
D4.5.1 Report on Ontology mediation as service component

1

EU-IST Project IST-2003-506826 SEKT
SEKT: Semantically Enabled Knowledge Technologies

D4.5.1 Report on Ontology mediation as service component

Dirk Wenke (ontoprise)
Stoyan Atanassov (Sirma AI) Dimitar Manov (Sirma AI)

Mika Maier-Collin, Wolfgang Sperling (ontoprise)

Abstract

This document describes the mapping and its functionalities. An outlook of possible
szenarios for the integration of mapping store, mapping components and mapping
patterns is made.
A concept of an API is introduced and the expected usage is described.

Keyword list: ontology mediation, visualisation, graphical interface, mapping, pattern,
store, instance transformation, instance unification

WP4 Ontology Mediation
Report PU
Contractual date of delivery 31.12.2004
Actual date of delivery 31.01.2004

D4.5.1 Report on Ontology mediation as service component

2

SEKT Consortium

This document is part of a research project partially funded by the IST Programme of
the Commission of the European Communities as project number IST-2003-506826.

British Telecommunications plc.
Orion 5/12, Adastral Park
Ipswich IP5 3RE
UK
Tel: +44 1473 609583, Fax: +44 1473 609832
Contact person: John Davies
E-mail: john.nj.davies@bt.com

Empolis GmbH
Europaallee 10
67657 Kaiserslautern
Germany
Tel: +49 631 303 5540
Fax: +49 631 303 5507
Contact person: Ralph Traphöner
E-mail: ralph.traphoener@empolis.com

Jozef Stefan Institute
Jamova 39
1000 Ljubljana
Slovenia
Tel: +386 1 4773 778, Fax: +386 1 4251 038
Contact person: Marko Grobelnik
E-mail: marko.grobelnik@ijs.si

University of Karlsruhe, Institute AIFB
Englerstr. 28
D-76128 Karlsruhe
Germany
Tel: +49 721 608 6592
Fax: +49 721 608 6580
Contact person: York Sure
E-mail: sure@aifb.uni-karlsruhe.de

University of Sheffield
Department of Computer Science
Regent Court, 211 Portobello St.
Sheffield S1 4DP
UK
Tel: +44 114 222 1891
Fax: +44 114 222 1810
Contact person: Hamish Cunningham
E-mail: hamish@dcs.shef.ac.uk

University of Innsbruck
Institute of Computer Science
Technikerstraße 13
6020 Innsbruck
Austria
Tel: +43 512 507 6475
Fax: +43 512 507 9872
Contact person: Jos de Bruijn
E-mail: jos.de-bruijn@deri.ie

Intelligent Software Components S.A.
Pedro de Valdivia, 10
28006
Madrid
Spain
Tel: +34 913 349 797
Fax: +49 34 913 349 799
Contact person: Richard Benjamins
E-mail: rbenjamins@isoco.com

Kea-pro GmbH
Tal
6464 Springen
Switzerland
Tel: +41 41 879 00
Fax: 41 41 879 00 13
Contact person: Tom Bösser
E-mail: tb@keapro.net

Ontoprise GmbH
Amalienbadstr. 36
76227 Karlsruhe
Germany
Tel: +49 721 50980912
Fax: +49 721 50980911
Contact person: Hans-Peter Schnurr
E-mail: schnurr@ontoprise.de

Sirma AI EAD, Ontotext Lab
135 Tsarigradsko Shose
Sofia 1784
Bulgaria
Tel: +359 2 9768 303, Fax: +359 2 9768 311
Contact person: Atanas Kiryakov
E-mail: naso@sirma.bg

Vrije Universiteit Amsterdam (VUA)
Department of Computer Sciences
De Boelelaan 1081a
1081 HV Amsterdam
The Netherlands
Tel: +31 20 444 7731, Fax: +31 84 221 4294
Contact person: Frank van Harmelen
E-mail: frank.van.harmelen@cs.vu.nl

Universitat Autonoma de Barcelona
Edifici B, Campus de la UAB
08193 Bellaterra (Cerdanyola del Vall` es)
Barcelona
Spain
Tel: +34 93 581 22 35, Fax: +34 93 581 29 88
Contact person: Pompeu Casanovas Romeu
E-mail: pompeu.casanovas@uab.es

D4.5.1 Report on Ontology mediation as service component

3

Executive Summary

State of the Art and challenges

The knowledge management issue becomes more and more complex due to the
existence of heterogeneous information and communication channels and the dynamic
feature of the life. There does not exist THE Ontology which could improve the
current situation. Therefore ontology mediation is a very important part for the whole
ontology management structure. Current solutions for ontology mediation still stay at
the stage of manually aligning and mapping ontologies with some limited
recommendation services. In order to scale up the whole process, semi-automatic and
automatic methods for ontology mediation are a big challenge. In particular,
providing ontology mediation as a plug-in-and-play software component is our goal.

Justification

Knowledge management pursues the efficient process of creating, presenting,
communicating and reusing knowledge with complex organizations. While these
complex organizations are typically structured in different components and operated
with a high degree of autonomy. Managing knowledge within autonomous groups and
exchanging knowledge across them are the big challenge at the moment.

Due to the existing heterogeneous nature and different requirements derived from the
applications and tasks, there will co-exist various different views on the same
information or knowledge. Mediation is clearly well demanded for communicating
and reusing knowledge. Mediation makes communicating and reusing knowledge
possible without losing its semantics or altering it. It is akin to two people speaking
different languages needing to talk, and the dictionary containing both languages
being the essential enabler.

Knowledge management is focusing on knowledge use and reuse. Mediation is a kind
of knowledge, therefore how to manage it and further reuse it is important to provide
the efficient and effective mediation services.

Ontology Mediation as Service Component

Ontology mediation can be provided as a service component to easily plug-in the
existing knowledge management platform. For instance, mediation can be defined by
the users, therefore an ontology mediation authoring environment provides the access
point for the users to define their own mediation.

For the first step a visualisation of the mapping is needed for allowing the user to
interactively map an ontology to another ontology. This enables the user to pose a
query to the original ontlogy and get the appropriate answers which consider the input
from other ontologies. These ontologies could be integrated by manually modelling
ontologies or by importing of schemas from relational databases.

A Mapping and Pattern data model is defined, then the Mapping and Pattern stores are
described. Finally an approach to solving instance transformation and instance
unification problems is presented.

D4.5.1 Report on Ontology mediation as service component

4

The integration in the SEKT architecture is enabled by the strictly usage of patterns,
defined in the deliverable D4.4.11 .

Overall Picture

The overall picture is shown in fig. 1. The ontologies as well as the mappings between
ontologies are stored in ontology repositories and mapping repositories. These
repositories may be accessed by different tools. E.g. mapping discovery tools like
those developed in WP 4.4.1 feed their results into that repositories. OntoStudio
accesses these repositories to retrieve ontologies, corresponding mappings and
mapping patterns. OntoStudio visualizes these mappings and makes them creatable
and changeable in an interactive graphical way by the user. All these components are
communciation via webservices, thus building a service-based architecture.

Figure 1: Overall Picture

Chapter 1 describes the technical foundation of mappings in OntoStudio. In chapter 2
the graphical user interface in OntoStudio is shown. Chapter 3 briefly presents the
glue between the the different components already mentioned in fig. 2. Finally in
chapter 4 the ontology and mapping repository together with its API is described.

D4.5.1 Report on Ontology mediation as service component

5

Contents

SEKT Consortium ...2
Executive Summary...3

State of the Art and challenges ..3
Justification..3
Ontology Mediation as Service Component ..3
Overall Picture ...4

1 Technical description of mapping ..6
1.1 OntoMap – Mapping Plugin for OntoStudio ...6

2 Graphical interface of mapping..9
2.1 Concepts on concepts...10
2.2 Attributes on concepts..11
2.3 Attributes on attributes...12
2.4 Relations on relations...13

3 Integration of the different components ..13
3.1 Mapping store – Mapping Component ..13
3.2 Mapping patterns – Mapping Component ...14

4 Component Description...14
4.1 Data Model...14

4.1.1 Pattern ..14
4.1.2 Mapping ...14

4.2 Store ...15
4.2.1 Pattern and Mapping Store...15
4.2.2 Pattern and Mapping Restrictions..16

4.3 Instance Transformation ..17
4.4 Instance Unification ...17

4.4.1 Cascading unifications ...18
5 API...20

5.1 Data Model...20
5.1.1 Pattern ..20
5.1.2 Mapping ...21
5.1.3 Version...21

5.2 Store ...23
5.2.1 Pattern Store...23
5.2.2 Mapping Store..23
5.2.3 Storage Factory ..24
5.2.4 Pattern/Mapping Restriction ..24
5.2.5 Example Scenarios...27

5.3 Instance Transformation ..31
5.4 Instance Unification ...31

6 Bibliography and references ...32

D4.5.1 Report on Ontology mediation as service component

6

1 Technical description of mapping

There are two different scenarios for the usage of a mapping functionality.
The first one is to retrieve instances for an ontology from a given database scheme,
the second one is to map two different ontologies to define where they have common
concepts and relations.
OntoStudio contains an instance editor that can be used by the ontology engineer to
create test sets. Another way to get test instances is to fetch them from a database.
Therefore OntoStudio is able to import the relational schema of a database and create
a (flat) ontology out of that schema. Mapping allows the user to interactively map an
ontology to another ontology. The relationships between the mapped ontologies are
formally represented by F-Logic axioms. In this way the original ontology may be
populated with instances out of the database. If now a query is posed to the original
ontology SQL queries are generated at runtime to get the appropriate answers for the
query out of the database.
Mapping two ontologies has a similar meaning and a similar effect. If a mapping
between two concepts is defined and a query is formulated against the destination
ontology (i.e. the ontology the other ontology is mapped to) the rules that have been
formulated transform the query to a query against the source ontology (i.e. the
original ontology). This will allow the reuse of parts of ontologies (with their possible
database mapping in the background) as well as the definition of different conceptual
views.

1.1 OntoMap – Mapping Plugin for OntoStudio

OntoMap is a plugin of OntoStudio which allows to manually map ontologies. It
allows to graphically draw arrows between several source and one target ontology and
thus to define these mappings. Mappings may be created from:

1. concept C1 to concept C2

2. attribute A1 to attribute A2

3. relation R1 to relation R2

4. attribute A to concept C

OntoMap interprets these mappings by generating the following F-Logic mapping
rules:

1. concept C1 to concept C2: FORALL X X:C2 <- X:C1.

2. attribute A1 to attribute A2: FORALL X,Y X:C2 [A2->Y] <- X:C1[A1->Y].

3. relation R1 to relation R2: FORALL X,Y X:C2 [R2->Y] <- X:C1[R1->Y].

4. attribute A to concept C: FORALL X,Y Y:C <- X:C1[A->Y].

It is obvious that for mappings 2 and 3 the concepts C1 and C2 have to be mapped
before. The fourth mapping means that the attribute values of attribute A are the ids
for the instances of class C.

For the further processing of the mappings and its rules each mapping is represented
as a mapping-instance. A mapping consists of a target and several sources, a relation
to the generated rule and optional to mapping-conditions and -functions:

D4.5.1 Report on Ontology mediation as service component

7

 Mapping[

Name=>STRING;
Description=>STRING;
SourceOntology=>URI;
TargetOntology=>URI;
hasRule=>Rule;
hasCondition=>MappingCondition;
hasFunction=>Function].

 MappingCondition[

CompareAttribute=>Attribute;
CompareOperator=>Operator;
CompareValue=>STRING].

 ConceptToConceptMapping ::Mapping.

ConceptToConceptMapping[
SourceConcept=>Concept;
TargetConcept=>Concept].

 AttributeToConceptMapping::Mapping.

AttributeToConceptMapping [
SourceAttribute=>Attribute;
SourceConcept=>Concept;
TargetConcept=>Concept].

 AttributeToAttributeMapping::Mapping.

AttributeToAttributeMapping [
SourceAttribute=>Attribute;
SourceConcept=>Concept;
TargetAttribute=>Attributet;
TargetConcept=>Concept].

 RelationToRelationMapping::Mapping.

RelationToRelationMapping [
SourceRelation=>Relation;
SourceConcept=>Concept;
TargetRelation=>Relation;
TargetConcept=>Concept].

These patterns can be compared with patterns described in deliverable D.4.3.1 except
mapping-instances created with OntoMap are always unidirectional. When
bidirectional mappings are needed, two mappings have to be defined (one from A to
B and vice versa). Furthermore not all possible patterns are realized within OntoMap,
in fact only patterns supported by the graphical interface actually are used.

Nevertheless most patterns described in deliverable D.4.3.1 are covered by OntoMap.

“ConceptToConceptMapping” covers:
 5.1.2 “Subclass/Superclass Mapping” as direct equivalent,

D4.5.1 Report on Ontology mediation as service component

8

 5.1.1 “Equivalent Classes” and
 5.1.4 “Class Union” except for bidirectional mappings,
 5.1.5 “Class by Attribute Mapping” and
 5.4 “Attribute Value-Class Equivalence” by applying mapping conditions.

“AttributeToConceptMapping” covers:
 5.1.8 “Class Attribute Mapping” except mapping from concepts to

attributes

“AttributeToAttributeMapping” and “RelationToRelationMapping” cover
 5.2.1 “Equivalent Relation Mapping” and
 5.2.2 “Subrelation-Superrelation Mapping.
 5.2.3 “Negated Relation Mapping”,
 5.2.5 “Attribute Transitive Closure” and
 5.2.6 “Inverse Attribute Mapping” can be supported by expressing

functions.

In further versions of OntoMap the following patterns could be supported by
graphical means:
 5.1.3 “Class Intersection”
 5.1.7 “Class Join Mapping”
 5.2.7 “Attribute Value Mapping”
 5.3.1 “Equivalent Individual Mapping”
 5.3.2 “Equivalent Relation Instance Mapping”

The following patterns are too complex to be supported by a graphical tool and
therefore could only be supported by a rule editor:
 5.1.6 “Class Mapping by Axiom”,
 5.1.9 “Class Relation Mapping”,
 5.1.10 “Class Instance Mapping”,

5.2.4 “Relation Mapping by Axiom”.

D4.5.1 Report on Ontology mediation as service component

9

2 Graphical interface of mapping

OntoMap extends OntoStudio with the ability to map data structures between
ontologies. It comes along with a mapping view (see Figure 2) in which mappings can
be defined between several source ontologies (on the left) and one target ontology (on
the right). A mapping is visualised by an arrow and can be created by a drag&drop-
operation from the source to the target.

Figure 2: OntoStudio with Mapping View

OntoMap offers several mapping possibilities:

 concepts on concepts

 attributes on concepts

 attributes on attributes

 relations on relations

These mapping possibilities are described next by examples using the mapping
scenario shown in 2, with a flat ontology from a database on the left and a
target/enterprise-ontology on the right.

D4.5.1 Report on Ontology mediation as service component

10

2.1 Concepts on concepts

Figure 3: Mapping concepts on concepts

By dragging a concept from the left to a concept on the right a concept-to-concept-
mapping is created. In our example shown in Figure 3 we map ‘employee’ from the
flat source ontology to our enterprise ontology and by that make facts from the
employee database accessible to our enterprise ontology.

D4.5.1 Report on Ontology mediation as service component

11

2.2 Attributes on concepts

Figure 4: Mapping attributes on concepts

Draw a connection from an attribute on the left to a concept on the right to create an
attribute-to-concept-mapping. In Figure 4 each attribute value of ‘jobs_job_id’ from
the source will become an instance of ‘Job’ in the target ontology.

D4.5.1 Report on Ontology mediation as service component

12

2.3 Attributes on attributes

Figure 5: Mapping attributes on attributes

An attribute-to-attribute-mapping is defined by connecting two attributes. If there’s no
concept-to-concept- or attribute-to-concept-mapping their concepts are mapped
automatically. When mapping the attributes ‘employee_fname’ to ‘hasFirstName’ in
Figure 5 the concepts ‘employee’ and ‘Person’ will automatically be mapped if they
weren’t before.

D4.5.1 Report on Ontology mediation as service component

13

2.4 Relations on relations

Figure 6: Mapping relations on relations

To map relations on relations all allocated concepts have to be mapped. When this is
not done before OntoMap generates all required concept-to-concept-mappings
automatically. When mapping the relation ‘FK__employee__job_id__1BFD2C07’ to
‘hasJob’ in Figure 6 it is presumed that the attribute-to-concept-mapping
‘jobs_job_id’ to ‘Job’ existed before, otherwise the concept-to-concept-mapping
‘jobs’ to ‘Job’ had been generated.

3 Integration of the different components

3.1 Mapping store – Mapping Component

To be able to access all the existing data, which is stored in the different repositories,
connectors to the repositories will be developed for OntoStudio during this project.
With these connectors we will be able to retrieve ontologies and mappings from the
repositories as well as to store new defined mappings in the repository.

Let’s take a look at a simple scenario. Having two ontologies, a domain specific
ontology and a second ontology which shall be the integration ontology, we want to
do some integration stuff.
In a first step we might use the mapping discovery described in WP4.4.1 to generate
possible mappings. In a second step we now want to verify the correctness of the
discovered mappings and to finalize the mappings by hand.

D4.5.1 Report on Ontology mediation as service component

14

Therefore the user connects OntoStudio with the repositories to retrieve the ontologies
and the mappings defined between them. In the Mapping View the already existing
mappings are now shown and can be modified or deleted. Completely new mappings
can also be defined.
If we have finished this process, the modified information will be stored back to the
repository by the use of an export functionality.

OntoStudio will also provide an administration tool, to manage the different
repositories and their access information.

3.2 Mapping patterns – Mapping Component

The mappings that can graphically be defined by the mapping tool in OntoStudio are
based on the mapping patterns defined in D4.3.1.
The simple mapping patterns like e.g.“concept to concept”-mappings can easiliy be
defined by graphical means. Even more complex patterns can be represented in a
graphical way. For example “attribute to attribute”-mappings with value conversions
are much more complicated, but can be defined in a graphical way.
But the number of patterns that are expressible by an intuitive user interface is
limited. So the mapping capabilities integrated in OntoStudio will be limited to this
amount of patterns which are expressable by a real intuitive user interface.

4 Component Description

4.1 Data Model

4.1.1 Pattern

By “pattern” below we will assume template-patterns, not instantiated patterns. A
pattern contains the following attributes:

• Definition – the definition of the pattern is specified in the terms of the pattern
language, as given in the deliverable D.4.3.1.

• Name – name or title of the pattern, not necessarily unique
• Description - human-readable informal description of the pattern
• Related patterns – list of references to patterns with respect to part-of, is-a or

related-to semantic relations.
• Pattern ID – in addition each template pattern is associated with pattern

identifier, taken from the pattern in the Pattern Store (described below).

4.1.2 Mapping

The structure of the mapping object is determined by three important requirements:

1. Instantiated mapping patterns can be part of the definition of the mapping or
even represent it at all. In particular each instantiated pattern is a mapping;

2. Each ontology mapping is bound to two ontologies;
3. Versioning should be supported.

As a result we get the following model specification:

D4.5.1 Report on Ontology mediation as service component

15

• Definition – in terms of the mapping language, the specification of which will
be provided in deliverable D.4.3.1.

• Name – mapping name/title, not necessarily unique
• Version – necessary for the mapping versioning. We intend to support version

in the form MAJOR.MINOR.BUILD, e.g. “1.3.115”. However, we do not
want to enforce this, so the first version of the API will support arbitrary
strings as well.

• Description – human specific information for the mapping
• Source and Target Ontologies – each mapping keeps references to the

ontologies for which it is specified. The ontology objects are defined at java
level in wsmo4j2.

• Referenced patterns – a list of references to template patterns which have been
used for the ontology mapping through instantiating.

Example mapping:

Name: “o1_o2”

Definition: classMapping(o1:Person o2:Human

 attributeMapping(o1:name o2:name)

 attributeMapping(o1:age o2:age)

)

Version: “1.2.1”

Source and Target Ontologies: references to o1 and o2

Description: “Mapping between the ontologies o1 and o2”

Referenced patterns: references to the patterns:
equivalenceClassMapping(classExpr classExpr) and
equivalentRelationMapping(relationExpr relationExpr)

• [TBD]. Mapping ID - similarly to the patterns each ontology mapping is
associated with mapping identifier got after storing the mapping in the
Mapping Store (described below).

4.2 Store

4.2.1 Pattern and Mapping Store

We provide the interfaces PatternStore and MappingStore in order to allow storage
and retrieval of patterns and mappings.. There could be multiple implementations for
them, e.g. File-based, RDBMS-based or Full-text. The StorageFactory class is an
implementation-hiding factory, used to create Patter/MappingStore instances.

To load objects from the store one needs an ID. The loading is preceded by a search
through some kind of specific attribute restriction(s). We define the pattern- and the
mapping restrictions bellow. Usually, a restriction returns more than one result, so a
list of patterns/mappings can be expected.

D4.5.1 Report on Ontology mediation as service component

16

Removal of patterns and mappings will also be supported. Because each mapping
can have references to some patterns, the store will allow to remove a pattern only if
there are not any references to it.

4.2.2 Pattern and Mapping Restrictions

We will consider a set of restrictions split in simple restrictions and composite
restrictions, where simple restrictions are single restrictions on a single attrubute,
while the composite restrictions consist of several simple ones.

Three kinds of simple restrictions are considered:

• StringRestriction – checks if given string starts with, ends with, matches to,
contains or equals to a specified restriction string.

• ValueRestriction – checks if given comparable object is lower, upper or equal
to a specified by the restriction comparable object.

• ListRestriction – checks if given object is present in a list of objects.
Each of the above simple restrictions uses only one of the mentioned conditions.

For example, StringRestriction that startsWith “X” is a simple restriction, while
ValueRestriction(1<x<10) is a composite restriction that is composed of two simple
ones: ValueRestriction(1<x) and ValueRestriction(x<10).

Composite restrictions also allow imposing restrictions on more than one attribute,
for example:

• PatternRestriction – checks if a given pattern complies with the imposed
restrictions to its components:

Name – some StringRestrictions
 Description – some StringRestrictions

Part-of related patterns – a ListRestriction
Is-a related patterns – a ListRestriction
Related-to related patterns – a ListRestriction

• MappingRestriction – checks if a given mapping complies with the imposed
restrictions to its components:

Name – some StringRestrictions
Version – some ValueRestrictions
Description – some StringRestrictions
Source ontology – some StringRestrictions
Target ontology – some StringRestrictions
Referenced Patterns – some ListRestrictions

An example in java follows:

PatternRestriction patternRestr = new PatternRestriction();

StringRestriction nameRestr1 =

 new StringRestriction(StringRestriction.STARTS_WITH, "sub");

StringRestriction nameRestr2 =

 new StringRestriction(StringRestriction.CONTAINS, "By");

// suppose that list contains one or more PatternID objects.

D4.5.1 Report on Ontology mediation as service component

17

ListRestriction listResr = new ListRestriction(list);

patternRestr.addRestriction(PatternRestriction.NAME_RESTRICTION,
nameRestr1);

patternRestr.addRestriction(PatternRestriction.NAME_RESTRICTION,
nameRestr2);

patternRestr.addRestriction(PatternRestriction.RELATED_TO_RESTRICTION,
listRestr);

4.3 Instance Transformation

The Instance Transformation component allows to transform instances or sets of
instances between two ontologies, according to a given mapping. The ontologies are
specified in the mapping itself (because each Mapping object is specified as a
mapping between two ontologies). The two different transformations are called:

• “batch mode” – a set of instances (or all instances) will be transformed in a
non-interactive mode;

• “run-time mode” - only one instance (and possibly the related ones) will be
transformed.

An essential part of the process is the check if the instance being transformed
already exists in the target ontology. This is done using the Instance Unification
component (defined below), which answers whether two instances are equal.
However, in the process of transforming instances, it is better to avoid invoking the
unification component for each two instances (because the algorithm will become
quadratic), especially if we expect large number of instances. Therefore we must take
steps to prevent this. One important assumption is that only instances of compatible
classes can be equal. By compatible classes we mean that one of the classes is a
subclass of the other. It makes sense to impose even stronger restrictions on the
instance types and the API for Instance Unification component allows for that.

For example, if after mapping transformation the result instance is of type City, it
makes sense to consider all instances of type City, LocalCapital, CountryCapital
for possible unification, but it is senseless to consider the instances of type Person.

4.4 Instance Unification

The Instance Unification component essentially answers whether two instances in
the target ontology are the same. It is used in the last stage of the
InstanceTransformation.

There are two additional requirements that contribute to the definintion the API for
instance unification:

• As we mentioned above it’s possible to take some preliminary steps to reduce
the number of all candidate instances for unification;

• As the last step we should merge the two instances in the target ontology.

D4.5.1 Report on Ontology mediation as service component

18

It is impossible to do unification between instances in the general case. When we do
unification we utilize knowledge related to the mapping, the ontology or the meaning
of the specific instance types. With respect to this, we allow the specification if
Instance Unification to be done in the following three ways:

• default unification – the implementation involves measures of the similarity
and compatibility between instances. This is only possible when knowledge of
the intended meaning of the concepts from the target ontology is available (for
example, if the ontology is mapped to PROTON ontology, see D1.8.1 “Base
Upper Level Ontology Guidance”)

• Per-ontology instance unification – there could be ontologies, for which it
makes sense to define specific instance unification. After that, all mappings
having this ontology as target, could utilize the specified unification.

• Per-mapping – this is to allow the user to define specific unification for a
particular mapping.

4.4.1 Cascading unifications

In addition to the three types of instance unification, one may want to cascade some
of them. A simple example is if one wants to define a specific unification for one
concept, and use the default unification for the rest.

Such cascading mechanism for unification of instances can be put into effect if

1. each “mapping unification“ has reference to either the “default unification” or
some compatible “ontology unification” (in sense of referring to the same
target ontology)

2. each “ontology unification” has reference to the “default unification”

So if in some “mapping unification” it’s not possible to give an answer whether two
instances can be unified then we will expect the answer by the corresponding
“ontology unification”. As a last resort the “default unification” must reply to the
question without hesitation. For example:

Let’s consider a source ontology EuropeGeography and a target ontology
WorldGeography.

Mapping unification – for each two instances i1 and i2 of the ontology
WorldGeography

 if (i1 is subregion of Europe and i2 is not subregion of Europe)
 then (the instances can’t be unified)
 else (call Ontology unification for i1 and i2)
Ontology unification – for each two instances i1 and i2 of the ontology

WorldGeography

 if (i1 is City & i2 is City & i1.name == i2.name & i1.population ==
i2. population)

 then (the instances refer to the same real object)
 else (call Default unification for i1 and i1)

D4.5.1 Report on Ontology mediation as service component

19

Default unification – for each two instances i1 and i2 of the ontology
WorldGeography answer that they are not the same.

D4.5.1 Report on Ontology mediation as service component

20

5 API

The API section defines the objects at java-level and is organized as follows:

• Overview/notes
• Notes on creation of the objects (including constructors)
• List of public methods, with notes and discussion
• Example usage

5.1 Data Model

Here follows list of constructors and methods for Pattern and Mapping objects
given in Java-Doc like notation in alphabetical order.

5.1.1 Pattern

• Each pattern can be created in two ways:
1. By importing the pattern definition from a specific language format

through parser object.
2. By loading the pattern from the Pattern Store.

Constructor Summary
Pattern(Reader inputDefinition, Parser parser)
Constructs a pattern with definition imported from a specific language format
through given parser. The initial format is retrieved by given input stream.

• The encapsulation of the pattern object fields is performed via standard get/set

methods:

Method Summary
 String getDefinition()
 String getDescription()

 Iterator getIsAPatterns()
 String getName()

 Iterator getPartOfPatterns()
 Iterator getRelatedToPatterns()

Void setDescription(String desc)
 void setIsAPatterns(List partOfPatterns)
 void setName(String name
 void setPartOfPatterns(List partOfPatterns)
 void setRelatedToPatterns(List partOfPatterns)

D4.5.1 Report on Ontology mediation as service component

21

5.1.2 Mapping

• Each mapping can be created in two ways:
1. By importing the mapping definition from a specific language format

through given parser object.
2. By loading a mapping from the Mapping Store.

Constructor Summary
Mapping(Reader inputDefinition, Parser parser,
Ontology sourceOntology, Ontology targetOntology)

Constructs a mapping for two given ontologies with definition imported from a
specific language format through given parser. The initial format is retrieved by
given input stream.

• The encapsulation of the mapping object fields is performed via standard

get/set methods.

Method Summary
 String getDefinition()
 String getDescription
 String getName()
 List getReferencedPatterns()

 Ontology getSourceOntology()
 Ontology getTargetOntology()
 Version getVersion()

 void setDescription(String descr)
 void setName(String name)
 void setReferencedPatterns(List patterns)
 void setVersion(Version v)

5.1.3 Version

• Version has three attribute fields. Only the first one referring to the major
version must be always initialized. Whereas it’s not necessary the other ones
to be represented.

Field Summary
String buildNumber
String major
String minor

• Each version can be created in four ways, but two of them are essentially

different:
1. By standard initializing each one of the class attributes.

D4.5.1 Report on Ontology mediation as service component

22

2. By string that must be split to parts through given (or default) delimiter.
Each of them refers to some of the attributes respectively.

Constructor Summary
Version(String sVersion)

Constructs a new Version from string splited through default delimiter. See the
constructor Version(String, char).

Version(String sVersion, char delimiter)
Constructs a new Version from string splited through default delimiter. For

Example if delimiter is ’.’ and:

sVersion = "Alpha.1.5" => Major-Version = "Alpha", Minor-Version = "1",
BuildNumber = "5"
sVersion = "5.1" => Major-Version = "5", Minor-Version = "1"
sVersion = "Version3" => Major-Version = "Version3"

Version(String major, String minor)

Constructs a new Version with given major and minor values, without
buildNumber component.

Version(String major, String minor, String buildNumber)
Constructs a new Version with given major, minor and buildNumber values.

• The fields of version object are encapsulated via standard get/set methods.

Also Version is implementation class of Comparable interface and
corresponding compareTo and equals methods should be implemented. To
notice that we consider two versions as comparable only if they are
represented by the same list of components.

Method Summary
 int compareTo(Object v)

This method is specified by Comparable interface. To notice that we
consider two versions as comparable only if they are represented by the
same list of components. In opposite case ClassCastException will be
thrown.

 boolean equals(Object v)
Compares this version to the specified object. The result is true if and
only if compareTo method applied to this object returns 0.

 String getBuildNumber()
String getMajorVersion()
String getMinorVersion
 void setBuildNumber(String s
 void setMajorVersion(String s)
 void setMinorVersion(String s
String toString()

D4.5.1 Report on Ontology mediation as service component

23

5.2 Store

5.2.1 Pattern Store

• There could be multiple implementation classes for this interface, e.g. File-
based, Database, Full-text. A reference to Pattern Store object could be
obtained from Storage Factory

• The following methods allow storage, search and retrieval of patterns.

Method Summary
 Pattern loadPattern(PatternID pattern)

Loads a pattern through its identifier

 void removePattern(PatternID pattern)
Removes a pattern specified by its identifier.

Iterator searchByIsARelation(Pattern pattern)
Searches for all patterns which have relation of type is-a with a given

pattern

Iterator searchByKeywords(List keywords)
Searches for all patterns with given keywords in their descriptions

Iterator searchByName(String patternName)
Searches for a pattern with given name

Iterator searchByPartOfRelation(Pattern pattern)
Searches for all patterns which have relation of type part-of with a

given pattern

Iterator searchByRelatedToRelation(Pattern pattern)
Searches for all patterns which have relation of type related-to with a

given pattern

Iterator searchByRestriction(PatternRestriction patternRestriction)
Searches for patterns in respect to given composite restriction

 PatternID storePattern(Pattern pattern)
Stores a pattern and returns newly created pattern identifier

5.2.2 Mapping Store

• There could be multiple implementation classes for this interface, e.g. File-
based, Database, Full-text. A reference to Mapping Store object could be
obtained from Storage Factory

• The following methods allow storage, search and retrieval of mappings.

D4.5.1 Report on Ontology mediation as service component

24

Method Summary
 Mapping loadMapping(MappingID id)

Loads a mapping through its identifier

 void removeMapping(MappingID mapping)
Removes a mapping specified by its identifier.

Iterator searchByKeywords(List keywords)
Searches for all mappings with the given keywords in their

descriptions

Iterator searchByName(String name)
Searches for an ontology mapping with given name

Iterator searchByPatterns(List patterns)
Searches for ontology mappings in respect to their list of related

patterns.

Iterator searchByRestriction(MappingRestriction mappingRestriction)
Searches for ontology mappings in respect to given composite

restriction

Iterator searchBySourceOntology(Identifier sourceOnt)
Searches for ontology mappings with specified source ontology

Iterator searchByTargetOntology(Identifier targetOnt)
Searches for ontology mappings with specified target ontology

Iterator searchByVersion(Version v)
Searches for an ontology mapping with given version

 MappingID storeMapping(Mapping mapping)
Stores a mapping and returns new created mapping identifier

5.2.3 Storage Factory

Method Summary
static MappingStore getMappingStore
static PatternStore getPatternStore()

5.2.4 Pattern/Mapping Restriction

Pattern and Mapping Restriction classes implement the Composite Restriction
interface, which extends Restriction interface.

5.2.4.1 Restriction
Restriction is an interface with only one method.

D4.5.1 Report on Ontology mediation as service component

25

Method Summary
 boolean admit(Object o)

Checks if given object complys with restrictions specified by the
implementation class

In respect to the data types of the considered objects, three direct implementation
classes are supported:

5.2.4.2 StringRestriction
Restricts string object

Field Summary
Static int CONTAINS
Static int ENDS_WITH
Static int EQUALS
Static int MATCHES
Static int STARTS_WITH

Constructor Summary
StringRestriction(int typeOfRestriction, String s)

Constructs basic restriction by string and type. The range of the first argument is
set of values of class variables referring to the type of the restriction.

5.2.4.3 ValueRestriction

Restricts comparable object

Field Summary
static int EQUAL
static int LOWER
static int UPPER

Constructor Summary

ValueRestriction(int typeOfRestriction, Comparable value)
Constructs basic restriction by comparable object and type. The range of the first

argument is set of values of class variables referring to the type of the restriction.

D4.5.1 Report on Ontology mediation as service component

26

5.2.4.4 ListRestriction
Restricts object in respect to this if it is presented in given list of objects or not.

Constructor Summary
ListRestriction(List contains)

Constructs basic restriction by list of objects.

5.2.4.5 CompositeRestriction

CompositeRestriction is an interface with one method extending
RestrictionInterface.

Method Summary
 void addRestriction(int restrictedField, Restriction r)

This method add restriction to some attribute of the implemantation class.
The range of the first argument is set of values of class variables referring to
the class attributes.

Each implementation class of CompositeRestriction interface enables to be added
one or more “simple” restrictions that refer to the class attributes. As we said before
pattern and mapping restrictions are such examples:

5.2.4.6 PatternRestriction
Restricts object of type Pattern

Field Summary
static int DESCRIPTION_RESTRICTION
static int IS_A_RESTRICTION
static int NAME_RESTRICTION
static int PART_OF_RESTRICTION
static int RELATED_TO_RESTRICTION

Constructor Summary
PatternRestriction()

D4.5.1 Report on Ontology mediation as service component

27

Method Summary
 void addRestriction(int typeOfRestriction, Restriction r)

This method is specified by CompositeRestriction Interface. The range
of the first argument is set of values of class variables referring to the class
attributes.

 boolean admit(Object o)
This method is specified by Restriction Interface. It checks if given

pattern complies with all those restrictions which have been included
through addRestriction method or it doesn’t.

5.2.4.7 MappingRestriction

Restricts object of type Mapping.

Field Summary
static int DESCRIPTION_RESTRICTION
static int NAME_RESTRICTION
static int PATTERN_RESTRICTION
static int SOURCE_ONTOLOGY_RESTRICTION
static int TARGET_ONTOLOGY_RESTRICTION
static int VERSION_RESTRICTION

Constructor Summary
MappingRestriction()

Empty constructor.

Method Summary
 void addRestriction(int typeOfRestriction, Restriction r)

This method is specified by CompositeRestriction Interface. The range
of the first argument is set of values of class variables referring to the class
attributes.

 boolean admit(Object o)
 This method is specified by Restriction Interface. It checks if given

mapping complies with all those restrictions which have been included
through addRestriction method or it doesn’t.

5.2.5 Example Scenarios

D4.5.1 Report on Ontology mediation as service component

28

This section contains some simple scenarios illustrating the functionality of the
Pattern and Mapping Store components.

5.2.5.1 Pattern Store Scenarios
The first thing is to create a Pattern. This is preformed via pattern definition and

Parser object:

1: String patternDef = "equivalentClassMapping(C1 C2)";
2: Reader r = new StringReader(patternDef);
3: Pattern examplePattern = new Pattern(r, parser);
4: String patternName = "EquivalentClassMapping";
5: String patternDescr = "A class in one ontology has the same
meaning as a class in a second ontology";
6:
7: examplePattern.setName(patternName);
8: examplePattern.setDescription(patternDescr);

Afterwards, a reference to Pattern Store should be retrieved from the Storage
Factory to allow storing of the new created pattern:

9: PatternStore ps = StorageFactory.getPatternStore();
2: PatternID id = ps.storePattern(examplePattern);

After this if we want to find this pattern and modify it, we will create a pattern
restriction respectively:

10: PatternRestriction patternRestr = new PatternRestriction();
11: StringRestriction nameRestr =
12: new StringRestriction(StringRestriction.STARTS_WITH,
"equivalent");
13:
14:
 patternRestr.addRestriction(PatternRestriction.NAME_RESTRICT
ION, nameRestr);
15: Iterator equivPatterns =
ps.searchByRestrictions(patternRestr);
16:
17: PatternID patternID;
18: Pattern curPattern = null;
19: for(int i = 0; equivPatterns.hasNext(); i++) {
20: patternID = (PatternID)(equivPatterns.next());
21: curPattern = ps.loadPattern(patternID);
22: System.out.println(" " + patternID.toString() + ": " +
curPattern.getDescription());
23: }

Finally we will modify the description of the first pattern complying with the
specified restriction

D4.5.1 Report on Ontology mediation as service component

29

24: Iterator listPatterns =
ps.searchByRestrictions(patternRestr);
25: PatternID firstPatternID;
26: Pattern firstPattern;
27:
28: if(listPatterns.hasNext()) {
29: firstPatternID = (PatternID)(listPatterns.next());
30: firstPattern = ps.loadPattern(firstPatternID);
31: firstPattern.setDescription("A class in the one ontology
has the same meaning as a class in the second ontology. This is a
common pattern");
32: }

5.2.5.2 Mapping Store Scenarios

Firstly we will create a simple mapping between two given ontologies “Philosophy”
and “Psychology”. For this it’s necessary a mapping definition and a reference to a
Parser object

1: String mappingDef = "classMapping(o1:Human o2:Person" +
2: " attributeMapping(o1:name
o2:name)" +
3: " attributeMapping(o1:age
o2:age))";
4: Ontology sourceOnt; // reference to WSMO Ontology concerning
to o1
5: Ontology targetOnt; // reference to WSMO Ontology concerning
to o2
6:
7: Reader r = new StringReader(mappingDef);
8: Mapping exampleMapping = new Mapping(r, parser, sourceOnt,
targetOnt);
 9:
10:
11: String mappingName = "Philosophy2Psychology";
12: String mappingDescr = "Searching the relationships between
humanity and personality.";
13: Version initialVersion = new Version("Beta.1");
14:
15: exampleMapping.setName(mappingName);
16: exampleMapping.setDescription(mappingDescr);
17: exampleMapping.setVersion(initialVersion);

Afterwards, a reference to Mapping Store should be retrieved from the Storage
Factory to allow storing of the new created mapping:

18: MappingStore ms = StorageFactory.getMappingStore();
19: MappingID id = ms.storeMapping(exampleMapping);

D4.5.1 Report on Ontology mediation as service component

30

After this if we want to find this mapping and modify it, we must preliminarily
create a mapping restriction:

20: MappingRestriction mappingRestr = new MappingRestriction();
21: ArrayList listOfKeyWords = new ArrayList(2);
22: listOfKeyWords.add("humanity");
23: listOfKeyWords.add("personality");
24: ListRestriction descrRestr = new
ListRestriction(listOfKeyWords);
25: StringRestriction nameRestr =
26: new StringRestriction(StringRestriction.CONTAINS,
"Psychology");
27:
28:
 mappingRestr.addRestriction(MappingRestriction.DESCRIPTION_R
ESTRICTION, descrRestr);
29:
 mappingRestr.addRestriction(MappingRestriction.NAME_RESTRICT
ION, nameRestr);
30:
31: Iterator mappings = ms.searchByRestrictions(mappingRestr);
32:
33: MappingID mappingID;
34: Mapping curMapping;
35: while(mappings.hasNext()) {
36: mappingID = (MappingID)(mappings.next());
37: curMapping = ms.loadMapping(mappingID);
38: System.out.println(" " + mappingID.toString() + ": " +
curMapping.getDescription());
39: }

Finally, we will edit some fields of the mapping. After that a new version of it will
be created allowing the old version to be preserved.

40: MappingID firstMappingID;
41: Mapping firstMapping;
42: Version mappingVersion;
43: String newMinorVersion;
44:
45: Iterator mappingList =
ms.searchByRestrictions(mappingRestr);
46: if(mappingList.hasNext()) { // edit only first mapping in
the list
47: firstMappingID = (MappingID)(mappings.next());
48: firstMapping = ms.loadMapping(firstMappingID);
49: firstMapping.setDescription("Mapping between Philosophy
Ontology and Psychology Ontology finding out the relationships
between humanity and personality.");

D4.5.1 Report on Ontology mediation as service component

31

50:
51: mappingVersion = firstMapping.getVersion();
52: newMinorVersion = "" +
(Integer.parseInt(mappingVersion.getMinorVersion()) + 1);
53: mappingVersion.setMinorVersion(newMinorVersion);
54: firstMapping.setVersion(mappingVersion);
55: }

5.3 Instance Transformation

Instance Transformation is an interface with two methods for “batch mode” and
“run-time mode” respectively. The instance objects are defined at java level in
wsmo4j.

Method Summary
Collection transformation(Mapping mapping, Collection instancies,

InstanceUnification iu)
Transforms a set of instances of one ontology to the corresponding

instances of second ontology according to a given mapping. The
InstanceUnification parameter is the particular instance unification that
has to be used when transforming instances.

Instance transformation(Mapping mapping, Instance i,
InstanceUnification iu)

Transforms an instance of one ontology to an instance of second
ontology according to a given mapping. The instance unification
parameter is the same as in the above method.

5.4 Instance Unification

InstanceUnification is an interface with possible different implementations
depending on the point of view – mapping, ontology or by default. The instance and
ontology objects are defined at java level in wsmo4j.

The constructor should take “unification parent” parameter used to implement
cascading.

Method Summary
 Ontology getTargetOntology()

Gives a reference to the target ontology for which this instance
unification is aplicable

 Int isTheSame(Instance i1, Instance i2)
Checks whether two instances of the target ontology are the same.

Returns the value 0 if it’s not possible to give an answer, the value 1 if
they refer to the same real object or -1 otherwise.

D4.5.1 Report on Ontology mediation as service component

32

 Instance merge(Instance i1, Instance i2)
Unifies two instances of the target ontology creating new instance on

the place of the first one. It’s possible to make unification only if
isTheSame() method returns 1 and so a reference to the new created
instance(first one) will be returned.

6 Bibliography and references

1 SEKT, D4.4.1 Ontology Mediation Management
2 WSMO4J, (http://wsmo4j.sourceforge.net/)

