeExpr } ’)’
|’or(’ attributeExpr attributeExpr { attributeExpr } ’)’
|’not(’ attributeExpr ’)’
|’inverse(’ attributeExpr ’)’
|’symmetric(’ attributeExpr ’)’
|’reflexive(’ attributeExpr ’)’
|’trans(’ attributeExpr ’)’

Relation expressions are defined similar to class expressions:

relationExpr ::= relationID
|’and(’ relationExpr relationExpr { relationExpr } ’)’
|’or(’ relationExpr relationExpr { relationExpr } ’)’
|’not(’ relationExpr ’)’

1Notice that the symmetric closure of an attribute is equivalent to the union of the attribute and its
inverse:or(A inverse(A)).

2The reflexive closure of an attributeA includes for each valuev in the domain a tuple with equivalent
domain and rangev: 〈v, v〉.
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classCondition ::= ’attributeValueCondition(’ attributeID ( individualID | dataLiteral ) ’)’

classCondition ::= ’attributeTypeCondition(’ attributeID classExpr ’)’

classCondition ::= ’attributeOccurrenceCondition(’ attributeID ’)’

attributeCondition ::= ’valueCondition(’ (individualID | dataLiteral ) ’)’

attributeCondition ::= ’typeCondition(’ classExpression ) ’)’

Especially when mapping several source ontologies into one target ontology, different
classes and relations need to be joined. Although apparently similar, a join mapping is
fundamentally different from an intersection mapping.



Appendix B

Mapping Example

In this appendix, we show an example mapping, including the complete mapping, both in
the form of patterns and in the form of concrete mapping rules.

B.1 Source ontology

Herewith the source ontology in OWL abstract syntax:

Class(Person partial restriction(name allValuesFrom(xsd:string))
restriction(age allValuesFrom(xsd:integer))
restriction(hasGender allValuesFrom(Gender))
restriction(marriedTo allValuesFrom(Person))
restriction(hasChild allValuesFrom(Person))
restriction(name maxCardinality(1))
restriction(age maxCardinality(1))
restriction(gender maxCardinality(1)))

EnumeratedClass(Gender male female)
Class(Parent partial Person

restriction(hasChild minCardinality(1)))
DatatypeProperty(name)
DatatypeProperty(age)
ObjectProperty(hasGender)
ObjectProperty(hasChild)
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B.2 Target ontology

Herewith the complete target ontology of the running example:

Class(Human partial restriction(name allValuesFrom(xsd:string))
restriction(age allValuesFrom(xsd:integer))
restriction(noOfChildren allValuesFrom(xsd:integer))
restriction(name maxCardinality(1))
restriction(age maxCardinality(1))
restriction(noOfChildren maxCardinality(1)))

Class(Marriage partial restriction(hasParticipant allValuesFrom(Human))
restriction(date allValuesFrom(xsd:date))
restriction(location allValuesFrom(xsd:string))
restriction(hasParticipant cardinality(2))
restriction(date maxCardinality(1))
restriction(location maxCardinality(1)))

Class(Man partial Human)

Class(Woman partial Human)

DisjointClasses(Man Woman)

B.3 Mapping

Herewith the complete mapping between the source and target ontology, both in mapping-
patterns format and in rules format, where we again use the WSML syntax because of
its readability. For the source ontology we use the namespace prefixo1 ; for the target
ontology we use the namespace prefixo2 .

B.3.1 Mapping format

classMapping (o1:Person o2:Human
attributeMapping(o1:name o2:name)
attributeMapping(o1:age o2:age)
)
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classMapping (o1:Person o2:Man
attributeValueCondition(hasGender male)
)

classMapping (o1:Person o2:Woman
attributeValueCondition(hasGender female)
)

As we can see, the attributemarriedTo is not mapped to the classMarriage ,
because an attribute-class mapping is not possible to express in OWL. Furthermore, there
is no mapping from the attributehasChild to the attributenoOfChildren , because
aggregate functions over datatypes are not supported in OWL.

B.3.2 OWL format

In this section we provide the translation to OWL of the previously mentioned mapping:

SubClassOf(o1:Person o2:Human)
SubPropertyOf(o1:name, o2:name)
SubPropertyOf(o1:age, o2:age)
SubClassOf(IntersectionOf(o1:Person restriction(hasGender value(male)))

o2:Man)
SubClassOf(IntersectionOf(o1:Person restriction(hasGender value(female)))

o2:Woman)


