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Executive Summary

This deliverable first presents an overview of TextGarden, a Machine Learning toolkit
(ML), and GATE, an infrastructure for Human Language Technology (HLT). Next, the
use of machine learning tools for language processing is motivated and example scenar-
ios are presented. Subsequently, the technical details of the bottom-up, tight coupling
between TextGarden and GATE are presented, with a detailed example of use of SVM for
information extraction.

The requirement for tight, i.e., bottom-up integration between HLT and ML comes
from the high performance required from the combined system.

The integration of Human Language Technology tools with Machine Learning algo-
rithms has a substantial benefit, as it enables the development of HLT systems based on
Machine Learning, instead of hand-crafted rule-based ones. In general, the advantage
of Machine Learning systems comes from the fact that they do not require expert users,
i.e., a system based on learning can easily be retrained by a user who only needs to be
an expert in the application domain and provide the necessary annotated training data. It
also enables usage of ML systems on textual data taking into account language specific
properties of the text provided by HLT either via pre-processing the data or using HLT as
background knowledge in ML systems.

Last, but not least, this work has had impact on a number of related deliverables:

• D2.1.2 on Ontology-Based Information Extraction

• D2.5.2 on Evaluation of ontology-based IE

• D10.3.2 on Prototye for the SEKT Legal case study
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Chapter 1

Introduction

SEKT aims at developing technologies for Next Generation Knowledge Management that
exploit complementary research fields like Knowledge Discovery (KDD), Human Lan-
guage Technology (HLT) and Ontology and Metadata Management (OM). Specifically,
SEKT develops software to:

• semi-automatically learn ontologies and extract metadata,

• provide knowledge access,

• to perform middleware functionalities for global integration.

SEKT combines these core technologies to achieve synergy effects, whereby each
technology is a key part of (semi-) automatic ontology learning (i.e. discovery of ontology
primitives both on the schema and on the instance level) and maintenance.

This report is part of the bottom-up integration work performed in workpackage WP6
on, specifically task T6.6. It focuses on integration of SEKT technology based on KDD
developed in WP1 and SEKT technology based on HLT developed in WP2. In the fol-
lowing, we put the work of this deliverable in the context of the SEKT project and outline
its content.

1.1 The SEKT Big Picture

Figure 1.1 gives an overview over the SEKT project. The SEKT core technologies can
be found among the ‘Research & Development’ activities: WP1 explores approaches for
Ontology Generation from a machine-learning point of view with a strong focus on text
mining. The corresponding tool suite, TEXTGARDEN, is mainly developed within WP1.
WP2 uses Human Language Technology for Metadata Generation, especially within the
framework of the GATE suite. WP3 researches ontology management infrastructures
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CHAPTER 1. INTRODUCTION 3

including functionalities for learning, updating and evolving ontologies over time and
develops the KAON infrasturcture further with focus on the KAON2 and TEXT2ONTO

components. This report is part of the work performed in workpackage (WP) 6 on Inte-
gration and is naturally related with the technical workpackages and their interaction.

Figure 1.1: The SEKT Big Picture

1.2 Approaches to Integration in SEKT

Workpackage 6 aims at providing integration between the SEKT technical components
in two ways. On the one hand it deals with atop-down integration approach via an
Integration Plattform, on the other hand it deals with the complementary approach of
bottom-up integration on a bilateral basis between the core research partners.
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1.2.1 Top-Down Integration

In Workpackage 6, tasks 6.1 – 6.5 provide the overall architecture framework within
which the SEKT technical components will be integrated. In the context of the work
done so far it thus deals with the creation and extension of the the SEKT Integration
Platform (SIP), which acts as the technical base for top-down integration.

SIP offers modular extensibility for components by so-called “pipelets”. Further infor-
mation about the basic platform can be found e.g. in the SEKT deliverables D6.1 – D6.4.
The deliverables D6.5.x describe the integration of components from the core workpack-
ages into SIP, more specifically the integration of TEXTGARDEN, GATE and KAON
(such as the OWL-DL inference engine KAON2) into SIP.

The top-down integration allows for bundling of integrated components in many dif-
ferent ways. This is particularly useful for bundling of SEKT technologies into enterprise
solutions.

1.2.2 Bottom-Up Integration

In parallel, SEKT exploits a bottom-up integration where we integrate pairwise the core
technologies developed in SEKT.

Task 6.6 which deals with bottom-up integration has been included after a first revi-
sion of results in task 6.5 at the end of year 1 of the SEKT project. Bottom-up integration
explores the synergies which the SEKT core technologies offer for (semi-)automatic cre-
ation and maintenance of ontologies, or briefly ontology learning. It was felt necessary
to better understand the low-level opportunities for integration — first to better under-
stand the top-down integration activities, second to emphasize more the research needed
to combine SEKT technologies. The bottom-up approach complements the top-down
strategy in different ways and mainly targets two things:

• Clarify the relationships between machine learning, human language technologies
and ontology management.

• Coordinate the efforts for integration of the core technical components delivered in
WP1, WP2 and WP3.

This explores the synergies on a bilateral basis between workpackages 1–3. The
bottom-up integration task aims at light-weight proof-of-concept implementations which
illustrate the potential and finally evaluate the potential of pairwise integration. This is
particularly useful for further research prototyping.

In general, the bottom-up integration activities are not meant to replace integration via
SIP but aim at examining potential benefits from the combination of core technologies
in a light-weight manner. We see the bottom-up integration as a great chance to gain
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Figure 1.2: The SEKT Big Picture

insights on how to combine our different technologies. The bottom-up integration task
aims at light-weight proof-of-concept implementations which illustrate the potential and
finally evaluate the potential of pairwise integration. This is particularly useful for further
research prototyping. Figure 1.2 gives an overview over the bilateral integration activities
pursued within SEKT and the M24 deliverables within this task.

After the initial status report in month 18 [BHS+05] which has reported on the overall
bottom-up integration efforts from a birds-eye perspective, this deliverable is part of a
series of bottom-up deliverables D6.6.x on bilateral integration activities, which aim to
report in more technical detail on the bilateral integration efforts.

1.3 Outline

This deliverable is structured as follows: chapter 2 gives overall descriptions of TextGar-
den and GATE, chapter 3 contains overview on integration scenarios, chapter 4 is a report
on current tool integration, chapter 5 is a report on scheduled integration plans and finally
chapter 6 concludes.



Chapter 2

Description of the Individual
Components for Integration

To make this deliverable self-contained, we shortly describe the tools developed in other
SEKT workpackages WP1 involving Knowledge Discovery and WP2 involving Human
Language Technology. This chapter is meant as a reference for the next chapters that will
refer back to these software tools.

2.1 Overview of TextGarden

Text Garden software tools for text mining is a set of software components, many of them
developed mainly within SEKT (workpackage WP1 on Ontology Generation). The objec-
tive of this workpackage is to explore various aspects of generating ontological structures
by means of machine learning, especially text mining methods. Text Garden tools en-
able easy handling of text documents for the purpose of data analysis including automatic
model generation and document classification, document clustering, document visual-
ization, dealing with Web documents, crawling the Web and many other. The code is
written in C++ and originally runs on Windows platform. It is publicly availabel from
www.texmining.net. TextGarden consists of a set of command line utilities, which
could be run sequentially in pipeline manner to perform a specific learning task. Devel-
opment of Text Garden started in 1996 [Mla96, GM98], with major revisions in late 90’s.
Several components for Text Mining were developed as a part of SEKT WP1 deliverables
on the top of the existing library. Here we provide brief description of the software tools
emphasizing the SEKT contributed parts where relevant.

Text Garden tools enable easy handling of text documents for the purpose of data anal-
ysis including: document pre-processing, feature construction, document classification
and clustering, learning on unlabeled data and active learning, document visualzaition,
focused crawling. The rest of this section describes briefly each of the functionalities that
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are relevant for SEKT.

2.1.1 Document Pre-processing

Pre-processing of Text Documents in various formats. For SEKT the most relevant format
is Bag-Of-Words format with the file extension.Bow This format corresponds to the
commonly used representation of a text document with a word-vector ignoring position
of words in the document.The purpose of the format is to enable efficient execution of
algorithms working with the bag-of-words representation such as, clustering, learning,
classification, visualization, etc.

2.1.2 Feature Construction

Feature construction components for learning semantic-space of documents that create
semantic-space representation of documents based on Latent Semantic Indexing and en-
ables projection of new documents on the learned semantic-space. And another compo-
nent for feature construction from images (developed inside D1.3.1)

2.1.3 Document Classification

Document classification including automatic model generation based on various Machine
Learning Algorithms including Support Vector Machines, k-Nearest Neighbor, Logistic
Regression, Winnow and more. In SEKT deliverables so far we have used Support Vector
Machines (SVM) and k-Nearest Neighbor. Document classification in Text Garden in-
cludes also document classification into a large topic ontology (developed inside D1.5.1)
that is currently used in the BT case study on Inspec topic ontology.

2.1.4 Semi-supervised and Active Learning

Processing of unlabelled data and Active Learning (developed inside D1.2.1 [NGM04]).
Active learning is implemented on sparse training sets using binary SVM model. It per-
forms active learning loop on the specified input. Semi-Supervised transduction performs
a transductive inference on a joint labelled and unlabelled dataset.

2.1.5 Document Visualization

Document Visualization [BFG05] Visualization of semantic-space of documents provides
visualization of documents as a 2-D map based on the semantic-space representation (de-
veloped inside D1.4.1).
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2.1.6 Focused Crawling

Focused crawling of the Web (developed inside D1.1.1 [NFMG04]) that exploits Google.
Additionally there are separate components that enable getting one page from the web
based on the Web address specified with URL.

2.2 Overview of GATE

GATE is implemented in Java and is available under the LGPL license. It is available
from gate.ac.uk, including detailed user and programmer guides, Javadoc, and example
code.

The GATE architecture distinguishes between data, algorithms, and their visualisa-
tion.1 Following the terminology established in version 1, GATE components are one of
three types:

• Language Resources (LRs) represent entities such as lexicons (e.g. WordNet),
corpora or ontologies;2

• Processing Resources (PRs) represent entities that are primarily algorithmic, such
as parsers, generators or n-gram modellers;

• Visual Resources (VRs) – added in version 2 – represent visualisation and editing
components that participate in GUIs.

These resources can be local to the user’s machine or remote (available over the (In-
ter)net), and all can be extended by users without modification to GATE itself.

One of the main advantages of separating the algorithms from the data they require is
that the two can be developed independently by language engineers with different types
of expertise, e.g. programming and linguistics. Similarly, separating data from its visu-
alisation allows users to develop alternative visual resources, while still using a language
resource provided by GATE.

Collectively, all resources are known as CREOLE (a Collection of REusable Objects
for Language Engineering), and are described in XML configuration files, which declare
their name, implementing class, parameters, icons, etc. This component metadata is used
by the framework to discover and load available resources.

1Analoguous to the model/controller/view architecture common in GUI toolkits.
2Ontologies are often not considered as describing language and, therefore, their classification as LRs

could be somewhat un-intuitive. Probably a more appropriate term will be data resources, but we adhere to
the original terminology adopted in GATE v1. Fundamentally, GATE treats all declarative data resources
like lexicons, ontologies, and documents in the same fashion, i.e., they can be provided as inputs or param-
eters to PRs and are visualised and edited in VRs.
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Unlike version 1, GATE v2 offers comprehensive multilingual support using Unicode
as its default text encoding. It also provides a means of entering text in various languages,
using virtual keyboards where the language is not supported by the underlying operating
platform [TUB+02].

When an application is developed within GATE’s graphical environment, the user
chooses which processing resources go into it (e.g. tokeniser, POS tagger), in what order
they will be executed, and on which data (e.g. document or corpus). The application
results can be viewed in the document viewer/editor. Applications can be saved, reloaded,
and embedded in other systems.

All resource types have creation-time parameters that are used during the initialisation
phase. Processing Resources also have run-time parameters that get used during execu-
tion.

Controllers are used to define GATE applications and have the role of controlling the
execution flow.

2.2.1 GATE Machine Learning Framework

This section describes the use of Machine Learning (ML) algorithms in GATE for NLP
tasks such as Information Extraction.

An ML algorithm ”learns” about a phenomenon by looking at a set of occurrences of
that phenomenon that are used as examples. Based on these, a model is built that can be
used to predict characteristics of future (and unforeseen) examples of the phenomenon.

Classification is a particular example of machine learning in which the set of training
examples is split into multiple subsets (classes) and the algorithm attempts to distribute
the new examples into the existing classes.

This is the type of ML that is used in GATE and all further references to ML actually
refer to classification.

2.2.2 Some definitions

• instance: an example of the studied phenomenon. An ML algorithm learns from a
set of known instances, called a dataset.

• attribute: a characteristic of the instances. Each instance is defined by the values
of its attributes. The set of possible attributes is well defined and is the same for all
instances in a dataset.

• class: an attribute for which the values need to be found through the ML mecha-
nism.
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2.2.3 GATE-specific interpretation of the above definitions

• instance: an annotation. In order to use ML in GATE the users will need to choose
the type of annotations used as instances. Token annotations are a good candidate
for this, but any type of annotation could be used (e.g. things that were found by a
previously run JAPE grammar).

• attribute: an attribute can be either:

– the presence (or absence) of a particular annotation type [partially] covering
the instance annotation

– the value of a named feature of a particular annotation type.

The value of the attribute can refer to the current instance or to an instance situated
at a specified location relative to the current instance.

• class: any attribute can be marked as class attribute.

An ML implementation has two modes of functioning: training and application. The
training phase consists of building a model (e.g. statistical model, a decision tree, a rule
set, etc.) from a dataset of already classified instances. During application, the model
built while training is used to classify new instances.

There are ML algorithms which permit the incremental building of the model (e.g. the
Updateable Classifiers in the WEKA library). These classifiers do not require the entire
training dataset to build a model; the model improves with each new training instance that
the algorithm is provided with.

2.2.4 The Machine Learning PR in GATE

Access to ML implementations is provided in GATE by the ”Machine Learning PR” that
handles both the training and application of ML model on GATE documents. This PR is
a Language Analyser so it can be used in all default types of GATE controllers.

In order to allow for more flexibility, all the configuration parameters for the ML PR
are set through an external XML file and not through the normal PR parameterisation. The
root element of the file needs to be called ”ML-CONFIG” and it contains two elements:
”DATASET” and ”ENGINE”.

The DATASET element

The DATASET element defines the type of annotation to be used as instance and the set
of attributes that characterise all the instances.
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An ”INSTANCE-TYPE” element is used to select the annotation type to be used for
instances, and the attributes are defined by a sequence of ”ATTRIBUTE” elements.

An ATTRIBUTE element has the following sub-elements:

• NAME: the name of the attribute

• TYPE: the annotation type used to extract the attribute.

• FEATURE (optional): if present, the value of the attribute will be the value of the
named feature on the annotation of specified type.

• POSITION: the position of the annotation used to extract the feature relative to the
current instance annotation.

• VALUES(optional): includes a list of VALUE elements.

• <CLASS/>: an empty element used to mark the class attribute. There can only be
one attribute marked as class in a dataset definition.

Semantically, there are three types of attributes:

• nominal attributes: both type and features are defined and a list of allowed values
is provided;

• numeric: both type and features are defined but no list of allowed values is pro-
vided; it is assumed that the feature can be converted to a number (a double value).

• boolean: no feature or list of values is provided; the attribute will take one of
the ”true” or ”false” values based on the presence (or absence) of the specified
annotation type at the required position.

Figure 2.1 gives some examples of what the values of specified attributes would be in
a situation when ”Token” annotations are used as instances.

The ENGINE element

The ENGINE element defines which particular ML implementation will be used, and
allows the setting of options for that particular implementation.

The ENGINE element has three sub-elements:

• WRAPPER: defines the class name for the ML implementation (or implementation
wrapper). The specified class needs to extend gate.creole.ml.MLEngine.
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Figure 2.1: Sample attributes and their values

• BATCH-MODE-CLASSIFICATION: this element is optional. If present (as an
empty element<BATCH-MODE-CLASSIFICATION />), the training instances
will be passed to the engine in a single batch. If absent, the instances are passed to
the engine one at a time. Not every engine supports this option, but for those that
do, it can greatly improve performance.

• OPTIONS: the contents of the OPTIONS element will be passed verbatim to the
ML engine used.

New ML engines, such as those provided by TextGarden, are integrated within Gate
by implementing a new engine wrapper.



Chapter 3

Overview on Integration Scenarios

The rationale behind the integration of TextGarden’s machine learning algorithms within
GATE comes from the well-established need for adaptable and trainable NLP systems.
One of the most widely used and successful ML algorithms for NLP tasks has been the
SVM. Therefore, in the discussion below, we will focus on usage scenarios of this partic-
ular algorithm, although the points apply to any other ML approach, due to the generic
nature of the ML framework in GATE.

Support Vector Machines (SVM) are a supervised machine learning algorithm, which
has achieved state-of-the-art performance on many learning tasks. In particular, SVM
is a popular learning algorithm for Natural Language Processing (NLP) tasks such as
POS (Part-of-speech) tagging [JM03, NKM01], word sense disambiguation [LNC04],
NP (noun phrase) chunking [KM00a], named entity recognition [IK02, MMP03], rela-
tion extraction [ZSZZ05], semantic role labeling [HPW+04], and dependency analysis
[KM00b, YM03]. Almost all these applications consist of three steps: first they transform
the problem into one or more classification tasks; then an SVM classifier is trained for
each task; and finally, the classifiers’ results are combined to obtain the solution to the
original NLP problem.

SVM is an optimal classifier in the sense that, given training data, it learns the max-
imal margin classifier which has good generalisation on unseen data. Consequently, on
classification tasks SVMs tend to perform better than other distance- or similarity-based
learning algorithms such as k-nearest neighbour (KNN) or decision trees. In addition,
NLP tasks typically represent instances in very high dimensional feature vectors, which
leads to positive and negative examples being distributed into two distinctly different areas
of the feature space. This is particularly helpful for searching a classification hyperplane
in feature space and for the generalisation capability of the classifier. Such very high
dimensional representation is achieved by forming the feature vector explicitly from text
and in many cases by exploring the so-called kernel function to map the feature vector
into higher dimensional space (see e.g. [CST00]).

When compared to other classification problems, NLP classification tasks have sev-
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eral unique characteristics, which are seldom considered in applications. Perhaps the most
important one is that NLP tasks tend to have imbalanced training data, in which positive
examples are vastly outnumbered by negative ones. This is particularly true for smaller
data sets where often there are hundreds of negative training examples and only few pos-
itive ones. Another unique characteristic is that annotating text for training the algorithm
is a time-consuming process, while at the same time unlabelled data is abundant. There-
fore, when a learning algorithm is applied to NLP tasks, these particular aspects should
be taken into account in order to obtain a practical system with good performance.

Therefore, in order to address these issues, TextGarden was integrated as a machine
learning engine within GATE and SVMs are now widely used in Workpackage 2, for
experiments on ontology-based information extraction (for further details see [LBC05a,
LBC05b] and deliverables D2.1.1 and D2.1.2). Technical details of the integration effort
appear in the following section.

Due to the processing power and efficiency required from the Information Extraction
tools in SEKT, tight coupling between TextGarden and GATE was necessary. Interaction
via SIP is more appropriate for bigger components with well-defined functionality, e.g.,
the IE tools, the knowledge access tool, the language generation tools, etc.

As already discussed above, the immediate beneficiary of the TextGarden-GATE in-
tegration is work in workpackage 2. The SEKT case studies will benefit indirectly from
this, by using the ontology-based information extraction tools and being able to train and
adapt them easily to new domains. For instance, there is ongoing work on the BT case
study involvinh WP2 technology.

The rationale behind the integration of GATE’s natural language processing into
TextGarden comes from the fact that SEKT uses TextGarden components mainly to han-
dle data written in natural language. In particular in the SEKT Legal case study, Spanish
questions and judgements are processed. As Spanish has much more inflections compared
to English, pre-processing the data using stemmer or lemmatizer is needed. That was also
confirmed by our intial experiments on the legal case study data with no usage of natural
language specific pre-processing.

TextGarden can be simply used via using command line utilities. Thus we have imple-
mented integration between GATE and TextGarden via a java command line utility which
exposes stemmer from GATE to the TextGarden.

As already pointed out, the immediate benefit from integrating human language tech-
nology tools into TextGarden is for the SEKT Legal case study, where the results of apply-
ing KDD technology are improved by natural language dependent data pre-processing.



Chapter 4

Report on Current Tool Integration

4.1 Integration of TextGarden tools into GATE

TextGarden consists of several tools, which can be used to perform various ma-
chine learning operations on a set of documents. A tool for running SVM algorithm
BowTrainBinSVM has been integrated into GATE as well as the supporting tool for
data pre-processingTxt2Bow and a tool for using a learned modelBowClassify. A
tool for running SVM assumes that the text was pre-processed as needed to get the right
features and phrases. Actually, incorporating frequent phrases of n consequtive words is
supported by Text2Bow utility (the maximum length of phrases is set via parameters).

• Txt2Bow:
Transforms various raw text formats (in this case SVM light sparse format) into the
file in Bag-Of-Words format.Bow

• BowTrainBinSVM:
Learns a classification model via training a binary class Support Vector Machine on
the set of input documents provided in the Bag-Of-Words format.

• BowClassify:
Classifies a set of input documents in the Bag-Of-Words format using the provided
model.

TextGarden tools are command line stand-alone executables implemented in C++. On
the other hand GATE is a Java application. The technical part of integration of TextGar-
den into GATE is achieved by implementing Java wrappers which write out and read in
the files expected by TextGarden tools and execute the TextGarden components. The
TextGarden wrappers provide access to the TextGarden tools through the Machine Learn-
ing PR in GATE. The wrappers handle all temporary files internally and transparently for
the GATE user, the user only interacts with GATE.

15
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RAW TEXT MODEL

BOW CLASS

Txt2Bow

BowTrainBinSVM

BowClassify

Figure 4.1: Usage diagram of the integrated TextGarden tools

The BowTrainBinSVM tool from TextGarden provides GATE with solutions for clas-
sification problems, as for example building a classification model on feature vectors for
words. Here is a typical scenario in which TextGarden and GATE cooperate: GATE
writes out to the file a description of a learning problem. Further on, GATE executes
TextGarden utilities Txt2Bow and BowTrainBinSVM to obtain a model, which is later
used to classify new instances using BowClassify utility from TextGarden.

Dataset Example

Bow Model Class

Result

Learning part Usage example

GATE

files

TextGarden

Layer

Figure 4.2: A typical scenario in which TextGarden and GATE cooperate.

The BowTrainBinSVM can only be used for binary classification, i.e. the target at-
tribute (class) must be boolean. Of course all other attributes can be boolean, numeric or
nominal or any combination of these. If an attribute is nominal each value of that attribute
maps to a separate SVM feature. Each of these SVM features will be given the value 1
when the nominal attribute has the corresponding value, and will be set to 0 otherwise.
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The TextGarden models are not updatable, and are so created and trained the first time a
classification is attempted. However, the wrapper supports a batch classification mode of
the machine learning processing resource. if<BATCH-MODE-CLASSIFICATION/> is
specified in the<ENGINE/> part of the configuration file, then all instances for a doc-
ument will be passed to the wrapper at one time, rather than them being passed one at a
time. Using this option greatly improves efficiency in most circumstances.

Here are the options for the wrapper:

• TRAINER-OPTIONS: These are options that are passed to the BowTrainBinSVM
tool on the command line.

The tool learns binary Support Vector Machine (SVM) classifier on the input file
-i for classifying documents into one category -cat. It produces model-o in
Bag-Of-Words format.BowMd. Both positive and negative examples are needed
for learning. Input vectors can be weighted-w with different weights.

The parameter-c determines the value of cost parameter for SVM, which must be
greater than 0. Cost parameter can be weighted differently for positive and negative
examples with parameter-j (C+ = jC, C− = C). The parameter-t selects
kernel used for learning:

1. 0 - linear kernel (much faster than others)

2. 1 - polynomial kernelk(x, y) = (s(xT y) + c)p

3. 2 - radial kernelk(x, y) = e(−gamma‖x−y‖2)

4. 3 - sigmoid kernelk(x, y) = tanh(sxT y + c)

Parameters-ker p, -ker s, -ker c and-ker gamma determine parameters of
nonlinear kernels.

The parameter-cachesize determines size of cache (in MB) non-linear SVM
can use for caching evaluated kernel functions. The parameter-time determines
maximal time in seconds allowed for learning classifier. If the optimal hyperplane
is not found in given time, then most optimal hyperplane found so far is returned
as a result. The parameter-v determines verbosity during learning. The param-
eters-subsize determines size of sub-problems used at learning algorithm (-1
means classifier decides). The parameters-ter determines termination criteria.
By increasing it learning gets faster but at the end classifier is less accurate. The
parameter-shrink determines if support vectors are prediction while learning.
Using this option can increases learning time dramatically

• CLASSIFIER-OPTIONS: There are options that are passed to the BowClassify tool
on the command line.

The BowClassify tool uses a provided model-imd to classify a new instance-qh
and outputs the result of the classification to the xml file-ox.
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4.1.1 Example SVM Use in GATE

Classifying documents using the SVMWrapper is a two phase procedure. In its first phase,
SVMWrapper collects data from the pre-annotated documents and builds the SVM model
using the collected data to classify the unseen documents in its second phase. Below we
describe briefly an example of classifying the start time of the seminar in a corpus of
email announcing seminars and provide more details later in the section.

Figure 4.3 explains step by step the process of collecting training data for the SVM
classifier. GATE documents, which are pre-annotated with the annotations of typeClass
and featuretype=’stime’, are used as the training data.

In order to build the SVM model, we require start and end annotations for eachstime
annotation. We use pre-processor JAPE transduction script to transform eachstimeanno-
tation into two annotations - one marking the start, calledsTimeStart, and one marking
the end, calledsTimeEnd. For instance, if the text contains an annotation spanning the
string ‘2 p.m.’, then it is replaced by two annotations: onesTimeStartwhich covers the
string ‘2’ and onesTimeEnd, which covers the ‘.’ at the end. Then two SVM classifiers
are trained – one for the start and one for the end. Further details on this process can be
found in deliverable D2.1.1.

Following this step, the Machine Learning PR (SVMWrapper) with training mode
set to true collects the training data from all training documents. GATE corpus pipeline,
given a set of documents and PRs to execute on them, executes all PRs one by one only on
one document at a time. Unless provided in a separate pipleline, it makes it impossible to
send all training data (i.e. collected from all documents) altogether to the SVMWrapper
using the same pipeline to build the SVM model. This results into the model not being
built at the time of collecting training data. The state of the SVMWrapper can be saved
to an external file once the training data is collected.

Figure 4.3: Flow diagram explaining the SVM training data collection

Before classifying any unseen document, SVM requires the SVM model to be avail-
able. In the absence of an up-to-date SVM model, SVMWrapper builds a new one using a
command lineSVMlearnutility and the training data collected from the training corpus.
In other words, the first SVM model is built when user tries to classify the first docu-
ment. At this point the user has an option to save the model somewhere on the external
storage. This is in order to reload the model prior to classifying other documents and to
avoid rebuilding of the SVM model everytime the user classifies a new set of documents.
Once the model becomes available, SVMWrapper classifies the unseen documents which
creates newsTimeStartandsTimeEndannotations over the text. Finally, a post-processor
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Figure 4.4: Flow diagram explaining document classifying process

JAPE transduction script is used to combine them into thesTimeannotation. Figure 4.4
explains this process.

The wrapper allows support vector machines to be created which either do boolean
classification or regression (estimation of numeric parameters), and so the class attribute
can be boolean or numeric. The class attribute can be a three value nominal, in which
case the first value specified for that nominal in the configuration file will be interpreted
astrue, the second asfalseand the third asunknown.

The other attributes can be boolean, numeric or nominal, or any combination of these.
If an attribute is nominal, each value of that attribute maps to a separate SVM feature.
Each of these SVM features will be given the value 1 when the nominal attribute has
the corresponding value, and will be omitted otherwise. If the value of the nominal is
not specified in the configuration file or there is no value for an instance, then no feature
will be added. Text Garden models are not updateable, and so are created and trained
the first time a classification is attempted. However, the Wrapper supports the batch
classification mode of the machine learning processing resource. If<BATCH-MODE-
CLASSIFICATION/> is specified in the<ENGINE> part of the configuration file, then
all the instances for a document will be passed to the wrapper at one time, rather than
them being passed one at a time. Using this option will result in a great improvement in
efficiency in most circumstances.
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4.2 Integration of GATE functionalities with TextGarden

Stemmer, which is a CREOLE plugin for GATE, has been integrated with TextGarden.
Since TextGarden consists of several command line utilities, we followed this principle
and we implemented a glueTG2GStem between GATE and TextGarden as a java com-
mand line utility which exposes stemmer from GATE to the TextGarden. The short-term
plan is to use this utility to easily integrate Spanish lemmatiser from GATE with TextGar-
den once lemmatiser is available for GATE.

4.2.1 Using TG2GStem

TG2GStem is a java application. It is executed from command line. It takes at least
two arguments on input. The first argument is a language specification for stemmer.
<language> can be one of the following options:

• english

• finnish

• french

• german

• italian

• norwegian

• portuguese

• russian

• spanish

• swedish

The second option is an input<document> to be processed. There may be more then one
document specified on the command line.

Once executedTG2GStem initializes GATE and executes two CREOLE plugins se-
quentially Tokenizer and Stemmer. The result is written to a<document>.stem.xml file.



CHAPTER 4. REPORT ON CURRENT TOOL INTEGRATION 21

4.2.2 Setting up TG2GStem

For smooth failsafe operation ofTG2GStemGATE should be properly installed, CLASS-
PATH variable should include at leastgate.jar archive and libraries from GATE’slib
directory. Additionally a Java system propertygate.home should point to the GATE
installation directory.

Here is and example of executingTG2GStem:

SET GATE_HOME=C:\Program Files\GATE 3.0
java -cp ".;%GATE_HOME%\bin\gate.jar;

%GATE_HOME%\lib\gnu-regexp-1.0.8.jar;
%GATE_HOME%\lib\jdom.jar;
%GATE_HOME%\lib\xerces.jar;
%GATE_HOME%\lib\ontotext.jar;
%GATE_HOME%\lib\jasper-compiler-jdt.jar"
-Dgate.home="%GATE_HOME%"
TG2GStem english process_me.txt

In this example the output would be written toprocess me.txt.stem.xml.



Chapter 5

Report on Scheduled Tool Integration

Following the bottom-up integration activities reported here, in year 3 the tools will be
used within the case studies, through components such as ontology-based information
extraction (task 2.1). The outcomes from the user evaluation with the case studies will be
used as a basis for identifying fruitful future integration points.

In other words, the year 2 bottom-up integration activities, reported here, were largely
dictated by the needs of the technology workpackages, whereas we envisage that year
3 integration activities will largely focus on SIP-based component-level integration. For
instance, integration between ontology-based IE, user profiling, and knowledge access.
Therefore, further tightly-coupled, bottom-up integration will only be carried out if the
case studies provide a strong requirement for such activities.

22



Chapter 6

Conclusion

This deliverable first presented an overview of TextGarden, a machine learning toolkit,
and GATE, an infrastructure for Human Language Technology. The use of machine learn-
ing tools for language processing was motivated and example scenarios were presented.
Subsequently, the technical details of the bottom-up, tight coupling between TextGarden
and GATE were presented, with a detailed example of use of SVM for information ex-
traction.

This work has had impact on a number of related M24 deliverables:

• D2.1.2 on Ontology-Based Information Extraction

• D2.5.2 on Evaluation of ontology-based IE

• D10.3.2 on Prototye for the SEKT Legal case study
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