
EU-IST Integrated Project (IP) IST-2003-506826 SEKT

SEKT: Semantically Enabled Knowledge Technologies

D6.6.3 Integration of TextGarden
with KAON

Stephan Bloehdorn (UKARL), Blaž Fotuna (JSI), Dunja
Mladenić (JSI) and York Sure (UKARL)

with contributions from:
Marko Grobelnik (JSI), Blaž Novak (JSI) and Johanna Völker (UKARL)

Abstract.
EU-IST Integrated Project (IP) IST-2003-506826 SEKT
Deliverable D6.6.3 (WP6)

Bottom-up integration aims at exploring the synergies which the SEKT core technologies offer
for (semi-)automatic creation and maintenance of ontologies and for the application of ontology
technologies in certain settings. After the initial status report in month 18, this deliverable focuses
on integration activities between the KDD and OM core technologies, in particular between the
TEXTGARDEN and KAON tool suites. It is part of a series of bottom-up deliverables D6.6.x,
each reporting on bilateral integration activities for different pairings of the core technologies.

Keyword list: KAON, Text2Onto, TextGarden, Knowledge Discovery, Ontology Management,
Bottom-Up Integration

Copyright c© 2006 Institute AIFB, University of Karlsruhe

Document Id.
Project
Date
Distribution

SEKT/2005/D6.6.1/v1.0
SEKT EU-IST-2003-506826
January 24, 2006
public

SEKT Consortium

This document is part of a research project partially funded by the IST Programme of the Commission of the European
Communities as project number IST-2003-506826.

British Telecommunications plc.
Orion 5/12, Adastral Park
Ipswich IP5 3RE, UK
Tel: +44 1473 609583, Fax: +44 1473 609832
Contact person: John Davies
E-mail: john.nj.davies@bt.com

Empolis GmbH
Europaallee 10
67657 Kaiserslautern, Germany
Tel: +49 631 303 5540, Fax: +49 631 303 5507
Contact person: Ralph Traphöner
E-mail: ralph.traphoener@empolis.com

Jozef Stefan Institute
Jamova 39
1000 Ljubljana, Slovenia
Tel: +386 1 4773 778, Fax: +386 1 4251 038
Contact person: Marko Grobelnik
E-mail: marko.grobelnik@ijs.si

University of Karlsruhe, Institute AIFB
Englerstr. 28
D-76128 Karlsruhe, Germany
Tel: +49 721 608 6592, Fax: +49 721 608 6580
Contact person: York Sure
E-mail: sure@aifb.uni-karlsruhe.de

University of Sheffield
Department of Computer Science
Regent Court, 211 Portobello St.
Sheffield S1 4DP, UK
Tel: +44 114 222 1891, Fax: +44 114 222 1810
Contact person: Hamish Cunningham
E-mail: hamish@dcs.shef.ac.uk

University of Innsbruck
Institute of Computer Science
Technikerstraße 13
6020 Innsbruck, Austria
Tel: +43 512 507 6475, Fax: +43 512 507 9872
Contact person: Jos de Bruijn
E-mail: jos.de-bruijn@deri.ie

Intelligent Software Components S.A.
Pedro de Valdivia, 10
28006 Madrid, Spain
Tel: +34 913 349 797, Fax: +49 34 913 349 799
Contact person: Richard Benjamins
E-mail: rbenjamins@isoco.com

Kea-pro GmbH
Tal
6464 Springen, Switzerland
Tel: +41 41 879 00, Fax: 41 41 879 00 13
Contact person: Tom Bösser
E-mail: tb@keapro.net

Ontoprise GmbH
Amalienbadstr. 36
76227 Karlsruhe, Germany
Tel: +49 721 50980912, Fax: +49 721 50980911
Contact person: Hans-Peter Schnurr
E-mail: schnurr@ontoprise.de

Sirma Group Corp., Ontotext Lab
135 Tsarigradsko Shose
Sofia 1784, Bulgaria
Tel: +359 2 9768 303, Fax: +359 2 9768 311
Contact person: Atanas Kiryakov
E-mail: naso@sirma.bg

Vrije Universiteit Amsterdam (VUA)
Department of Computer Sciences
De Boelelaan 1081a
1081 HV Amsterdam, The Netherlands
Tel: +31 20 444 7731, Fax: +31 84 221 4294
Contact person: Frank van Harmelen
E-mail: frank.van.harmelen@cs.vu.nl

Universitat Autonoma de Barcelona
Edifici B, Campus de la UAB
08193 Bellaterra (Cerdanyola del Vallès)
Barcelona, Spain
Tel: +34 93 581 22 35, Fax: +34 93 581 29 88
Contact person: Pompeu Casanovas Romeu
E-mail: pompeu.casanovas@uab.es

Siemens Business Services GmbH & Co. OHG
Otto-Hahn-Ring 6
81739 Munich, Germany
Tel: +49 89 636 40 225, Fax: +49 89 636 40 233
Contact person: Dirk Ramhorst
E-mail: dirk.ramhorst@siemens.com

Changes

Version Date Author Changes
0.1 02.10.05 Stephan Bloehdorn document setup
0.2 22.11.05 Stephan Bloehdorn, document structure,

York Sure input to chapters 2 and 3
0.3 26.11.05 Stephan Bloehdorn, input to chapter 1,2,3

Johanna Völker
0.4 14.12.05 Stephan Bloehdorn, updates to chapter 2,3,4,5

Dunja Mladenić
0.5 18.12.05 Blaž Fortuna updates to chapter 2,3,4
1.0 22.12.05 Stephan Bloehdorn version for review

York Sure
1.1 23.01.06 Stephan Bloehdorn final version after review

York Sure

Executive Summary

Bottom-up integration aims at exploring the synergies which the SEKT core technologies
offer for (semi-)automatic creation and maintenance of ontologies and for the applica-
tion of ontology technologies in certain settings. After the initial status report in month
18 [Bloehdorn et al., 2005], this deliverable focuses on integration activities between the
KDD and OM core technologies, in particular between the TEXTGARDEN and KAON
tool suites. It is part of a series of bottom-up deliverables D6.6.x, each reporting on bilat-
eral integration activities for different pairings of the core technologies.

This deliverable starts out with giving a short overview over the individual tools devel-
oped within the KDD and OM research activities, namely the TEXTGARDEN and KAON
tool suites. In the following it sketches four currently envisioned integration scenarios
between the KDD and OM areas:

• Scenario 1: Interoperability of Ontology Learning Tools

• Scenario 2: Active Ontology Learning

• Scenario 3: Meta-Learning from heterogenous evidence

• Scenario 4: Ontology-Based Similarities for ML

These descriptions include brief information about the background, targeted function-
ality and the envisioned benefit to SEKT for each scenario. These scenarios are then
described in more detail in the following two chapters, one reporting on the technical and
conceptual details of the integration work done within M13–M24 which focuses on sce-
narios 1 and 2, while the conceptual framework for the integration work within M25–M36
is presented in the next chapter. We summarize and conclude the presented work in the
last chapter.

Contents

1 Introduction 3
1.1 The SEKT Big Picture . 3
1.2 Approaches to Integration in SEKT . 4

1.2.1 Top-Down Integration . 4
1.2.2 Bottom-Up Integration . 5

1.3 Outline . 6

2 Description of the Individual Components for Integration 7
2.1 TextGarden . 7

2.1.1 TextGarden Library . 7
2.1.2 TextGarden-OntoGen . 9

2.2 KAON Ontology Management . 10
2.2.1 Text2Onto . 10
2.2.2 KAON2 . 11

3 Overview on Integration Scenarios 13

4 Report on Current Tool Integration 17
4.1 Scenario 1: Interoperability of Ontology Learning Tools 17

4.1.1 Motivation: Interoperability . 17
4.1.2 Implementation within OntoGen 18
4.1.3 Outlook . 19

4.2 Scenario 2: Active Ontology Learning 20
4.2.1 Motivation: Instance Classification 20
4.2.2 Active Learning . 22
4.2.3 Prototype Implementation for Text2Onto 24
4.2.4 Outlook . 26

5 Report on Scheduled Tool Integration 27
5.1 Scenario 3: Meta-Learning from heterogenous evidence 27

5.1.1 Motivation: combining heterogenous evidence 27
5.1.2 Implementation Plan and Applications within SEKT 28

5.2 Scenario 4: Ontology-Based Similarities for ML 29

1

CONTENTS 2

5.2.1 Motivation: Data Representation in Machine Learning 29
5.2.2 Ontology-based Similarities for Data Items 32
5.2.3 Further Approaches . 34
5.2.4 Implementation Plan and Applications within SEKT 35

6 Conclusion 37

A Availability of Prototype Implementations 43

B Availability of TG and KAON software 44

Chapter 1

Introduction

SEKT aims at developing technologies for Next Generation Knowledge Management that
exploit complementary research areas like Knowledge Discovery (KDD), Human Lan-
guage Technology (HLT) and Ontology/Metadata Management (OM). Specifically, SEKT
aims at developing software to:

• semi-automatically learn ontologies and extract metadata (i.e. discover ontology
primitives both on the schema and on the instance level),

• evolve and maintain ontologies

• provide knowledge access by means of ontology-based technologies.

One of the main objectives of SEKT is to combine the three core technologies with
the aim of achieving synergy effects by looking at similar tasks from different paradigms
and enabling new functionalities.

This report is part of the bottom-up integration work performed in workpackage (WP)
6, specifically task 6.6. In the following, we put the work of this deliverable in the context
of the SEKT project and outline its content.

1.1 The SEKT Big Picture

Figure 1.1 gives an overview over the SEKT project. The three SEKT core technologies
can be found among the ‘Research & Development’ activities: WP1 explores approaches
for Ontology Generation from a knowledge discovery point of view with a strong fo-
cus on text mining. The corresponding tool suite, TEXTGARDEN, is mainly developed
within WP1. WP2 uses Human Language Technology for Metadata Generation, espe-
cially within the framework of the GATE suite. WP3 researches ontology management
infrastructures including functionalities for learning, updating and evolving ontologies

3

CHAPTER 1. INTRODUCTION 4

over time and develops the KAON infrastructure further with focus on the KAON2 and
TEXT2ONTO components. This report is part of the work performed WP 6 on Integration
and is naturally related with the technical workpackages and their interaction.

Figure 1.1: The SEKT Big Picture

1.2 Approaches to Integration in SEKT

Workpackage 6 aims to provide integration between the SEKT technical components.
This integration is performed in two complementary ways. On the one hand, the top-
down integration activities pursued within tasks 6.1 – 6.5 aim at a global integration of
the individual components via an Integration Plattform. On the other hand, it deals with
the complementary approach of bottom-up integration on a bilateral basis between the
core research partners which is pursued within task 6.6.

1.2.1 Top-Down Integration

In workpackage 6, tasks 6.1 – 6.5 provide the overall architecture framework within which
the SEKT technical components will be integrated. In the context of the work done so far
it thus deals with the creation and extension of the the SEKT Integration Platform (SIP),
which acts as the technical base for top-down integration.

SIP offers modular extensibility for components by wrapping component functionali-
ties in so-called “pipelets” which can be flexibly connected. Further information about the

CHAPTER 1. INTRODUCTION 5

overall basic platform can be found e.g. in the SEKT deliverables D6.1 – D6.4. Informa-
tion about the integration of the individual components from the core workpackages into
SIP can be found in the 2nd year deliverables D.5.1–D.5.5, which will be complemented
by the 3rd year deliverables D.5.6–D.5.10.

The top-down integration allows for bundling of integrated components in many dif-
ferent ways, which is particularly useful within enterprise solutions.

1.2.2 Bottom-Up Integration

Parallel to the top-down integration, SEKT exploits a bottom-up integration strategy. Task
6.6 which deals with bottom-up integration has been included after a first revision of
results in task 6.5 at the end of year 1 of the SEKT project. Here, the integration between
the core technologies developed in SEKT is performed on a bilateral basis between the
three core technical partners.

KDD NLP OM

KDD
WP1 work

D6.6.2

Integration of ML Approaches in

GATE NLP components.

D6.6.3

Integration of OntoGen and

Text2Onto

Active Learning for Text2Onto

Meta-Learning for Text2Onto

NLP

D6.6.2

Integration of NLP components

in TextGarden.

WP2 work

D6.6.4

Text2Onto Language Processing

based on GATE components.

OM

D6.6.3

Integration of OntoGen and

Text2Onto

Ontology Backed Similarity

Measures in ML.

D6.6.4

KAON2 as Backend for GATE

Ontology Interface.

WP3 work

Figure 1.2: Bottom-up Integration Activities within SEKT

Bottom-up integration aims at exploring the synergies which the SEKT core tech-
nologies offer for (semi-)automatic creation and maintenance of ontologies and for the
application of ontology technologies in certain settings. It was felt necessary to better
understand the low-level opportunities for integration — first to guide the top-down in-
tegration activities, second to emphasize that more research is needed to combine SEKT

CHAPTER 1. INTRODUCTION 6

technologies. The bottom-up approach complements the top-down strategy in different
ways and mainly targets two things:

• Clarify the relationships between knowledge discovery, human language technolo-
gies and ontology management.

• Coordinate the efforts for integration of the core technical components delivered in
WP1, WP2 and WP3.

In general, the bottom-up integration activities are not meant to replace integration via
SIP but aim at examining potential benefits from the combination of core technologies in
a light-weight manner. It aims at light-weight proof-of-concept implementations which
illustrate the potential and finally evaluate the potential of pairwise integration. This is
particularly useful for further research prototyping.

Figure 1.2 gives an overview over the bilateral integration activities pursued within
SEKT and the corresponding M24 deliverables within this task. After the initial status
report in month 18 [Bloehdorn et al., 2005] which has outlined the overall bottom-up in-
tegration efforts from a birds-eye perspective, this deliverable focuses on integration activ-
ities between the KDD and OM core technologies, in particular between the TEXTGAR-
DEN and KAON tool suites. It is part of a series of bottom-up deliverables D6.6.x, each
reporting on bilateral integration activities for different pairings of the core technologies.

1.3 Outline

This deliverable is structured as follows. In chapter 2, we give a short overview over the
individual tools developed within the KDD and OM research activities, i.e. in WP1 and
WP3, respectively. In chapter 3 we give a short overview over four currently envisioned
integration scenarios between the KDD and OM areas, which includes brief descriptions
about the background, targeted functionality and the envisioned benefit to SEKT for each
scenario.

In chapter 4 we describe the technical details of the integration work done within
M13–M24 which focuses on scenarios 1 and 2, while the conceptual framework for the
integration work within M25–M36 is presented in chapter 5, focusing mainly on inte-
gration scenarios 3 and 4. We summarize and conclude the presented work in chapter
6.

Chapter 2

Description of the Individual
Components for Integration

To make this deliverable self-contained, we shortly describe the tools developed in WP1
and WP3 from the KDD and OM research fields respectively. This chapter is meant as a
reference for the next chapters that will refer back to these software tools.

2.1 TextGarden

TEXTGARDEN software tools for text mining is a set of software components, many
of them developed mainly within SEKT (workpackage WP1 on Ontology Generation).
The objective of this workpackage is to explore various aspects of generating ontological
structures by means of machine learning, especially text mining methods. TEXTGAR-
DEN tools enable easy handling of text documents for the purpose of data analysis in-
cluding automatic model generation and document classification, document clustering,
document visualization, dealing with Web documents, crawling the Web and many other.
The code is written in C++ and originally runs on Windows platform. TEXTGARDEN

consists of a set of command line utilities, which could be run sequentially in pipeline
manner to perform a specific learning task. Development of TEXTGARDEN started in
1996 [Mladenić, 1996, Grobelnik and Mladenić, 1998], with major revisions in late 90’s.
Several components for Text Mining were developed as a part of SEKT WP1 deliverables
on the top of the existing library. Here we provide bief description of the software tools
emphasizing the SEKT contributed parts where relevant.

2.1.1 TextGarden Library

Functionalities TEXTGARDEN tools enable easy handling of text documents for the
purpose of data analysis including:

7

CHAPTER 2. DESCRIPTION OF THE INDIVIDUAL COMPONENTS FOR INTEGRATION8

• Pre-processing of Text Documents in various formats. For SEKT the most relevant
format is Bag-Of-Words format with the file extension .Bow This format corre-
sponds to the commonly used representation of a text document with a word-vector
ignoring position of words in the document.The purpose of the format is to en-
able efficient execution of algorithms working with the bag-of-words representation
such as, clustering, learning, classification, visualization, etc.

• Feature construction components for learning semantic-space of documents that
create semantic-space representation of documents based on Latent Semantic In-
dexing and enables projection of new documents on the learned semantic-space.
And another component for feature extraction from images (developed inside
D1.3.1)

• Document classification including automatic model generation based on vari-
ous Machine Learning Algorithms including Support Vector Machines, k-Nearest
Neighbour, Logistic Regression, Winnow and more. In SEKT deliverables so far
we have used Support Vector Machines (SVM) and k-Nearest Neighbour. This in-
cludes also document classification into a large topic ontology (developed inside
D1.5.1).

• Processing of unlabelled data and Active Learning (developed inside
D1.2.1 [Novak et al., 2004b]). Active learning is implemented on sparse training
sets using binary SVM model. It performs active learning loop on the specified
input. Semi-Supervised transduction performs a transductive inference on a joint
labelled and unlabelled dataset.

• Document Visualization [Fortuna et al., 2005b] Visualization of semantic-space
of documents provides visualization of documents as a 2-D map based on the
semantic-space representation.

• Focused crawling of the Web (developed inside D1.1.1 [Novak et al., 2004a]) that
exploits Google. Additionally there are separate components that enable getting
one page from the web based on the Web address specified with URL.

Technical Details TEXTGARDEN consists of a set of command line utilities, which are
meant to be combined flexibly in pipeline manner to perform specific learning tasks. The
code is written in C++ and originally runs on Windows platforms, a Linux/Unix version
of the tools is planned. Using Wine1 or similar utility TEXTGARDEN can already be run
on Linux/Unix platforms. The release of a C++ library for easier integration is planned,
too.

1http://www.linux-wine.de/

CHAPTER 2. DESCRIPTION OF THE INDIVIDUAL COMPONENTS FOR INTEGRATION9

2.1.2 TextGarden-OntoGen

ONTOGEN [Fortuna et al., 2005a] is a software tool which helps the user at constructing
topic ontologies by the use of different machine learning and text mining methods from
TEXTGARDEN. All these methods are seamlessly integrated into a simple graphical user
interface (GUI). The ontology construction in ONTOGEN is data-driven and is based on
a document collection provided by the user. These documents provide the text mining
methods with the information needed for aiding the ontology engineer.

Figure 2.1: Screenshot from OntoGen. See [Fortuna et al., 2005a] for details.

ONTOGEN uses Latent Semantic Indexing (LSI) and k-means clustering for the dis-
covery of topics. Both approaches are well studied and were already successfully used
in many applications like information retrieval, cross-lingual text mining, etc and can be
very efficiently implemented so they are scalable to the size of the corpora and the dimen-
sionality of the bag-of-words space of the input documents. A linear algebra technique
called Singular Value Decomposition (SVD) is used to compute LSI. This method is well
studied in areas of numerical linear algebra and efficient algorithms for calculating singu-
lar decomposition exist. The basis of LSI is the calculation of singular decomposition of
term-document input matrix.

Functionalities The main function of ONTOGEN is the integration of ontology con-
struction methods from TEXTGARDEN and providing a GUI interface to them. The main

CHAPTER 2. DESCRIPTION OF THE INDIVIDUAL COMPONENTS FOR INTEGRATION10

functionalities that ONTOGEN offers are:

• suggestion of possible new concepts based on the provided document collection,

• extraction of relevant keywords in order to help naming the concepts,

• detection of outliers for producing cleaner ontologies,

• overview of the ontology by visualizing the concepts their relations,

• help at managing the relations between concepts,

• import and export of topic ontologies as defined in the Proton ontology schema
[Terziev et al., 2004] (see section 4.1).

Technical Details The GUI in ONTOGEN is based on .NET framework which works
only on Microsoft Windows platform.

2.2 KAON Ontology Management

KAON is a framework of open-source ontology management infrastructure components
with focus on scalable and efficient reasoning with ontologies and on learning/evolving
ontologies. Two components of the KAON framework are used and developed in the
context of SEKT: TEXT2ONTO and KAON2 which will be described in the following.

2.2.1 Text2Onto

TEXT2ONTO [Cimiano and Völker, 2005a] is a complete re-design and re-engineering
of our system TEXTTOONTO, a tool suite for learning ontologies from textual data
[Maedche and Staab, 2001, Maedche, 2002]. TEXT2ONTO mainly developed from
within workpackage 3 to provide functionalities in SEKT for Incremental Ontology
Evolution, Usage Tracking for Ontologies and Metadata and especially for Data-driven
Change Discovery [Haase and Voelker, 2004].

Functionalities The main functionalities of comprise the learning/discovery of schema-
level ontology primitives and instantiations from textual data by analyzing text documents
based on linguistic background knowledge and statistical / machine learning approaches.
Especially,

• TEXT2ONTO represents the learned knowledge at a meta-level in the form of in-
stantiated modelling primitives within an so called Preliminary Ontology Model

CHAPTER 2. DESCRIPTION OF THE INDIVIDUAL COMPONENTS FOR INTEGRATION11

(POM). TEXT2ONTO thus remains independent of a concrete target language (like
for example OWL or F-Logic) during learning and user supervision phase while
being able to translate the instantiated primitives into any (reasonably expressive)
knowledge representation formalism, especially into the OWL fragment supported
by KAON2.

• user interaction is a core aspect of TEXT2ONTO and the fact that the system calcu-
lates a confidence for each learned object allows to design sophisticated visualiza-
tions of the POM.

• TEXT2ONTO incorporates strategies for data-driven change discovery which al-
lows for consecutive update and evolution of ontologies according to document
corpus changes. Besides increasing efficiency in this way, it also allows a user to
trace the evolution of the ontology with respect to the changes in the underlying
corpus.

In addition to the core functionality of TEXT2ONTO described above we developed
a graphical user interface featuring a corpus management component, a workflow editor,
configuration dialogues for the algorithms as well as tabular and graph-based POM vi-
sualizations. It will be available as an Eclipse2 plug-in which could facilitate a smooth
integration into ontology editors at a later development stage.

Technical Details TEXT2ONTO is written entirely in Java and is thus platform indepen-
dent. For interaction (import and export) with OWL ontologies, TEXT2ONTO integrates
with KAON2.

2.2.2 KAON2

KAON2 is a complete infrastructure for managing OWL-DL and SWRL ontologies. It
serves as the main ontology management infrastructure within SEKT and also as the
backbone for ontology evolution functionalities within SEKT [Haase et al., 2004]. In the
context of this deliverable, KAON2 is introduced mainly for completeness. Integration
scenarios 1–3 will work with TEXT2ONTO while scenario 4 will use KAON2 in the
background.

Functionalities Main functionalities of KAON2 are:

• a Java API for programmatic management of OWL-DL and SWRL ontologies,

• a stand-alone server providing access to ontologies in a distributed manner,
2http://www.eclipse.org

CHAPTER 2. DESCRIPTION OF THE INDIVIDUAL COMPONENTS FOR INTEGRATION12

• an inference engine for answering queries,

• a module for extracting ontology instances from relational databases (available
soon),

• a query interface for answering SPARQL queries.

The API of KAON2 is capable of manipulating OWL-DL ontologies. Currently, the
API can read ontologies in OWL XML Presentation Syntax and in OWL RDF Syntax. For
reasoning, KAON 2 supports the SHIQ(D) subset of OWL-DL (support for datatypes
will be available soon). This includes all features of OWL-DL apart from nominals (also
known as enumerated classes). Since nominals are not a part of OWL Lite, KAON2
supports all of OWL Lite. The API also provides no direct means for creating anonymous
individuals. Indirectly, anonymous individuals are however possible by creating random
URIs provided they’re handled properly (i.e. excluded) in owl:AllDifferent and
owl:differentFrom statements. By means of this mechanism, OWL ontologies that
include anonymous individuals can still be processed by KAON2.

KAON2 also supports the so-called DL-safe subset [Motik et al., 2004] of the Se-
mantic Web Rule Language (SWRL). The restriction to the DL-subset has been chosen
to make reasoning decidable. Contrary to most currently available DL reasoners, such as
FaCT, RACER, DLP or Pellet, KAON2 does not implement the tableaux calculus. Rather,
reasoning in KAON2 is implemented by novel algorithms which reduce a SHIQ(D)
knowledge base to a disjunctive datalog program. For an overview of these algorithms,
please refer to [Hustadt et al., 2004b]. A detailed (and quite lengthy) technical presenta-
tion of all algorithms is given in [Hustadt et al., 2004a].

Technical Details KAON2 is written entirely in Java and is thus platform independent.
However, KAON2 requires JDK 1.5 and is not compatible with earlier Java versions.

Chapter 3

Overview on Integration Scenarios

In this chapter, we give a short overview over the integration scenarios that are in the
current focus of work at the interface between TEXTGARDEN and KAON. We also place
these scenarios in the overall context of the SEKT project.

Scenario 1: Interoperability of Ontology Learning Tools

This scenario targets at the integration between the Ontology Generation Tools ONTO-
GEN and TEXT2ONTO. We here briefly describe background, targeted functionality and
overall benefit to SEKT. The technical details of this integration activity are described in
Section 4.1.

Background Within SEKT, two different tools address the Topic of Ontology Genera-
tion from different perspectives. On the one hand, the ONTOGEN developed within WP1
[Fortuna et al., 2005a] addresses the problem of topic discovery and semi-automatic con-
struction of topic ontologies. The chosen approach uses LSI and k-means for the dis-
covery of topics. Both approaches are well studied and were already successfully used
in many applications like information retrieval, cross-lingual text mining, etc and can
be very efficiently implemented so they are scalable to the size of the corpora and the
dimensionality of the bag-of-words space.

On the other hand, the TEXT2ONTO software developed within WP3 aims at learn-
ing/discovery of schema-level ontology primitives and instantiations from textual data by
deeper linguistic analysis and background knowledge.

Target Functionality The first integration scenario aims to prepare the individual tools
exchange their data and prepare them for future interoperability within the SEKT ontol-
ogy engineering plattform. The added value of this integration lies in the complementary
nature of the different approaches for the discovery of conceptual structures from text.

13

CHAPTER 3. OVERVIEW ON INTEGRATION SCENARIOS 14

While ONTOGEN mainly works on the basis of statistical machinery shallow document
representations and as a result is capable of performing computations on very large text
databases. On the other hand, TEXT2ONTO addresses the problem of extracting con-
ceptually clean, highly axiomatized ontology primitives by means of natural language
processing techniques.

Benefit to SEKT The main benefit of this integration activity lies in the complementary
nature of the different approaches for the discovery of conceptual structures from text. We
envision uses of both approaches within the SEKT ontology engineering environment.
ONTOGEN is likely to be used in scenarios where an initial topic structure is to be derived
from large amounts of text documents in an efficient manner, while TEXT2ONTO is likely
to complement the derived topic ontologies by means of more formal ontology modelling
primitives.

Scenario 2: Active Ontology Learning

This scenario targets at the integration of active learning technology into the TEXT2ONTO
framework. The technical and conceptual details of this integration activity are described
in Section 4.2.

Background Current components of TEXT2ONTO focus solely on completely unsuper-
vised techniques for detecting ontological primitives within textual data. A major reason
for this decision has typically been the high cost and inflexibility that stems for the la-
belling work that would be required for supervised learning approaches. On the other
hand, certain ontology learning tasks like for example the discovery of concept instanti-
ations [Bloehdorn et al., 2005, Appendix A] are very well suited for supervised learning
approaches. Active learning algorithms [Novak et al., 2004b] take training examples with
only minimal initial labelling and then ask the user to give additional information on se-
lected, particularly informative, training examples.

Target Functionality The integration activity described in this scenario targets at the
integration of the active learning technology developed within WP1 [Novak et al., 2004b]
into the TEXT2ONTO framework. Currently, this approach is pursued for learning concept
instantiations but might be extended to other ontology learning tasks. The combination
of existing approaches and this new paradigm also reflects the fact that different ontol-
ogy learning tasks require different approaches for the discovery of the corresponding
primitives.

Benefit to SEKT Integrating supervised learning approaches for TEXT2ONTO will al-
low TEXT2ONTO to work in settings where only little background knowledge, e.g. about

CHAPTER 3. OVERVIEW ON INTEGRATION SCENARIOS 15

the linguistic patterns, is available. This will for example allow the faster adaption of com-
ponents for languages for which no or only minimal patterns are available as for example
the Spanish Legal case study within SEKT.

Scenario 3: Meta-Learning from heterogenous evidence

Similar to scenario 2, scenario 3 aims at integrating some supervised machine learning
functionality within TEXT2ONTO. The technical details of this activity will be described
in section 5.1.

Background TEXT2ONTO currently comes with a number of analysis algorithms for
different ontology learning tasks. It is often desirable to combine the results of different
analysis algorithms. This combination is currently performed by simple operators like
averaging the individual evidence scores or taking the maximum among several of these.

Target Functionality The target functionality is to tune the combination of evidences
produced by different analysis modules within TEXT2ONTO by means of regression
and/or classification functions which will be estimated given some feedback of the user
about the quality of the returned results.

Benefit to SEKT Similar to scenario 2, this functionality will enable an increased adap-
tivity of TEXT2ONTO algorithms in new domains and (or) languages.

Scenario 4: Ontology-Based Similarities for ML

On the contrary to the previous scenarios, scenario 4 aims at the integration of ontology
management technology into the machine learning field without aiming primarily at solv-
ing ontology learning tasks. The technical details of this activity will be described in
section 5.2.

Background At different stages of the evolution of an ontology, the ontology also re-
flects valuable information on the similarity of objects based on the current model. This
similarity forms a natural input for machine learning algorithms that work on data that
caries semantic information, like e.g. annotated documents or users whose usage profiles
are stored in the ontology.

Target Functionality WP3 will develop facilities for similarity calculations within the
ontology, namely between individual ontology and metadata entities and between com-
plex (aggregated) descriptions based on ontology primitives. Within scenario 4, these

CHAPTER 3. OVERVIEW ON INTEGRATION SCENARIOS 16

“semantic” similarities will be used as inputs for machine learning algorithms of any
kind.

Benefit to SEKT The activities pursued within scenario 4 aim at explicitly exploiting
the power of semantic descriptions based on ontological primitives in machine learning
paradigms. The resulting similarity measures are a valuable ingredient for applications
like for example the FAQ retrieval in the legal case study and recommendations in the BT
digital library case study.

Chapter 4

Report on Current Tool Integration

This chapter describes in more technical detail those scenarios that have already achieved
a high level of technical integration beyond the conceptual framework. This applies for
integration scenarios 1 and 2, which will be described in section 4.1 and section 4.2 re-
spectively.

4.1 Scenario 1: Interoperability of Ontology Learning
Tools

4.1.1 Motivation: Interoperability

This scenario targets at the integration between the Ontology Generation Tools ONTO-
GEN and TEXT2ONTO.

Two different tools, namely ONTOGEN and TEXT2ONTO, are developed and main-
tained within SEKT that address the Topic of Ontology Generation from two very differ-
ent perspectives. This integration scenario aims at making the individual ontology learn-
ing tools interoperable and exchange their data. The added value of this integration lies
in the complementary nature of the different approaches for the discovery of conceptual
structures from text. On the one hand, the ONTOGEN software developed within WP1
[Fortuna et al., 2005a] tries to address the issues of topic discovery and semi-automatic
construction of topic ontologies as outlined in section 2.1.2 by means of LSI and k-means
for the discovery of topics based on comparatively shallow document representations.
On the other hand, the TEXT2ONTO software developed within WP3 and described in
section 2.2.1 aims at the discovery and induction of schema-level ontology primitives
and instantiations from textual data, typically by deep linguistic analysis and background
knowledge.

17

CHAPTER 4. REPORT ON CURRENT TOOL INTEGRATION 18

4.1.2 Implementation within OntoGen

Within this integration work, the functionality of saving and loading topic ontologies
from files in RDF format that can be processed within the KAON tool suite has been
implemented within ONTOGEN. Topic ontologies created with ONTOGEN can be saved
as RDF files so it can be used in other tools and ontologies created with other ontology
engineering tools, e.g. an export from TEXT2ONTO, can be opened with ONTOGEN for
additional editing or refining.

The basic schema used is the Proton Ontology developed within WP1
[Terziev et al., 2004]. The skeleton of topic ontology is stored using following concepts
and relations:

• http://proton.semanticweb.org/2005/04/protont#Topic,

• http://proton.semanticweb.org/2005/04/protont#Document,

• http://proton.semanticweb.org/2005/04/protont#subTopic,

• http://proton.semanticweb.org/2005/04/protont#hasSubject.

The topics’ names and the documents’ abstracts are stored using:

• http://proton.semanticweb.org/2005/04/protons#description,

• http://proton.semanticweb.org/2005/04/protont#documentAbstract.

TEXTGARDEN can read topic ontologies stored using this schema. RDF exports created
with ONTOGEN all follow this schema.

In order to avoid loosing application specific data (mainly on the generation process)
when exporting ontologies in ONTOGEN we have extended Proton1 with the following
two concepts:

• http://kt.ijs.si/blazf/jsikm#OntoGenClassProperties,

• http://kt.ijs.si/blazf/jsikm#OntoGenInstanceProperties.

These two concepts allow ONTOGEN to store the extra information about topics or
documents such as keywords of topics and locations of documents. These two concepts
are connected to Topic and Document concepts from Proton with relations:

• http://kt.ijs.si/blazf/jsikm#hasOntoGenClassProperties,
1While the namespace for these extensions has not been agreed upon, the information is likely to reside

within the JSI namespace.

CHAPTER 4. REPORT ON CURRENT TOOL INTEGRATION 19

• http://kt.ijs.si/blazf/jsikm#hasOntoGenInstanceProperties.

By using these extensions no information regarding the topic ontology constructed
in ONTOGEN is lost when saved as RDF. However, they are only optional and are not
necessary condition for opening RDF file in ONTOGEN.

For better integration with BT Digital library case study, ONTOGEN also stores the
following relations:

• each topic has to reference its documents with diglib#hasArticle (in topic
ontology as defined in Proton only documents have links to topics),

• titles of documents are stored using diglib#title.

ONTOGEN uses these relations only when exporting to RDF files. They are not used at
importing topic ontologies from RDF files into ONTOGEN. Similarly, all other relations
besides the ones mentioned here are ignored when reading RDF files. Figures 4.1 and 4.2
show code fragments for the topic and document related statements respectively.

<ptop:Topic rdf:about="#TOP_166">
<psys:description>Loans</psys:description>
<diglib:hasArticle rdf:resource="#DOC_84" />
...
<diglib:hasArticle rdf:resource="#DOC_5043" />
<ptop:subTopicOf rdf:resource="#TOP_26" />
<jsikm:hasOntoGenClassProperties rdf:resource="#CLS_PROP_166" />

</ptop:Topic>

<jsikm:OntoGenClassProperties rdf:about="#CLS_PROP_166">
<jsikm:hasCentroidKeywords>

banking, loans, investment
</jsikm:hasCentroidKeywords>
<jsikm:hasSVMKeywords>

million, loans, security
</jsikm:hasSVMKeywords>

</jsikm:OntoGenClassProperties>

Figure 4.1: Code Fragment from ONTOGEN Proton/RDF export for a saved topic.

4.1.3 Outlook

The current integration has mainly focused on the technical issue of allowing ONTOGEN
to export and import ontologies in RDF/OWL format. Future integration of these two

CHAPTER 4. REPORT ON CURRENT TOOL INTEGRATION 20

<ptop:Document rdf:about="#DOC_84">
<ptop:hasSubject rdf:resource="#TOP_0"/>
<ptop:hasSubject rdf:resource="#TOP_26"/>
<ptop:hasSubject rdf:resource="#TOP_166"/>
<jsikm:hasOntoGenInstanceProperties rdf:resource="#INST_PROP_84"/>
<diglib:title>WRO</diglib:title>
<ptop:documentAbstract>

Woronoco Bancorp, Inc. (the Corporation) has no significant
assets other than all of the outstanding shares of Woronoco
Savings Bank (the Bank). The Bank’s business consists of the
acceptance of retail deposits...

</ptop:documentAbstract>
</ptop:Document>

<jsikm:OntoGenInstanceProperties rdf:about="#INST_PROP_84">
<jsikm:locationOfInstance>docs.bow#84</jsikm:locationOfInstance>

</jsikm:OntoGenInstanceProperties>

Figure 4.2: Code Fragment from ONTOGEN Proton/RDF export for a saved document.

complementary ontology engineering components could be envisioned within the SEKT
ontology engineering platform, ONTOSTUDIO.

4.2 Scenario 2: Active Ontology Learning

4.2.1 Motivation: Instance Classification

In Ontology Learning and Semantic Annotation, the task of instance classification can be
shortly described as assigning instances or named entities appearing in the corpus to their
correct concept in the ontology.

Building upon the formal descriptions of ontologies as introduced in deliverable
D.6.6.1 [Bloehdorn et al., 2005]2, we can formalize the instance classification task as the
learning of concept instantiations.

Definition 1 (Concept Instantiation) The extension [[c]] ⊆ I of a concept c ∈ C is re-

2This formalization mainly aimed at providing mathematically strict definitions of ontological modelling
primitives which are present in almost all ontology definition languages. These definitions, were mainly
meant to study structural aspects important for ontology learning tasks without committing too much to
a specific ontology representation language. Please refer to [Bloehdorn et al., 2005] for details on this
formalization.

CHAPTER 4. REPORT ON CURRENT TOOL INTEGRATION 21

cursively defined by the following rules:

• [[c]]← ιC(c)

• [[c]]← [[c]] ∪ [[c′]], for c′ <C c.

where ιC(c) corresponds to the function which returns the set of instances that are
explicitly stated in the ontology to instantiate a certain concept c ∈ C.

Typically, we distinguish Instance Extraction from Instance Classification as follows:

Definition 2 (Instance Extraction) The instance extraction task aims at the identifica-
tion of potential instances [[c]] of concepts c ∈ C.

Definition 3 (Instance Classification) Given a set of instances that are to be added to
the ontology, the instance classification (or concept instantiation) task is to discover which
concept these instances actually instantiate. In terms of the ontology model this means
learning instantiations [[c]] for [[c]] ⊆ I and c ∈ C. For the metamodel this means learning
instantiates relationships between instantiations of Instance and Concept.

Up to now, the TEXT2ONTO system (see section 2.2.1 and
[Cimiano and Völker, 2005a]) employed two groups of unsupervised approaches to
instance classification:

1. Unsupervised Instance Classification as a Retrieval Problem

2. Unsupervised Instance Classification by means of linguistic patterns

The first approach relies on a fully unsupervised similarity-based technique for ex-
tracting context vectors for instances and concepts from the text collection and assigning
instances to the concept corresponding to the vector with the highest similarity with re-
spect to their own vector as in retrieval problems. As similarity measure TEXT2ONTO

uses the Skewed divergence as it was found to perform best in experiments. Using this
similarity measure as well as further heuristics, TEXT2ONTO achieved an F-Measure of
32.6% when classifying instances with respect to an ontology comprising 682 concepts
[Cimiano and Völker, 2005b]. The approach is unsupervised as it relies on no labelled
training data and is open-domain as the ontology can simply be exchanged.

The second approach for instance classification in TEXT2ONTO relies on matching
a library of linguistic patterns that are likely to indicate concept instantiations as e.g. in
“...cities such as Paris...”, where a concept instantiation between the concept city and the
instance Paris can be inferred.

CHAPTER 4. REPORT ON CURRENT TOOL INTEGRATION 22

The reason to rely on unsupervised approaches which do not require pre-labelled input
data has the advantage of being open-domain in the sense that the underlying ontology
and the corpus can be replaced. This can easily be accomplished if one resorts to an
unsupervised system since providing labelled training data for a few hundred concepts as
we consider in our approach is often unfeasible.

At the same time, however, the presented approaches also come with an inherent
deficiency each:

1. For the first approach, a global similarity measure may be too crisp for the many
different types of instance-concept pairing observed in natural language. In some
cases it may be also rare that an instance and the corresponding concept actually
occur in a similar context.

2. For the second approach, while being highly reliable, it may be cumbersome to
design reliable language patterns, be it for specific types of concepts or even for
totally different languages than English, e.g. for the Spanish language as required
in the SEKT legal case study [Casanovas et al., 2004].

On the other hand, supervised approaches that try to induce an accurate predictive
model based on an analysis of the underlying statistical patterns for a specific classifi-
cation task have shown success in many real-world problems amongst them for instance
or named entity classification tasks and are flexible in adapting to very different situa-
tions. However the knowledge acquisition bottleneck in form of the requirement of large
amounts of pre labelled data remains.

Dealing with unlabelled data in supervised scenarios has been one of the objectives
of the work in WP1. The active learning algorithms described in [Novak et al., 2004b]
are well-suited for the situation of instance classification where a small number of initial
high confidence labels (e.g. generated by the second unsupervised approach presented
above) are available but this data isn’t enough to train supervised classification models
right away. Active Learning algorithms take training examples with only minimal initial
labelling and then interactively ask the user to give additional information on only few
selected, particularly informative, training examples. We describe the active learning
paradigm in the following section.

4.2.2 Active Learning

As pointed out in [Novak et al., 2004b] and [Novak et al., 2005] active learning has a
strong link to the problem of ’experiment design’ addressed in statistical literature. It
is a generic term describing a special, interactive kind of a learning process. In contrast
to the usual (passive) learning where the student is presented with a static set of examples
that are then used to construct a model, active learning paradigm means the student can

CHAPTER 4. REPORT ON CURRENT TOOL INTEGRATION 23

“ask” the “oracle” (e.g. domain expert, user,...) for a label of an example. Figure 4.4
illustrates the situation.

PASIVE
TEACHER

PASIVE
STUDENT

ACTIVE
TEACHER

ACTIVE
STUDENT

DATA AND LABELS

Queries

Labels

Figure 4.3: Illustration of passive versus active learning paradigms [Novak et al., 2004b].

Based on the published results TEXTGARDEN implements the Simple Margin method
described in [Tong and Koller, 2000], active learning with sampling estimation of error
reduction. All of the methods are provided with two input pools of labelled and unlabelled
feature vectors. In each iteration they are allowed to return up to a predefined constant
number of queries (indices of unlabelled instances). With each query a decimal number
signifying the estimated importance of the query is also submitted. The Simple Margin
algorithm creates a linear SVM based on currently labelled examples in each iteration
of the loop. It then calculates the distance of all of the unlabelled samples from the
hyperplane, orders them by ascending order and selects first N to be sent for user labelling.

LABELED
DOCUMENT

INPUT

UNLABELED
DOCUMENT

INPUT

LEARNING
MODULE

OUTPUT
SVM

MODEL

HUMAN INPUT

INPUT
FILE

INITIAL
LABELING

SELECTION
ALGORITHM

Figure 4.4: Active learning architecture as implemented in TEXTGARDEN
[Novak et al., 2004b].

Because of the inherent interactive nature of active learning, the active learning binary
of TEXTGARDEN uses the standard input/output for communication with the user. The

CHAPTER 4. REPORT ON CURRENT TOOL INTEGRATION 24

communication protocol is line based and asynchronous. Every line written to standard
output is a query and has the form

QUERY-ID ‘‘MEM’’ INSTANCE-ID
or
QUERY-ID ‘‘IS-A’’ INSTANCE-ID CURRENT-MARGIN CATEGORY-ID

and the answer for both query types read from standard input has a form of

QUERY-ID CATEGORY-ID

or an ”END” literal. Here, QUERY-ID is an ASCII representation of an unsigned
integer used for associating answers with queries, INSTANCE-ID is the TEXTGARDEN

ID of an instance, CATEGORY-ID likewise for categories, i.e. positive or negative
with respect to a concept in question. The “END” string instructs the program to finish
immediately and save the current model and results - even if not all of the input samples
were queried for.

4.2.3 Prototype Implementation for Text2Onto

The integration activity within scenario 2 aimed at providing TEXT2ONTO with su-
pervised instance classification functionalities without requiring large amounts of hand-
labelled input data. The TEXTGARDEN active learning component was chosen to enable
this functionality. Here, learning the concept instantiations of a given class is formalized
as a supervised learning problem. Obviously, this design decision requires the ontology
engineer working with TEXT2ONTO to undergo a “training session” for each concept in
question during which she is required to give answers to questions of the type “Is instance
x an instantiation of concept y?”. During this interaction, a more and more accurate clas-
sification model is built. Depending on the achieved quality and the total number of
questions, the system may end the training process itself or the user can force the end of
the training process whenever desired. In the following, we summarize the consecutive
steps that the system follows within the instance classification task

Instance and Concept Extraction: Initial Extraction of potential concepts and in-
stances is done by the current TEXT2ONTO algorithms available for the purpose. As
usual, the corresponding primitives are stored as part of the Preliminary Ontology Model
(POM).

Initial Labelling: The initial labelling of the instances with respect to the extracted
concepts is done by the usual TEXT2ONTO algorithms, e.g. using the linguistic “Hearst”-
patterns which is stored (with corresponding confidence values) in the POM.

Construction of Learning Problem: After the user has initiated the active learning
module and chosen the concept for which instantiations should be discovered, the initial

CHAPTER 4. REPORT ON CURRENT TOOL INTEGRATION 25

instantiations are checked for positive or negative examples. Using a simple heuristic,
those instances that were seen as instantiations of the target concept with a confidence
value above 0.9 are regarded as positive training examples while those with a confidence
value below 0.1 are regarded as negative examples. All other discovered instances are
added to the learning problem as unlabelled examples. The user is presented an dialog
which summarizes the learning problem and allows him to make changes according to his
view on the problem (see figure 4.5).

Figure 4.5: Prototype Screenshot of Active Learning Instance Classification Module -
Start Configuration.

Feature Extraction: For each instance that is part of the learning problem, context
feature vectors are extracted from the sentence the respective instance occurs in. Here,
each occurrence of a word in the same sentence as the target instance is seen as a positive
count for the respective word feature.

Active Learning Loop: After the learning problem and feature vectors have been cre-
ated, the active learning loop is started. Internally, the learning problem is saved as an
TEXTGARDEN learning problem and the TEXTGARDEN learning component is called
with the file of the learning problem as parameter. The STDOUT and STDIN communi-
cation of the TEXTGARDEN active learning component concerning questions to the user
on the labelling of certain instances is propagated to the GUI for user feedback (see figure
4.6):

Export: In the current prototype implementation, the result of the active learning loop
is exported into a separate file3. In a future version, these are, however, meant to be

3Note that the results are necessarily consistent with the POM as only instances with unknown target
concepts have received new labels.

CHAPTER 4. REPORT ON CURRENT TOOL INTEGRATION 26

Figure 4.6: Prototype Screenshot of Active Learning Instance Classification Module -
Question Dialog.

written back to the POM directly.

4.2.4 Outlook

This integration activity has mainly focused on exploring a principled way of using active
learning for instance extraction. The available prototype implementation will be exper-
imentally evaluated on data available from the case studies. Based on these results, it
will be refined and extended with respect to the following aspects. Firstly, future work
will aim at evaluating the unsupervised and active-learning-based approaches to instance
extraction within TEXT2ONTO with respect to different target concepts, different con-
textual features and user interaction. We will use these results to tune and refine the
integration. Secondly, a different route for future work can be seen in incorporating fur-
ther refinements beyond the simple margin method into the active learning algorithm. A
third cluster of future work can be seen in the exploration of active learning technology
for other tasks than for instance classification as e.g. for relation instantiation. Finally, we
aim at bringing these components to work within the case study scenarios.

Chapter 5

Report on Scheduled Tool Integration

This chapter describes in more technical detail those scenarios for which the actual imple-
mentation work is scheduled for M25–M36, for which, however, the conceptual frame-
work has already been developed. This applies for integration scenarios 3 and 4, which
will be described in section 5.1 and section 5.2 respectively.

5.1 Scenario 3: Meta-Learning from heterogenous evi-
dence

Similar to scenario 2, this scenario (scenario 3) aims at integrating some of the supervised
machine learning functionality available in TEXTGARDEN within TEXT2ONTO, however
in a slightly different direction as presented in the following.

5.1.1 Motivation: combining heterogenous evidence

TEXT2ONTO currently comes with a number of analysis algorithms for different ontology
learning tasks. Each different algorithm is able to attach a level of confidence within the
range [0, 1] to the primitives it has detected. In many learning tasks, multiple different
learning algorithms are available for learning the respective primitives of the task. The
results of these individual algorithms can be seen as discovering evidences for a certain
ontology modelling primitive.

Currently, the combination of heterogenous evidences in TEXT2ONTO for a certain
ontology modelling primitive is done by means of comparatively simple mathematical
operators like average, maximum, minimum and the like on the individual confidence
scores.

Example 1 Algorithm A has detected a subclass-of relationship between entities

27

CHAPTER 5. REPORT ON SCHEDULED TOOL INTEGRATION 28

E1 and E2 with a (low) confidence score of 0.2 while algorithm B is very confident on
the subclass-of relationship and outputs a confidence score of 0.9. The average
combiner would conclude an overall confidence on a subclass-of relationship be-
tween entities E1 and E2 of 0.55.

Obviously, such simple combinations of evidences may be likely to smooth the pre-
dictions but they are not likely to discovery the best approximation to the unknown cor-
rectness of the respective primitive.

In scenario 3, we aim at learning, i.e. estimating parameters for more complex com-
biners. In this sense, we regard the output of the individual learning algorithms as input
to a supervised meta-level learning algorithm for TEXTGARDEN.

Example 2 (Linear Combination Function) Given numeric inputs from numeric inputs
from n different base learning algorithms, i.e. a n-dimensional vector x, the learning
problem for the combiner on the meta-level corresponds to learning a linear function f
on the input data:

f : R
n → R

f(x) = 〈x, w〉+ b =

(

n
∑

i=1

xiwi

)

+ b.

The variables w and b correspond to the weight- and bias-parameters of the approxi-
mation function which need to be discovered.

Obviously, this approach requires the availability of input data, i.e. instances of the re-
spective primitive to be learned, confidences of the base learners as input for the learning
process and human judgements on the correctness of the primitives in question. Depend-
ing on the question whether the user supplies crisp labels (i.e. yes/no) or also confidence
values in a range [0, 1] as target values, this problem corresponds to a classification or
regression problem respectively which can be performed easy and efficiently based on the
regression and classification algorithms available in TEXTGARDEN.

The envisioned use case is that optimal parameters (as e.g. weights in case of a linear
combination function) are learned only when new base learning algorithms are available
requiring extensive user interaction to supply the results. The tuned parameters can then
be saved as a specific instantiation of a combiner module for future use.

5.1.2 Implementation Plan and Applications within SEKT

This scenario will be evaluated experimentally within months 25—36. Based on the re-
sults of this evaluation, the actual implementation within TEXT2ONTO using TEXTGAR-
DEN modules will be initiated.

CHAPTER 5. REPORT ON SCHEDULED TOOL INTEGRATION 29

Similar to scenario 2, this functionality will enable an increased adaptivity of
TEXT2ONTO algorithms in new domains and specially to languages other than English
as for example Spanish in the legal case study.

5.2 Scenario 4: Ontology-Based Similarities for ML

While, the previous sections have mainly addressed integration scenarios that aim at im-
proving ontology learning tasks, especially by means of integrating machine learning
technology into ontology management, scenario 4 tries to address the opposite direction.

5.2.1 Motivation: Data Representation in Machine Learning

Most of current day’s machine learning algorithms use the notion of simple feature vectors
in learning to cluster, classify and rank data items.

The data items which form the input to the knowledge discovery algorithm could be
texts that should be classified into topics or users that should be ranked with respect to to
their similarity to other users as for example in collaborative filtering scenarios. In these
and in other scenarios, the data items are represented as flat vectors, each dimension of
which corresponds to a certain characteristic, called a “feature” that is attributed to the
data item in question and typically takes values from a range of numeric values.

Example 3 (Bag-of-Words) In the Bag-of-Words representation of text documents there
is a dimension for each word contained in the document. A document is then encoded
as a feature vector with word frequencies as elements. The frequencies are typically
weighted by some further weighting scheme, for example the Term-Frequency-Inverse-
Document-Frequency (TFIDF) weighting scheme, where all i-th elements are multiplied
with IDFi = log(N/dfi), where N is total number of documents and dfi is the number of
documents in which i-th word appears.

Example 4 (Collaborative Filtering) In a typical collaborative filtering scenario, users
are represented as vectors, where the each dimension of the vector corresponds to a cer-
tain “product” and the value this dimension takes, corresponds to the number of “pur-
chases” of that product. While typically phrased “purchases” and “products” for histor-
ical reasons, the recorded incidents could be far more general, for example in the case
when the “product” corresponds to a certain website and the “purchase” actually corre-
sponds to a single visit to that website.

These representations are often referred to as the vector-space model, a term used
which is especially used in the information retrieval and text mining communities
[Salton and McGill, 1983]. The basic idea behind these vector models is to enable a

CHAPTER 5. REPORT ON SCHEDULED TOOL INTEGRATION 30

straight-forward calculation of similarities between the data items which is typically im-
plemented as a similarity-function sim on the vectors:

sim : R
n × R

n → R.

Typical choices of the similarity functions are the dot product between vectors, or
more frequently the dot product between normalized vectors, i.e. the cosine measure.

Example 5 (Cosine Measure) The cosine similarity measure between two vectors is
given by the formula:

simcosine(x, y) =
〈x, y〉

‖x‖2 · ‖y‖2
.

Retrieval and machine learning tasks are thus based on the vector model and corre-
sponding similarities. In retrieval tasks, “similar” data items are seen to correspond to
items sharing a high similarity according to the chosen similarity function. In classifica-
tion tasks, the similarities are often required to correspond to variations of the dot-product
(as in the cosine similarity example) of the feature vectors involved – the classification
model is then built based on the geometry implied by the pairwise similarities.

Experience shows that this approach is simple, easy to implement and successful in
many diverse application scenarios. However, despite its success in many scenarios, the
plain vector space model relies on an assumption which is not valid in many real-world
tasks: The characteristics of the data items are seen as independent from each other as
they are mapped to independent vector space dimensions.

However, in many real world settings, this assumption is only partly true, as for ex-
ample sometimes in the bag-of-words model.

Example 6 (Problems Bag-of-Words) By representing documents as vectors within the
space of single words, the chosen learning or retrieval algorithms are restricted to de-
tecting patterns and similarities in the used terminology only, while conceptual patterns
remain ignored. Specifically, systems using only words as features exhibit a number of
inherent deficiencies:

1. Multi-Word Expressions with an own meaning like “Semantic Web” are chunked
into pieces with possibly very different meanings like “web”.

2. Synonymous Words like “tungsten” and “wolfram” are mapped into different fea-
tures.

3. Polysemous Words are treated as one single feature while they may actually have
multiple distinct meanings.

CHAPTER 5. REPORT ON SCHEDULED TOOL INTEGRATION 31

4. Lack of Generalization: there is no way to generalize similar terms like “beef” and
“pork” to their common hypernym “meat”.

While items 1 – 3 of the previous example directly address issues that arise on the
lexical level, which may be tackled by appropriate linguistic preprocessing item 4 rather
addresses an issue that is situated on the conceptual level.

Example 7 (Problems of Flat Vectors in Collaborative Filtering) By representing the
different users as vectors of individual purchase incidents, the chosen learning or re-
trieval algorithms are restricted to detecting patterns and similarities within the actual
purchases only, while patterns on the level of product groups remain ignored. For exam-
ple, a digital library user who visited a distinct article is – as such – not similar to other
users who didn’t visit the very same article but maybe other articles that belong to the
same conceptual group, e.g. articles in “ontology learning”.

Of course, research in KDD and machine learning has already tried to address this
kind of problems. Approaches for dealing with redundant and/or interrelated features
without explicit background information have been proposed from the field of dimension
reduction, as for example by means of Singular Value Decomposition (SVD) or Principal
Component Analysis (PCA) among others. The main trait these approaches share is to
discover redundant information within the full set of data items and their corresponding
feature vectors, i.e. in the full “data × feature matrix” by means of techniques from
statistics or linear algebra and project the original information into a lower dimensional
“semantic” vector space.

Example 8 (LSI) Latent Semantic Indexing (LSI) is a technique for implicitely extracting
semantic background knowledge from text documents. It uses a technique from linear
algebra called Singular Value Decomposition (SVD) for extracting words with similar
meanings. This can also be viewed as extraction of hidden semantic concepts or topics
from text documents. First, the term × document matrix T is constructed from a given set
of text documents. This matrix is decomposed using singular value decomposition such
that T = UΣV where the matrices U and V are orthogonal and contain the left and right
eigenvalues, respectively while Σ is a diagonal matrix with ordered singular values on
the diagonal. The columns of the matrix U form an orthogonal basis of a subspace in
bag-of-words space where vectors with higher singular values carry more information.
Because of all this, vectors that form the basis can also be viewed as “latent” concepts or
topics. The LSI approach aims at choosing only a subset of k most informative singular
values and cutting of the remaining dimensions. Learning algorithms then work in a
lower-dimensional “semantic” space.

While these approaches work without any human intervention, the question how to
choose the number of remaining dimensions k as in the LSI example and which dimension

CHAPTER 5. REPORT ON SCHEDULED TOOL INTEGRATION 32

reduction technique to use brings up a new dimension of complexity. Also, these models
tend to show a “black-box” behavior, where the user is confronted with accepting the
calculated interpretation of “semantics” without actually understanding the fine grained
interdependencies.

On the other hand, when conceptual background knowledge is available in the form
of ontologies and metadata annotations a different direction introducing higher-level se-
mantics can be pursued which will be the core of integration scenario 4.

5.2.2 Ontology-based Similarities for Data Items

We can look at the data items that form the input to the learning algorithm as instances of
an ontology and their corresponding features as the concepts they instantiate. At different
stages of the evolution of an ontology, the ontology also reflects valuable information
on the similarity of objects based on the current model. This similarity forms a natural
input for machine learning algorithms that work on data that caries semantic information,
like e.g. annotated documents or users whose usage profiles are stored in the ontology.
Building again upon the formal descriptions of ontologies as introduced in deliverable
D.6.6.1 [Bloehdorn et al., 2005], we can formalize this notion in a similar fashion as we
did in section 4.2:

Definition 4 (Concept Instantiation) The extension [[c]] ⊆ I of a concept c ∈ C is re-
cursively defined by the following rules:

• [[c]]← ιC(c)

• [[c]]← [[c]] ∪ [[c′]], for c′ <C c.

Correspondingly, the set of concepts con(i) for an instance i ∈ I is recursively defined
by the following rules:

• con(i)← ι′C(i)

• con(i)← con(i) ∪ {c′ ∈ C|c′ >C c, c ∈ con(i)}.

Here, we have used the function ι′C to denote the direct conceptualization function as
defined in the following.

Definition 5 (Instance Conceptualization)

ι′C : I → P(C)

ι′C(i) = {c ∈ C|i ∈ ιC(c)}

CHAPTER 5. REPORT ON SCHEDULED TOOL INTEGRATION 33

This view allows to introduce new types of similarities and/or data representations
which can be used to allow for detecting more complex and accurate patterns within data.
This approach is flexible and versatile as long as a set of features can be found that can be
organized in a hierarchical (taxonomic) way.

Definition 6 (Topic Ontologies in a Recommendation Scenario) In a recommendation
scenario users may be described by sets of topics they are interested in. If the topics, as for
example the InSpec topics used in the BT digital library case study, are arranged in a tax-
onomic manner, the taxonomy may implicitely let two users share a common supertopic,
although their explicit topic profiles might be distinct.

There are two different, though related, approaches for exploiting the hierarchical
structure of the features:

1. Explicitly compiling higher level features directly into the feature representations
for the individual data items.

2. Using the taxonomic structure of the features implicitly within the evaluation of the
pairwise similarities.

Example 9 (Explicit Feature Expansion in the Bag-of-Words Model) In the bag-of-
words model, explicit feature expansion could be used by compiling hypernyms for each
word that is explicitly encountered in the text into the feature vector. Typically, this
is done up to a certain level in the taxonomy or up to a certain distance from the
source features. See for example [Bloehdorn and Hotho, 2004, Bloehdorn et al., 2006,
Scott and Matwin, 1998]

The 2nd approach is exemplified by the so called “semantic” kernel, first introduced
in [Siolas and d’Alché Buc, 2000]. At this point we do not introduce the theory behind
kernels in detail. In the context of this deliverable it is sufficient to characterize a kernel
function as any similarity function between two inputs for which an interpretation as a
dot product in a some vector space into which the data could theoretically be mapped can
be given. The interested reader is referred to [Shawe-Taylor and Cristianini, 2004] for
further information.

Example 10 (Affine “Semantic” Kernel for Text Classification) In this approach, the
information about the similarities across individual dimensions is coded in a proximity
matrix P and exploited in the evaluation of the dot product between two vectors:

Kaffine(x, y) = x′Py

.

CHAPTER 5. REPORT ON SCHEDULED TOOL INTEGRATION 34

The information on cross-dependencies and similarities among distinct features (di-
mensions) is here encoded in the off-diagonal matrix cells. This approach has become
known recently as the so called “semantic” kernel approach. To make this approach
valid a valid kernel the matrix P has to fulfill the property of being symmetric and even
positive-semi-definite which is, however, easy to ensure.

Independent of the question which approach is chosen, two parameters influence the
final result:

1. Will the representation of the initial features be crisp (as in standard concept instan-
tiation) or will they be weighted (i.e. correspond to degrees of instantiation)?

2. Can the higher level features also occur as initial inputs or will the initial features
be restricted to “leaf” nodes/concepts of the taxonomy/ontology ?

3. Will the integration of higher level features be crisp or weighted depending on the
distance to the source feature ? For example in approach 2 this corresponds to the
question, whether the matrix entries are restricted to the set {0, 1} or whether they
may take values from a real scale.

Looking in more detail at the third parameter, when choosing not to use crisp inte-
gration (which is, depending on the context likely to make too many items too similar)
a whole set of variations for the weighting schemes exist based on research on semantic
distance measures within taxonomies [Budanitsky, 2001, Ganesan et al., 2003].

5.2.3 Further Approaches

The above exposition has pointed to the directions that will form the main focused of
investigation within the context of 3rd year bottom-up integration work in scenario 4.
However, there are other related approaches.

An alternative direction stems from the field of kernel methods for structured data. It
is common to distinguish two forms of structured data. On the one hand, the data items
can be independent from each other but still be highly structured internally. On the other
hand the data items can be are parts of a bigger structure (so called external structure)
as for example individuals in a social network. Data that is described by means of onto-
logical primitives can be seen as a natural form of both kinds of structured data. Kernel
methods bring in a particular aspect, namely the formation of hypotheses by linear com-
bination of positive-definite kernel functions. Kernel methods can be applied to different
kinds of (structured) data by using an appropriately defined kernel functions which cor-
respond to similarity functions in the sense explained above that are defined directly on
that data [Shawe-Taylor and Cristianini, 2004, Gärtner, 2003]. There has been substantial
work on kernels between internally structured instances such as graphs, trees, sequences,

CHAPTER 5. REPORT ON SCHEDULED TOOL INTEGRATION 35

and higher-order terms, as well as research on kernels between externally structured in-
stances such as the vertices in graphs or hypergraphs.

Another direction is the use of background knowledge for knowledge discovery with
constraints. The basic notion behind this field is that known constraints about the similar-
ity of certain data items can be propagated back into the defined similarity function. The
necessary background knowledge could for example be given within an ontological struc-
ture. The result of this approach is a skewed geometry of the feature space that makes
use of the information given in the initial constraints. See e.g. [Klein et al., 2002] for a
related approach in a clustering application.

5.2.4 Implementation Plan and Applications within SEKT

Initial experiments in the text classification domain using prototypical implementations
and using the explicit feature expansion approach and showed good results. These
experiments also showed that ontologies that have been automatically generated from
textual data in a fully unsupervised process can show bring competitive improvements
[Bloehdorn et al., 2006].

Figure 5.1: Relative Improvements of F1 measure against the Bag-of-Words baseline in
Text Classification Experiments on the Ohsumed Dataset using Feature Expansion based
on manually engineered and learned ontologies. See [Bloehdorn et al., 2006] for details.

The integration of advanced similarity measures that make use of the background
knowledge stored in ontologies into the TEXTGARDEN machine learning components
will be the main integration activity within the 3rd year of the project.

WP3 will develop facilities for similarity calculations within the ontology within the

CHAPTER 5. REPORT ON SCHEDULED TOOL INTEGRATION 36

KAON 2 faremwork. This will be done namely between individual ontology and meta-
data entities, based on semantic distance measures as well as between complex (aggre-
gated) descriptions based on ontology primitives.

Within scenario 4, these “semantic” similarities will be used as inputs for machine
learning algorithms of any kind implemented within TEXTGARDEN. For example by a
different plugins for the standard kernel module.

We aim at bringing advanced similarity measures into operation within at leas two
case study scenarios. On the one hand, within the SEKT BT digital library case study
(WP11), there is the need to improve both retrieval and recommender functionalities.
Within the SEKT legal case study (WP10), advanced similarities can form an additional
or alternative feature in the IUIRSERVICE II FAQ retrieval system [Casanovas et al., 2004,
Ortiz et al., 2005].

Chapter 6

Conclusion

One of the main objectives of SEKT is to combining the three core technologies, namely
Knowledge Discovery, Human Language Technology and Ontology/Metadata Manage-
ment with the aim of achieving synergy effects by looking at similar tasks from different
paradigms and enabling new functionalities.

Scenario Scenario 1 Scenario 2 Scenario 3 Scenario 4
Interoperability of Ontol-

ogy Learning Tools

Active Learning for

TEXT2ONTO

Meta-Learning for

TEXT2ONTO

Ontology based Similari-

ties for ML algorithms

Components
TEXTGARDEN-
LIBRARY

• • •

TEXTGARDEN-
ONTOGEN

•

KAON-TEXT2ONTO • • •

KAON2
(OM & Reasoning)

•

Maturity
Conceptual high high low advanced
Implementation completed prototype not yet not yet
Evaluation ongoing ongoing not yet not yet
Intended use
WP09 ? ? ? ?
(Siemens Study)
WP10 • • • •
(Legal Case Study)
WP11 • • •
(BT DL Case Study)

Table 6.1: Integration Matrix

37

CHAPTER 6. CONCLUSION 38

Parallel to the top-down integration via the gloal SIP platform, SEKT exploits a
bottom-up integration strategy where the integration between the core technologies de-
veloped in SEKT is performed on a bilateral basis between the three core technical
partners. This report is part of the bottom-up integration work performed in workpack-
age (WP) 6, specifically task 6.6 in which we have described the integration efforts be-
tween the Knowledge Discovery and Ontology/Metadata Management research fields by
means of integration of the corresponding tool suites developed within SEKT, namely the
TEXTGARDEN and KAON tools suites.

Results We have described a total of four different integration scenarios, two of which
have been already achieved a high maturity while the remaining two scenarios are sched-
uled for the 3rd year of the project – table 6.1 summarizes the situation. At the current
stage, a high level of integration has already been achieved especially in Scenario 1 - In-
tegration of Ontology Learning Tools and scenario 2 - Active Learning for TEXT2ONTO.

Outlook Activities within months 25—36 will mainly focus on realizing scenarios 3
and 4 according to the descriptions. At the same time, work within scenarios 1 and 2 will
be refined. While not planned explicitly, (new) scenarios beyond the upcoming scenarios
3 and 4 might be introduced and worked on.

Relation to SIP Integration The integration activities described in scenarios 1,2 and 3
are mainly related to software environments that are worked with at ontology engineering
time and not at runtime of the SIP platform. As such, the question concerning integration
via SIP does not apply here directly. If desirable or necessary, the interfaces between the
components could just as well be wrapped within SIP pipelets, however, without bringing
additional benefit to other components. The planned facilities for individual and com-
posite similarity calculations from scenario 4 form a component that could be wrapped
within a SIP pipelet for integration within the global SIP integration platform. Whether
and how the actual integration will be pursued will largely depend on the intended func-
tionalities of the overall platform and which further components are likely to make use of
these components. Note however, that for the actual integration with the machine learn-
ing algorithms implemented in TEXTGARDEN where efficiency is crucial the additional
overhead of SIP integration is unlikely to bring additional benefits.

Benefit to SEKT The benefit of the integration scenarios 1 — 3 lies in the combination
of complementary approaches for ontology learning: on the one hand, the more structure
driven-approaches of TEXT2ONTO and on the other hand the approaches of TEXTGAR-
DEN which are inspired by large-scale machine learning. In all three cases, this is likely to
bring additional flexibility and adaptivity with respect to the learning of ontologies within
new domains and/or languages.

CHAPTER 6. CONCLUSION 39

The activities pursued within scenario 4 aim at explicitly exploiting the framework for
semantic descriptions of data items within machine learning paradigms. This will allow
machine-learning oriented applications to take advantage of the rich semantic descriptions
generated and used within SEKT. Specifically, the resulting similarity measures are a
valuable ingredient for applications like for example the FAQ retrieval in the legal case
study and recommendations in the BT digital library case study.

Overall Bottom-up Integration For the remaining pairs of core technologies, the par-
allel deliverables D6.6.21 and D.6.6.42 describe the Integration of Knowledge Discov-
ery with Human Language Technology and Human Language Technology with Ontology
Management respectively. These deliverables will be updated and extended in the up-
coming deliverables D6.6.5 – D6.6.7 at the end of month 36, which will provide the final
details on the bilateral efforts for exploring synergies of SEKT core technologies.

1D6.6.2 Integration of TextGarden with GATE
2D6.6.4 Integration of GATE with KAON

Bibliography

[Bloehdorn et al., 2006] Bloehdorn, S., Cimiano, P., and Hotho, A. (2006). Learning
ontologies to improve text clustering and classification. In Spiliopoulou, M., Kruse,
R., Nürnberger, A., Borgelt, C., and Gaul, W., editors, From Data and Information
Analysis to Knowledge Engineering: Proceedings of the 29th Annual Conference of the
German Classification Society (GfKl 2005), Magdeburg, Germany, March 9-11, 2005,
volume 30 of Studies in Classification, Data Analysis, and Knowledge Organization.
Springer. TO APPEAR.

[Bloehdorn et al., 2005] Bloehdorn, S., Haase, P., Sure, Y., Völker, J., Bevk, M.,
Bontcheva, K., and Roberts, I. (2005). Report on the integration of ML, HLT and
OM. SEKT Deliverable D6.6.1, Institute AIFB, University of Karlsruhe.

[Bloehdorn and Hotho, 2004] Bloehdorn, S. and Hotho, A. (2004). Text classification
by boosting weak learners based on terms and concepts. In Proceedings of the 4th
IEEE International Conference on Data Mining (ICDM 2004), 1-4 November 2004,
Brighton, UK, pages 331–334. IEEE Computer Society.

[Budanitsky, 2001] Budanitsky, A. (2001). Semantic distance in wordnet: An experi-
mental, application-oriented evaluation of five measures.

[Casanovas et al., 2004] Casanovas, P., Poblet, M., Casellas, N., Vallbé, J.-J., Ramos,
F., Benjamins, R., Blázquez, M., Rodrigo, L., Contreras, J., and Cruz, J. G. (2004).
Legal scenario: Case study-intelligent integrated decision support for legal profession-
als. SEKT deliverable 10.2.1, Intelligent Software Components S.A. and Universitat
Autonoma de Barcelona.

[Cimiano and Völker, 2005a] Cimiano, P. and Völker, J. (2005a). Text2onto - a frame-
work for ontology learning and data-driven change discovery. In Proceedings of the
10th International Conference on Applications of Natural Language to Information
Systems (NLDB’05).

[Cimiano and Völker, 2005b] Cimiano, P. and Völker, J. (2005b). Towards large-scale,
open-domain and ontology-based named entity classification. In Proceedings of
the International Conference on Recent Advances in Natural Language Processing
(RANLP’05), pages 166–172.

40

BIBLIOGRAPHY 41

[Fortuna et al., 2005a] Fortuna, B., Mladenić, D., and Grobelnik, M. (2005a). Ontology
generation from scratch. SEKT deliverable 1.7.1, Jožef Stefan Institute.

[Fortuna et al., 2005b] Fortuna, B., Mladenić, D., and Grobelnik, M. (2005b). Visualiza-
tion of text document corpus. Informatica journal, 29(4):497–502.

[Ganesan et al., 2003] Ganesan, P., Garcia-Molina, H., and Widom, J. (2003). Exploiting
hierarchical domain structure to compute similarity. ACM Trans. Inf. Syst., 21(1):64–
93.

[Grobelnik and Mladenić, 1998] Grobelnik, M. and Mladenić, D. (1998). Learning ma-
chine : design and implementation. Jsi technical report (ijs-dp-7824), Jožef Stefan
Institute.

[Gärtner, 2003] Gärtner, T. (2003). A survey of kernels for structured data. SIGKDD
Explor. Newsl., 5(1):49–58.

[Haase et al., 2004] Haase, P., Sure, Y., and Vrandecic, D. (2004). Ontology mangement
and evolution - survey, methods and prototypes. SEKT deliverable 3.1.1, Institute
AIFB, University of Karlsruhe.

[Haase and Voelker, 2004] Haase, P. and Voelker, J. (2004). Requirements analysis for
usage-driven and data-driven change discovery. SEKT informal deliverable 3.3.1.a,
Institute AIFB, University of Karlsruhe.

[Hustadt et al., 2004a] Hustadt, U., Motik, B., and Sattler, U. (2004a). Reasoning for
Description Logics around SHIQ n a Resolution Framework. Technical Report 3-8-
04/04, FZI, Karlsruhe, Germany.
http://www.fzi.de/wim/publikationen.php?id=1172.

[Hustadt et al., 2004b] Hustadt, U., Motik, B., and Sattler, U. (2004b). Reducing
SHIQ− Description Logic to Disjunctive Datalog Programs. In Dubois, D., Welty, C.,
and Williams, M.-A., editors, Proc. of the 9th Int. Conf. on Knowledge Representation
and Reasoning (KR2004), pages 152–162, Menlo Park, California, USA. AAAI Press.

[Klein et al., 2002] Klein, D., Kamvar, S., and Manning, C. (2002). From instance-level
constraints to space-level constraints: Making the most of prior knowledge in data
clustering.

[Maedche, 2002] Maedche, A. (2002). Ontology Learning for the Semantic Web. Kluwer
Academics.

[Maedche and Staab, 2001] Maedche, A. and Staab, S. (2001). Ontology learning for the
semantic web. IEEE Intelligent Systems, 16(2).

[Mladenić, 1996] Mladenić, D. (1996). Personal webwatcher: Implementation and de-
sign. Jsi technical report ijs-dp-7472, Jožef Stefan Institute.

BIBLIOGRAPHY 42

[Motik et al., 2004] Motik, B., Sattler, U., and Studer, R. (2004). Query Answering for
OWL-DL with Rules. In McIlraith, S. A., Plexousakis, D., and van Harmelen, F.,
editors, Proc. of the 3rd Int. Semantic Web Conf. (ISWC 2004), volume 3298 of Lecture
Notes in Computer Science, pages 549–563, Hiroshima, Japan. Springer.

[Novak et al., 2004a] Novak, B., Fortuna, B., Mladenić, D., and Grobelnik, M. (2004a).
Collecting data for ontology generation. SEKT deliverable 1.1.1, Jožef Stefan Institute.

[Novak et al., 2004b] Novak, B., Grobelnik, M., and Mladenić, D. (2004b). Dealing with
unlabelled data. SEKT deliverable 1.2.1, Jožef Stefan Institute.

[Novak et al., 2005] Novak, B., Mladenić, D., and Grobelnik, M. (2005). Text classifi-
cation with active learning. In Proc. of the 29th Annual Conference of the German
Classification Society (GfKl 2005), pages 70–77.

[Ortiz et al., 2005] Ortiz, R. P., Cı́vico, M. B., Cino, J. C., Benjamins, R., Casanovas,
P., and Casellas, N. (2005). Legal case study prototype informal deliverable. SEKT
Informal Deliverable 10.3.1.1, Intelligent Software Components S.A. and Universitat
Autonoma de Barcelona.

[Salton and McGill, 1983] Salton, G. and McGill, M. J. (1983). Introduction to Modern
Information Retrieval. McGraw-Hill, New York, NY ,USA.

[Scott and Matwin, 1998] Scott, S. and Matwin, S. (1998). Text classification using
WordNet hypernyms. In Harabagiu, S., editor, Use of WordNet in Natural Language
Processing Systems: Proceedings of the Conference, pages 38–44. Association for
Computational Linguistics, Somerset, New Jersey.

[Shawe-Taylor and Cristianini, 2004] Shawe-Taylor, J. and Cristianini, N. (2004). Kernel
Methods for Pattern Analysis. Cambridge University Press.

[Siolas and d’Alché Buc, 2000] Siolas, G. and d’Alché Buc, F. (2000). Support vector
machines based on a semantic kernel for text categorization. In IJCNN ’00: Pro-
ceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks
(IJCNN’00)-Volume 5, page 5205, Washington, DC, USA. IEEE Computer Society.

[Terziev et al., 2004] Terziev, I., Kiryakov, A., and Manov, D. (2004). Base upper-level
ontology (bulo) guidance. SEKT deliverable 1.8.1, Ontotext Lab, Sirma AI EAD
(Ltd.).

[Tong and Koller, 2000] Tong, S. and Koller, D. (2000). Support vector machine active
learning with applications to text classification. In Proceedings of 17th International
Conference on Machine Learning (ICML 00), pages 999–1006.

Appendix A

Availability of Prototype
Implementations

Scenario 1: Interoperability of Ontology Learning Tools

ONTOGEN is publicly available trough the website http://www.textmining.net/ and runs
in the Windows operating system. ONTOGEN also needs .NET framework 2.0 which can
be freely downloaded from internet.

ONTOGEN is publicly available trough the website http://www.textmining.
net/ and runs in the Windows operating system. The website also includes more detailed
information on how to use the software, sample data for testing it and a demonstration
in video format showing sample use of the software on the sample data. ONTOGEN
also needs .NET framework 2.0 which can be freely downloaded from http://msdn.
microsoft.com/netframework/.

Scenario 2: Active Ontology Learning

A stand-alone version of the active learning tool is available at http://ontoware.
org/projects/symi/. The distribution contains the necessary Java libraries
which need to reside on the classpath as well as the active learning command
line tool from TEXTGARDEN. A start of the main class requires a call to
org.semanticweb.sekt.activeic.InstanceClassificationGUI with
the additional argument of a Java properties file which needs to specify the path to the
windows executable for active learning through the property key “command”.

In this mode, the component is run as a stand alone tool via the main method. How-
ever, the underlying methods are designed to interface with the TEXT2ONTO environ-
ment. A corresponding version of TEXT2ONTO will be prepared and used within year 3
evaluations.

43

Appendix B

Availability of TG and KAON software

TextGarden

TEXTGARDEN command line tools are publicly available trough the website http:
//www.textmining.net/ and run on the Windows operating system. Scheduled
releases for TEXTGARDEN will include different distribution formats, e.g. as library in-
cluding adaptors for Matlab, Java and the like.

Text2Onto

TEXT2ONTO is available for downlaod at http://ontoware.org/projects/
text2onto/. TEXT2ONTO is written entirely in Java and is thus platform independent.
However, KAON2 requires JDK 1.5 and is not compatible with earlier Java versions.

KAON2

KAON2 is available as a precompiled binary distribution and is free of charge for re-
search and academic purposes, see http://kaon2.semanticweb.org/. KAON2
is written entirely in Java and is thus platform independent. However, KAON2 requires
JDK 1.5 and is not compatible with earlier Java versions.

44

