
EU-IST Integrated Project (IP) IST-2003-506826 SEKT

SEKT: Semantically Enabled Knowledge Technologies

D7.1.2 SEKT Methodology: Initial
Framework and Evaluation of

Guidelines

York Sure, Christoph Tempich and Denny Vrandečić
(Institute AIFB, University of Karlsruhe (TH))

Sofia Pinto
(Instituto Superior Tecnico,

Universidade Tecnica de Lisboa, Portugal)
Elena Paslaru Bontas

(Free University of Berlin)
Mark Hefke

(FZI Research Center for Information Technologies at the
University of Karlsruhe)

Abstract.
EU-IST Integrated Project (IP) IST-2003-506826 SEKT
Deliverable D7.1.2 (WP 7)
This deliverable provides the first set of guidelines for ontology engineering and application in
SEKT: DILIGENT – DIstributed , Loosely-controlled and evolvInG Engineering of oNTologies.
Keyword list: Ontology Engineering Methodology — Rhetorical Structure Theory (RST) —
Holistic Approach — Cost Estimation for Ontology Engineering

Copyright © 2006 Institute AIFB, University of Karlsruhe (TH)

Document Id.
Project
Date
Distribution

SEKT/2004/D7.1.2/v1
SEKT EU-IST-2003-506826
January 12, 2006
public

SEKT Consortium

This document is part of a research project partially funded by the IST Programme of the Commission of the European
Communities as project number IST-2003-506826.

British Telecommunications plc.
Orion 5/12, Adastral Park
Ipswich IP5 3RE, UK
Tel: +44 1473 609583, Fax: +44 1473 609832
Contact person: John Davies
E-mail: john.nj.davies@bt.com

Empolis GmbH
Europaallee 10
67657 Kaiserslautern, Germany
Tel: +49 631 303 5540, Fax: +49 631 303 5507
Contact person: Ralph Traphöner
E-mail: ralph.traphoener@empolis.com

Jozef Stefan Institute
Jamova 39
1000 Ljubljana, Slovenia
Tel: +386 1 4773 778, Fax: +386 1 4251 038
Contact person: Marko Grobelnik
E-mail: marko.grobelnik@ijs.si

University of Karlsruhe, Institute AIFB
Englerstr. 28
D-76128 Karlsruhe, Germany
Tel: +49 721 608 6592, Fax: +49 721 608 6580
Contact person: York Sure
E-mail: sure@aifb.uni-karlsruhe.de

University of Sheffield
Department of Computer Science
Regent Court, 211 Portobello St.
Sheffield S1 4DP, UK
Tel: +44 114 222 1891, Fax: +44 114 222 1810
Contact person: Hamish Cunningham
E-mail: hamish@dcs.shef.ac.uk

University of Innsbruck
Institute of Computer Science
Technikerstraße 13
6020 Innsbruck, Austria
Tel: +43 512 507 6475, Fax: +43 512 507 9872
Contact person: Jos de Bruijn
E-mail: jos.de-bruijn@deri.ie

Intelligent Software Components S.A.
Pedro de Valdivia, 10
28006 Madrid, Spain
Tel: +34 913 349 797, Fax: +49 34 913 349 799
Contact person: Richard Benjamins
E-mail: rbenjamins@isoco.com

Kea-pro GmbH
Tal
6464 Springen, Switzerland
Tel: +41 41 879 00, Fax: 41 41 879 00 13
Contact person: Tom Bösser
E-mail: tb@keapro.net

Ontoprise GmbH
Amalienbadstr. 36
76227 Karlsruhe, Germany
Tel: +49 721 50980912, Fax: +49 721 50980911
Contact person: Hans-Peter Schnurr
E-mail: schnurr@ontoprise.de

Sirma Group Corp., Ontotext Lab
135 Tsarigradsko Shose
Sofia 1784, Bulgaria
Tel: +359 2 9768 303, Fax: +359 2 9768 311
Contact person: Atanas Kiryakov
E-mail: naso@sirma.bg

Vrije Universiteit Amsterdam (VUA)
Department of Computer Sciences
De Boelelaan 1081a
1081 HV Amsterdam, The Netherlands
Tel: +31 20 444 7731, Fax: +31 84 221 4294
Contact person: Frank van Harmelen
E-mail: frank.van.harmelen@cs.vu.nl

Universitat Autonoma de Barcelona
Edifici B, Campus de la UAB
08193 Bellaterra (Cerdanyola del Vallès)
Barcelona, Spain
Tel: +34 93 581 22 35, Fax: +34 93 581 29 88
Contact person: Pompeu Casanovas Romeu
E-mail: pompeu.casanovas@uab.es

Siemens Business Services GmbH & Co. OHG
Otto-Hahn-Ring 6
81739 Munich, Germany
Tel: +49 89 636 40 225, Fax: +49 89 636 40 233
Contact person: Dirk Ramhorst
E-mail: dirk.ramhorst@siemens.com

Changes

Version Date Author Changes
0.1 13.06.05 Christoph

Tempich
initial creation

0.8 30.11.05 Christoph
Tempich

inclusion of cost model and elaborated detailed de-
scription

0.9 6.12.05 Christoph
Tempich

Release for internal review

0.95 11.1.06 Christoph
Tempich

Incorporation of reviewers comments

ii January 12, 2006 SEKT/2004/D7.1.2/v1

Executive Summary

This deliverable provides a methodology to determine an the knowledge management
maturity level of an organization. This depends on the level of experience of the orga-
nization w.r.t. knowledge management from an organizational, human and technology
perspective. For the technological aspects of KM the deliverable provides an elaborated
set of guidelines for ontology engineering and application in SEKT: DILIGENT – DIs-
tributed, Loosely-controlled and evolvInG Engineering of oNTologies. The deliverable
consists of the following building blocks: (i) a survey of relevant existing approaches to
aforementioned topics, (ii) the DILIGENT process model and argumentation framework,
(iii) a cost model to estimate the ontology building efforts1, (iv) a process model to learn
ontologies and (v) guidelines for the evaluation of the DILIGENT process model.

1Results reported in this chapter were partly financed by a Knowledge Web T-Rex exchange

iv

Contents

1 Introduction 1
1.1 Readers Guide . 1
1.2 Motivation . 2
1.3 The SEKT Big Picture . 4
1.4 The SEKT Methodology - a Fine-grained View 4
1.5 Organization of the Deliverable . 6

2 Survey 9
2.1 The Methodology Focus . 9

2.1.1 Definition of Methodology for Ontologies 11
2.1.2 Set of Procedures . 12
2.1.3 Documenting the Results . 13
2.1.4 Step-by-step “Cookbook” . 13
2.1.5 Set of Criteria for Evaluation . 13

2.2 Arguments . 13
2.2.1 Visualizing Argumentation . 13
2.2.2 Argumentation Theory . 14

2.3 Ontology Learning Processes . 17
2.4 Existing Tools . 17

2.4.1 Tools for Visualization of Arguments 17
2.4.2 Ontology Engineering Tools . 19
2.4.3 Conclusions . 21

2.5 Past and Current Research . 21
2.5.1 Visualization of Argumentation 21
2.5.2 Methodologies . 25
2.5.3 Cost Estimation in Ontology Engineering 31
2.5.4 Conclusions . 31

3 The HIKNOW maturity level analysis 35
3.1 Introduction . 35
3.2 Methodological Approach . 38

3.2.1 Procedure of Identifying an Organization’s KM Maturity Level . . 38
3.2.2 Kochikar’s KM Maturity Model 39

v

vi CONTENTS

3.3 A Conceptual Data Model for Representing KM Maturity Models 40
3.3.1 Description of Ontology Terms 41
3.3.2 Retaining KM Maturity Models 41
3.3.3 Identification of a Company’s Maturity Level 42

3.4 Related Work . 43
3.5 Conclusion and Future Work . 43

4 DILIGENT Process and Argumentation Framework 45
4.1 Motivational Scenario . 45
4.2 DILIGENT Overview . 46
4.3 Detailed Process Description: Use Case Oriented 47

4.3.1 Local Adaptation: Detailed View 48
4.3.2 Analysis . 51
4.3.3 Revision . 53
4.3.4 Local Update . 54

4.4 Generic Detailed Process Description 55
4.4.1 Building . 56
4.4.2 Local Adaptation . 60
4.4.3 Analysis . 68
4.4.4 Revision . 71
4.4.5 Local Update . 75

4.5 Requirements for DILIGENT Tool Support 78
4.5.1 Build . 79
4.5.2 Local Adaptation . 81
4.5.3 Analyzing . 82
4.5.4 Revision . 83
4.5.5 Local update . 83

4.6 Argumentation Framework for DILIGENT 85
4.6.1 Threads of Arguments . 85
4.6.2 RST Example . 85
4.6.3 Analysis in the Biology Domain 86
4.6.4 Evaluation of Argumentation Framework 88

4.7 An Argumentation Ontology for DILIGENT Processes 93
4.7.1 The argumentation process . 94
4.7.2 Use Case . 97
4.7.3 Requirements . 99
4.7.4 Argumentation Ontology Description 100

5 ONTOCOM cost estimation model 105
5.1 Introduction . 105
5.2 The ONTOCOM Cost Model . 107

5.2.1 Cost Drivers for Ontology Building 109
5.2.2 Cost Drivers for Ontology Reuse and Maintenance 110

CONTENTS vii

5.2.3 Evaluation of ONTOCOM . 110
5.2.4 Current Limitations . 112

5.3 Bridging ONTOCOM and DILIGENT 112
5.3.1 Mapping the Activities in DILIGENT to the Cost Drivers in ON-

TOCOM . 113
5.3.2 Changes in the Cost Model . 117

5.4 A Cost Function for DILIGENT Processes 124
5.4.1 The Complete Cost Function . 124
5.4.2 The Reduced Cost Function . 128
5.4.3 Applications of the Reduced Cost Function 130

5.5 Data Collection and Model Calibration 132
5.5.1 Technical Realization of the Data Collection 133
5.5.2 Calibration Method . 133

5.6 Conclusions . 140

6 DILIGENT ontology learning process 143
6.1 Motivation . 143
6.2 Process . 143

6.2.1 Feasibility Study . 144
6.2.2 Requirements Specification . 147
6.2.3 Selection of Information Sources 148
6.2.4 Selection of Ontology Learning Tools 148
6.2.5 Learning Preparation . 149
6.2.6 Learning Execution . 150
6.2.7 Ontology Evaluation . 151
6.2.8 Ontology Integration . 152
6.2.9 Future Work . 152

7 Evaluation of the DILIGENT methodology 153
7.1 Selected Methods for Evaluation . 154

7.1.1 Goal Free . 155
7.1.2 Professional Review . 156
7.1.3 Case Study . 156
7.1.4 Other Approaches . 157

7.2 Goal Free Evaluation of DILIGENT . 158
7.3 Professional review . 159

7.3.1 DILIGENT process evaluation 159
7.3.2 Argumentation framework evaluation 160

7.4 Case Study Evaluation: First Application of DILIGENT 161

8 Conclusions 165

viii CONTENTS

List of Figures

1.1 The SEKT Big Picture . 5

3.1 Methodology for the holistic introduction of KM (HIKNOW) 36
3.2 Excerpt of KM Maturity Model Ontology 40
3.3 Hierarchization of models . 42

4.1 Roles and functions in distributed ontology engineering 46
4.2 Process stages (1-5), actions (1-17) and structures 48
4.3 Process stages (1-5), activities (1-32) and structures 57
4.4 Local Adaptation: Activity Diagram . 62
4.5 Analysis: Activity Diagram . 69
4.6 Revision: Activity Diagram . 73
4.7 Local Update: Activity Diagram . 76
4.8 The major concepts of the argumentation ontology and their relations . . 101

5.1 ONTOCOM data collection: introductory questions 134
5.2 ONTOCOM data collection: cost drivers 134
5.3 Data export from phpESP . 135

6.1 Stages, Roles and Activities in ontology engineering with ontology learning145

ix

x LIST OF FIGURES

List of Tables

2.1 Summary of ontology engineering methodologies taken from [GPFLC03] 26

3.1 Level-Organizational Capability Mapping, Source: [Koc00] 39

4.1 Arguments used and outcome . 91
4.2 Types of conflict according to Shaw and Gaines, 1989 97
4.3 List of possible inconsistencies . 98

5.1 Cost Driver LEXP (Language Experience) 109
5.2 Mapping DILIGENT to ONTOCOM: Centralized Building 114
5.3 Mapping DILIGENT to ONTOCOM: Local Adaptation 116
5.4 Mapping DILIGENT to ONTOCOM: Centralized Analysis and Revision 118
5.5 Mapping DILIGENT to ONTOCOM: Local Update 119
5.6 The Domain Complexity Cost Driver DCLPX 120
5.7 The Conceptualization Complexity Cost Driver CCPLX 121
5.8 The implementation complexity cost driver ICPLX 121
5.9 Ratings for Documentation Costs . 122
5.10 The Ontology Evaluation Cost Driver OE 122
5.11 The Ontology Integration Cost Driver OI 123
5.12 The Tool Support Cost Driver TOOL . 124
5.13 Simplified cost model factors . 135
5.14 Delphi result . 136
5.15 Data collection . 136
5.16 Adjusted collected data . 137
5.17 Correlation matrix for our example . 138
5.18 Results of the linear regression . 138
5.19 Parameter estimation from experts and based on the data 138
5.20 Effort estimation based on expert estimation and historical data 140
5.21 Results of the linear regression - alternative 140

6.1 ORSD for the travel domain . 146
6.2 Evaluation of tool feasibility . 149

7.1 Summary of ontology engineering methodologies adapted from [GPFLC03]158

xi

xii LIST OF TABLES

Chapter 1

Introduction

The SEKT work package 7 “SEKT methodology” consist of four deliverables, which will
describe a methodology to apply the SEKT technologies in a knowledge management
setting. This deliverable is the extension of deliverable 7.1.1 “Initial Guidelines” and
describes the process related issues. Deliverable 7.2.1 reports on the application of this
process in the case studies. Before we describe the SEKT methodology we illustrate in
this chapter the overall organization of this deliverable. We first comment on the history of
this deliverable and then motivate our work and situate it in the overall SEKT project. This
is followed by an overview of the SEKT methodology. Finally we outline the organization
of the deliverable.

1.1 Readers Guide

The combined deliverables in work package 7 will result in a a guideline to apply and
use the technologies developed in the SEKT-project in a knowledge management setting.
The document evolves in the course of the project. In the first year we outlined initial
guidelines. In the second year we elaborated on the initial guidelines and collected first
experiences in the application of those guidelines. The last year we will work on the
validated methodology with extended case study experiences.

In order to emphasize the evolving nature of this work, we have decided to include
the changes, updates and elaborations for the methodology in the existing deliverable.
The new sections are highlighted in black while the old parts appear in dark gray. The
reader familiar with the old version can thus distinguish between new and old work while
the reader new to the field has all information available in one document. In particular
we update the state of the art part and introduce references to recent works in our area.
Furthermore, we integrate the HIKNOW methodology, offering a holistic approach to
knowledge management and integrating the ontology engineering methodology in a gen-
eral framework of knowledge management. We elaborate on the process model itself and

1

2 CHAPTER 1. INTRODUCTION

include a generic description and introduce an argumentation ontology. A major exten-
sion is the alignment of the methodology with the ONTOCOM cost estimation model.
The total costs of ownership of DILIGENT developed ontologies can be estimated with
this model. Initial results for an ontology engineering process model by ontology learning
are presented in the penultimate chapter.

Even though the final methodology will contain academic methodological work as
well as case study experiences these two aspects are still separated at this stage of the
project. The interested reader will find our first experiences with the methodology in the
related deliverable 7.2.1 First best practices [VSTE05].

1.2 Motivation

The SEKT project combines the topics knowledge management and ontologies. The
driving force for combing the two topics is the growing importance of knowledge for
societies and their economies. Both topics are now briefly introduced to motivate the
contributions of this work.

Our society changed from being an industrial society to being a knowledge society.
This shift of paradigms enforced enterprises to act no longer based on purely tayloristic
principles but rather as “intelligent enterprises” (cf. [Qui92]). Knowledge became the
key economic resource, as Drucker pointed out:

“The basic economic resource – the means of production – is no longer cap-
ital, nor natural resources, nor labor. It is and will be knowledge.”
[Dru93]

This so-called “post-industrial revolution” (cf. [Jac96]) focused the view on knowl-
edge as “intellectual capital” (cf. [Ste97]) that is a mission critical resource. Therefore,
companies should have the same interest in managing their knowledge as in managing
capital investment and working relationships (cf. [EM97]).

Knowledge management (KM) emerged as a corporate strategy to meet the new
challenges. The history and the current status of KM is sketched by Kay:

“Knowledge management as an approach to business management has had a
tumultuous history. It was born as a hip buzzword, was shunned as a second
cousin to business process reengineering, and was for a time hijacked by
software vendors. Despite this circuitous path, knowledge management is
now well on the way to becoming a necessary component of every bottom-
line-oriented company’s long-term business strategy.”
[Kay03]

1.2. MOTIVATION 3

The main goal of typical current KM initiatives is to enable a better knowledge shar-
ing. Drivers for the introduction of knowledge management were e.g. the potential for
reduction of (i) costs for duplication of efforts, (ii) loss of knowledge when key people
leave a company and (iii) time needed to find correct answers. This has led to many efforts
for capturing, storing and making knowledge accessible. But, as Davenport and Prusak
mention, sharing knowledge requires a common language:

“People can’t share knowledge if they don’t speak a common language.”
[DP98]

Successful KM strategies consist of building blocks for organization, people, technol-
ogy and corporate culture (cf. [Alb93, Sch96a]. In such a context, knowledge sharing is
not only a matter of communication between humans, but also between them and ma-
chines. Interacting agents (human and software agents) need to share their knowledge,
thus requiring a common language. Generalizing the quotation above we might say that
“Agents can’t share knowledge if they don’t speak a common language”.

Ontologies were exploited in Computer Science to enhance knowledge sharing and
reuse (cf. [Gru93, Fen01]). Firstly, they provide a shared and common understanding of
knowledge in a domain of interest. Secondly, they capture and formalize knowledge by
connecting human understanding of symbols with their machine processability. As such,
ontologies act as a common language between agents. The use of ontologies for knowl-
edge management offers therefore great advantages. Numerous applications already exist
(cf. [SS03]).

Common knowledge management applications make use of available technology that
was originally developed for the World Wide Web, e.g. the now very popular corporate
intranets. Similarly to the Web they provide access to a large amount of information
contained in documents, databases etc. and suffer from the same weaknesses, e.g.,

(i) searching for information often leads to irrelevant information,

(ii) extracting information is left to humans since software agents are not yet equipped
with common sense and domain knowledge to extract such information from tex-
tual representations and they fail to integrate information distributed over different
sources,

(iii) maintaining weakly structured text sources is a time-consuming and difficult task
when such sources become large (cf. introduction of [DFv02]).

To overcome such weaknesses of the current Web, Berners-Lee and others envisioned
the Semantic Web:

“The Semantic Web is an extension of the current web in which information
is given well-defined meaning, better enabling computers and people to work

4 CHAPTER 1. INTRODUCTION

in co-operation.”
[BLHL01]

The Semantic Web extends the Web by adding machine-processable meta-
information, aka metadata, to documents. The metadata explicitly define what the doc-
ument is about. Thereby, ontologies provide the schema for metadata to make them re-
usable and define their meaning.

1.3 The SEKT Big Picture

This report is part of the work performed in workpackage (WP) 7 on “Methodology”. As
shown in Figure 1.1 this work is closely related with “Usability and Benchmarking”; they
both are intermediating between the research and development WPs and the case study
WPs in SEKT.

The main goal of this activity is to provide a methodology for the application of Se-
mantic Knowledge Technologies into enterprises in a goal-driven and process-oriented
way. Hence, we need an integrated approach to knowledge management balancing the
organisation and management aspects on the one hand, and the information technology
and systems aspects on the other hand.

Central to Semantic Knowledge Technologies is the application of ontologies to
knowledge management problems. Core aspects for the methodology therefore include
the efficient and effective creation and maintenance of ontologies in settings such as pro-
vided by the case studies.

1.4 The SEKT Methodology - a Fine-grained View

SEKT seeks to integrate advantages of the different technologies mentioned in the previ-
ous section (cf. fig. 1.1) for the overall goal to provide better technological support for
knowledge management.

The work described in WP 7 is concerned with the methodological aspects of integrat-
ing the different technologies and thereby overcome weaknesses of currently available
methodologies.

1. Classical development of knowledge-based systems and of corresponding ontolo-
gies is mostly centralized like the targeted knowledge-based system itself. In
contrast, we here consider the general tendency to support distributed informa-
tion processing with ontologies, e.g. the Semantic Web, agents, web services or
ontology-based peer-to-peer. Stakeholders in an ontology development process will

1.4. THE SEKT METHODOLOGY - A FINE-GRAINED VIEW 5

Figure 1.1: The SEKT Big Picture

hardly ever gather in one place. Yet they have an interest to contribute fruitfully to-
ward the ongoing development of their ontologies.

2. Existing methodologies support knowledge engineering (KE) by using check lists
that guide the engineering process. The check lists have been shaped by the needs
of knowledge engineers to cope comprehensively with nearly arbitrarily complex
processes. In contrast, in the distributed cases we consider, the participation of
a knowledge engineer is often restricted to a, possibly complex, core ontology.
Beyond the core, these cases involve extensive participation and, comparatively
simple, concept formation by domain experts.

3. KE has mostly focused on an up- and running system with some moderate effort
for maintenance. In contrast, ontologies for distributed information processing must
permanently evolve in order to reflect the widely diverging needs of their users.

4. KE methodologies remain rather coarse and the gap between their description and
concrete actions to be taken is filled by the KE. In contrast, for Semantic Web on-
tologies and comparable use cases, we ask the question whether we could provide
the domain experts with fine-grained guidance in order to improve their effective-
ness and efficiency in ontology engineering.

6 CHAPTER 1. INTRODUCTION

To account for some of the differences between classical knowledge engineering and
ontology engineering methodologies derived from there, we have started to develop a
methodology for DIstributed (cf. item 1 above), Loosely-controlled (cf. item 2) and evolv-
InG (cf. item 3) Engineering of oNTologies, the validity of which has been partially
checked and is still being checked against experiences in two case studies (cf. [PSST04].

The methodology will combine aspects from different areas to integrate the differ-
ent technologies in a concise way. We argue that this requires a major abstraction step
which leads us to a methodology applicable in distributed environment, which can only
be loosely controlled and evolves constantly. At this abstraction level we could recognize
similarities between our objectives and objectives being worked on in the field of argu-
mentation visualization. Without going into detail we here list the two areas which we
will subsequently analyse.

• Methodologies for ontology engineering

• Computer supported argumentation

In the reminding report we will refer in each chapter to these areas. The overview
chapter will explain the different parts and relate them to the overall objective of the
deliverable.

1.5 Organization of the Deliverable

This deliverable is organized as follows. We first present our results of a review of related
work in the area in chapter 2. We have in particular analyzed the current state of the art of
ontology engineering tools and tools for argumentation visualization. On the research side
we have identified the existing methodologies for ontology engineering. Furthermore we
have summarized the relevant research areas for argumentation visualization and conflict
resolution with a focus on ontology engineering. From this review we could derive several
open issues with respect to (w.r.t.) ontology engineering methodologies.

Before we elaborate on the DILIGENT methodology we present the HIKNOW ma-
turity level analysis in chapter 3. Introducing knowledge management starts seldom in
the open countryside but most of the times some effort has already been undertaken. As
SEKT technologies provide solutions for challenging knowledge management problems,
we first have to determine the current state of affairs in a company in order to introduce
the technologies appropriately. The HIKNOW maturity level analysis provides the meas
to determine the maturity of a company w.r.t. knowledge management.

In Chapter 4 we motivate and present the DILIGENT process and argumentation
framework. We show a first evaluation of the process in in-situ experiments at the Institute
AIFB. Finally, we elaborate on our initial studies for the argumentation framework, i.e. a

1.5. ORGANIZATION OF THE DELIVERABLE 7

thorough ex-post analysis of an evolving taxonomy in the biology domain from which we
derived our argumentation framework based on the Rhetorical Structure Theory (RST).

In Chapter 5 we describe the ONTOCOM cost estimation model. Current ontology
engineering methodologies do not account for or allow the user of the methodology to
estimate the effort spend to build an ontology. We have aligned the DILIGENT method-
ology with the ONTOCOM cost estimation model in order to overcome this weakness in
our methodology. Besides the alignment we elaborate on the process of refining ONTO-
COM to provide accurate effort estimates.

In Chapter 6 we present initial procedural guidelines to ontology engineering by
means of ontology learning. The process model is part of the overall DILIGENT process
and elaborates on the specific part of engineering by learning.

Before concluding we illustrate in Chapter 7 how we initially applied DILIGENT in
the SEKT case studies and provide ideas for further application and adaptation.

8 CHAPTER 1. INTRODUCTION

Chapter 2

Survey

This chapter provides a survey of related work. It is organized as follows. First, we
describe the focus of our methodology, provide a definition for methodology and explain
how this relates to ontologies in Section 2.1. We concentrate on two major areas which
have impact on our methodology, viz. arguments in Section 2.2 and ontology learning in
Section 2.3. Then we provide a more detailed view on existing tools (Section 2.4) and
past and current research on ontology engineering methodologies (Section 2.5).

2.1 The Methodology Focus

It has been a widespread conviction in knowledge engineering that methodologies for
building knowledge-based systems help knowledge engineering projects to successfully
reach their goals in time (cf. [SAA+99] for one of the most widely deployed method-
ologies). With the arrival of ontologies in knowledge-based systems the same kind of
methodological achievement for structuring the ontology-engineering process has been
pursued by approaches to OE like [GPFLC03, SSSS01, UK95] and their application has
been proposed in such areas as the Semantic Web, too. At this point, however, we have
found some mismatches between these proposals (including our own) and the require-
ments we meet in the Semantic Web.

In the next sections we will describe different areas which we currently regard as re-
lated to our work. Before we will explain, why these areas are important. Therefore we
recall the objective of the SEKT methodology: to provide support for the ontology engi-
neer in the task of creating, maintaining and instantiating an ontology with the help of the
SEKT technologies. Hence, it is immediately clear that existing work in the area of on-
tology engineering methodologies is relevant in our context. The SEKT technologies are
mainly concerned with automation of the ontology creation task, i.e. “ontology learning”.
The processes which have been defined to support the ontology learning task must there-
fore be integrated into a common methodology. From a wider perspective an ontology

9

10 CHAPTER 2. SURVEY

learning method can be seen as an agent which proposes changes to a given ontology or
creates a new one. The ontology engineer must then decide which changes are integrated
in the ontology. This is very similar to a setting in which many people collaboratively
build an ontology for a given domain. In a collaborative environment participants propose
changes, exchange arguments and finally agree. The capturing of arguments is analyzed
as part of the area of “Visualizing Argumentations”. We can use the experiences made
in that field to integrate ontology learning methods with the work of a human ontology
engineer. Additionally we can make the ontology engineering decisions more transparent.
To make the methodology more general we not only consider synchronous collaboration
but also asynchronous and distributed collaboration. Our methodology should not require
that the ontology is designed in one location. We explicitly want to support distributed
engineering of ontologies. With this abstraction we can consequently handle the engi-
neering of ontologies in distributed settings given in peer-to-peer systems, but also the
automated engineering of ontologies using different Web services or users working with
a centralised system such as Livelink where each users has its own view (extension) to an
ontology.

For the research related to our work we looked with varying intensity for related work.
In the case of “ontology engineering methodologies” we did an extensive review of re-
search in that area, as it is at the core of our research. Related work on “ontology learn-
ing” can be found in the deliverables of work package 3, therefore we refer the interested
reader to those deliverables. We did also search for related work on “visualizing argu-
mentations” and “argumentation” in general. While we cite for the ontology engineering
case also work which is not supported any more or has been integrated into other method-
ologies in the case of argumentation we concentrate on the main contributions, as our
objective is to use this technology for our means.

One of the main features of automated methods is that they can be applied repeatedly
with very low additional costs. By the incorporation of automated methods into the on-
tology engineering task, we can apply those methods continuously to available data. This
data will change and so will the ontology. Evolution and change of the ontology must
thus be explicitly dealt with in our methodological framework.

Compared to existing ontology design methods, introducing collaboration, distribu-
tion and evolution significantly reduces the amount of precision and control available in
the process of producing the ontology. Analogously to people designing an ontology, dif-
ferent automated methods will propose different extensions to an ontology. An initially
shared ontology may develop in different departments of a company or in various areas of
the web in various directions just as organisms have found many ways to adapt to our en-
vironment through evolutions. However, from an ontological point of view it is desirable
to share the conceptualization. The methodology must organize the different processes in
a way that the participants can find the highest common denominator.

2.1. THE METHODOLOGY FOCUS 11

2.1.1 Definition of Methodology for Ontologies

methodology1 – An organised, documented set of procedures and guidelines
for one or more phases of the software life cycle, such as analysis or design.
Many methodologies include a diagramming notation for documenting the
results of the procedure; a step-by-step “cookbook” approach to carry out the
procedure; and an objective (ideally quantified) set of criteria for determining
whether the results of the procedure are of acceptable quality.

The first experiences in building ontologies have lead to the introduction of dif-
ferent methodologies to support the process of building. The first methodologies like
[GF95b, UG96] described particular experiences in building ontologies for specific appli-
cations. 2

METHONTOLOGY is an established and generalized ontology engineering methodol-
ogy. We will follow their terminology, as there the terminology introduced by the IEEE
for software development methodologies is related to ontology engineering. Before the
terms methodology, method, technique, process, activity were used without a precise def-
inition. We describe the terminology in the following.

The IEEE defines a methodology as ”a comprehensive, integrated series of tech-
niques or methods creating a general systems theory of how a class of thought-intensive
work ought be performed[IEE90]

A method is a set of ”orderly process or procedure used in the engineering of a
product or performing a service[IEE90]. A technique is ”a technical and managerial
procedure used to achieve a given objective[IEE90].

A process is a function ”function that must be performed in the software life cycle.
A process is composed of activities [IEE96]. An activity is ”a constituent task of of a
process [IEE96]. A task ”is a well defined work assignment for one or more project
members. Related tasks are usually grouped to form activities[IEE96].

The difference between activity and task is not clear cut. Depending on the projected
size of the ontology, the number of participants etc. a task which might be performed in
one step for a small ontology might be an activity in other cases. In order to stay clear we
have defined only a small number of activities for each process stage and depicted them
in Activity Diagrams. The tasks are then outlined in the detailed description for each
activity.

Following this citation a methodology should contain the four items:

• Procedures

• Documentation standards
1see http://computing-dictionary.thefreedictionary.com/Methodology
2See related work section were we provide a more detailed description of those works.

12 CHAPTER 2. SURVEY

• Guidelines (cookbook)

• Evaluation criteria and analysis techniques

The definition of a methodology is now applied to the ontology engineering setting. In
the following we separate the different parts which constitute a methodology and present
the objectives in each step for the ontology engineering problem. We will subsequently
analyse for the related work which part the according methodology supports, and are able
to draw a picture in which the missing points emerge.

2.1.2 Set of Procedures

In the ontology building, procedures for the following three activities must be defined:

• Ontology management activities

• Ontology development oriented activities

• Ontology support activities

Ontology management activities: Procedures for ontology management activities
must include definitions for the scheduling of the ontology engineering task. Further
it is necessary to define control mechanism and quality assurance steps.

Ontology development oriented activities: When it comes to the development of the
ontology it is important that procedures are defined for enrolling environment and fea-
sibility studies. After the a decision to build an ontology the ontology engineer needs
procedures to specify, conceptualize, formalize and implement the ontology. Finally the
users and engineers need guidance for the maintenance/population, use and evolution of
the ontology.

Ontology support activities: To aid the development of an ontology, a number of im-
portant supporting activities should be undertaken. Supporting activities include knowl-
edge acquisition, evaluation, integration, merging and alignment and configuration man-
agement. These activities are performed in all steps of the development and management
process. Knowledge acquisition can happen in a centralized as well as a decentralized
way. Ontology learning is a way to support the manual knowledge acquisition with ma-
chine learning techniques.

2.2. ARGUMENTS 13

2.1.3 Documenting the Results

It is important to document the results after each activity. In a later stage of the develop-
ment process this helps to trace why certain modelling decisions have been undertaken.
The documentation of the results can be facilitated with an appropriate tool support. De-
pending on the methodology the documentation level can be quite different. One method-
ology might require to document only the results of the ontology engineering process
while others give the decision process itself quite some importance.

2.1.4 Step-by-step “Cookbook”

Each of the analysed methodologies provides some sort of step by step “cookbook”. How-
ever, they differ in the requirement on the ontology engineer. It is desirable that even a
“rookie” ontology engineer could refine and extend an ontology after studying the current
status. However, in most cases the methodologies are not fine grained enough to enable
untrained persons to engineer an ontology from scratch. For each of the activities a step-
by-step “cookbook” should define the input data and output data and the exact procedures
how to transform input into the desired output.

2.1.5 Set of Criteria for Evaluation

In the ontology engineering setting evaluation measures should provide means to measure
the quality of the created ontology. This is particular difficult for ontologies, since mod-
elling decisions are in most cases subjective. A general survey of evaluation measures
for ontologies can be found in [GP04]. Additionally we want to refer to the evaluation
measures which can be derived from statistical data (cf. [TV03]) and measures which
are derived from philosophical principles. One of the existing approaches to ontology
evaluation is OntoClean [GW02] which e.g. has been implemented as part of OntoEdit
[SAS03]. This approach is based on philosophical principles, so far only few examples of
its application to practical use cases are known. Further research on ontology evaluation
is currently being carried out as part of the EU IST thematic network Knowledge Web3.

2.2 Arguments

2.2.1 Visualizing Argumentation

We can deploy research in the area of argumentation visualization [CSSS01, KSE03] to
solve certain requirements on the envisioned SEKT methodology. Argumentation visual-

3see http://knowledgeweb.semanticweb.org/

14 CHAPTER 2. SURVEY

ization helps its users to discuss their problems in a clearly defined way. The methodolo-
gies proposed in this field base their recommendations on different models of agreement
processes. Following the methodologies various tools have been implemented. The main
advantage of computer supported argumentation is the achieved traceability of decisions.
In particular the traceability problem is well researched in the software engineering com-
munity (cf. [PB88]).

Traceability – “A software requirements specification is traceable if (i) the
origin of each of its requirements is clear and if (ii) it facilitates the referenc-
ing of each requirement in future development or enhancement documenta-
tion” (ANSI/IEEE Standard 830-1984) [IEE84].

The original response to argumentation visualization was the application of the IBIS
methodology [KR70]. IBIS allows users to capture different design deliberations. Ap-
propriate tools (see Section 2.4) can help to retrieve them in a sophisticated manner later
on. However, the IBIS technique has received criticism due to its resilience to change and
being too abstract.

In our context different actors collaborate to design an ontology and find commonal-
ities. They will exchange arguments in favor or against certain modelling decision. We
believe that by selecting the right model for argumentation we can on the one hand en-
hance the traceability of modelling decisions and on the other hand guide the engineering
in a fine grained way towards a final shared ontology. However, simply applying for
example the IBIS methodology will probably not be sufficient [PB88]. According to his
findings IBIS should be enhanced with domain specific knowledge. More recently [GF97]
has found that further enhancement of IBIS can be achieve by introducing an acceptance
and rejection mechanism.

2.2.2 Argumentation Theory

Besides an intuitive and correct way to present the exchanged arguments to the user, the
underlying argumentation theory is also a main concern. There are a number of argu-
mentation theories ranging from informal explanations of argumentation threads to very
formal specifications. To exemplify the notion of argument we introduce here the oldest
model of natural argumentation. This provides an idea of the general concepts uses in this
area. In the subsequent chapters we will present current theories and tools which have
been developed bearing in mind these theories.

The Toulmin model [TRJ84], a natural argumentation theory that tries to explain how
real people (not philosophers) argue, has its main components: Data (facts, data and
information, the reason for the claim), Claim (the position on the issue, the conclusion
being advocated) and Warrant (logical connection between the data and the claim, the

2.2. ARGUMENTS 15

reasoning process used to arrive at the claim,4). Other components are: Backing (material
supporting the warrant), Reservation (exceptions to the claim) and Qualifiers (relative
strength).

The following examples are taken from the ChangingMinds website5.

Claim A claim is a statement one persons asks another one to accept. This includes
information they should accept as true or actions they should accept and enact.

For example:

You should use a hearing aid.

Many people start with a claim, but then find that it is challenged. To convince another
person one must prove the claim. This is where grounds become important.

Grounds The grounds (or data) is the basis of real persuasion and is made up of data
and hard facts. It is the truth on which the claim is based. The actual truth of the data
may be less than 100%, as all data is based on perception and, hence, has some element
of assumption about it.

It is critical to the argument that the grounds are not challenged, because if they are,
they may become a claim, which must be proven with even deeper information and further
argument.

For example:

Over 70% of all people over 65 years have a hearing difficulty.

Data Data is usually a very powerful element of persuasion, although it does affect
people differently. Those who are dogmatic, logical or rational will more likely to be
persuaded by data. Those who argue emotionally and who are highly invested in their
own position will challenge it or otherwise try to ignore it. It is often a useful test to give
something factual to the other person that disproves their argument and watch how they
handle it. Some will accept it without question. Some will dismiss it out of hand. Others
will dig deeper, requiring more explanation. This is where the warrant comes into its own.

Warrant A warrant links data to a claim, legitimizing the claim by showing the data
to be relevant. The warrant may be explicit or unspoken and implicit. It answers the
question ’Why does that data mean your claim is true?’

For example:

A hearing aid helps most people to hear better.
4Authoritative, motivational, and substantive (which includes cause-effect, effect-cause, generalization

based on example, classification, etc.).
5see http://changingminds.org/disciplines/argument/toulmin.htm

16 CHAPTER 2. SURVEY

The warrant may be simple and it may also be a longer argument with additional
sub-elements, including those described below.

Backing The backing (or support) to an argument gives additional support to the war-
rant by answering different questions.

For example:

Hearing aids are available locally.

Qualifier The qualifier (or modal qualifier) indicates the strength of the leap from the
data to the warrant and may limit how universally the claim applies. They include words
such as ’most’, ’usually’, ’always’, ’sometimes’. Arguments may thus range from strong
assertions to fuzzy statements.

For example:

Hearing aids help most people.

Reservation Another variant is the reservation, which may give the possibility of the
claim being incorrect.

For example:

Unless there is evidence to the contrary, hearing aids do no harm to ears.

Qualifiers and reservations are much used by advertisers who are constrained not to
lie. Thus they slip ’usually’, ’virtually’, ’unless’ and so on into their claims.

Rebuttal Despite the careful construction of the argument, there may still be counter-
arguments that can be used. These may be rebutted either through a continued dialogue, or
by pre-empting the counter-argument by giving the rebuttal during the initial presentation
of the argument.

For example:

There is a support desk that deals with technical problems.

Any rebuttal is an argument in itself, and thus may include a claim, warrant, backing
and so on. It also, of course can have a rebuttal. Thus if you are presenting an argument,
you can seek both possible rebuttals and also rebuttals to the rebuttals.

2.3. ONTOLOGY LEARNING PROCESSES 17

2.3 Ontology Learning Processes

Ontology learning aims at the integration of a multitude of disciplines in order to fa-
cilitate the construction of ontologies, in particular ontology engineering and machine
learning. Because the fully automatic acquisition of knowledge from machines remains
in the distant future, the overall process is considered to be semi-automatic, i.e. with
human intervention. It relies on a coordinated interaction between human modeler and
learning algorithm for the construction of ontologies.

In [Mae02] a generic ontology learning architecture is presented. The process model
there builds on the principal idea of data mining as a process (e.g. [CKC+99]) with the
phases of business and data understanding, data preparation, modeling, evaluation and
deployment.

Ontology learning is being recognized as an important topic and numerous people are
moving to focus on the topic6. However, no holistic approach to ontology learning similar
to or an extension of the previously mentioned one is known so far. We will continue to
survey this rapidly emerging field to take into account the newest research results.

2.4 Existing Tools

2.4.1 Tools for Visualization of Arguments

Within the SEKT project argumentation visualization is not a primary research focus. We
rather want to use the mature ideas from that field to enhance the ontology engineering
process. Therefore we omit a complete analysis of available tools and just refer the in-
terested reader to [GF94]. There over 100 commercial tools and research products were
reviewed. However, we here summarize the main findings from there analysis. The issue
raised provides a fruitful input for our own research.

A number of problems in the field of traceability are identified. Surprisingly, the
inability to locate and access the sources of requirements is the most commonly cited
problem across all the practitioners in there investigations. This problem was also reported
to cause many others:

• An out of date RS (Requirements specification), as an RS evolves poorly when those
originally responsible are not involved in its evolution, or where it is impossible to
regain the original context.

• Slow realization (and deterioration as a result) of change, as the most time-
consuming and erroneous part is often the identification of those to involve and

6see e.g. the workshops on (i) Mining for and from the Semantic Web (MSW) at http://km.aifb.
uni-karlsruhe.de/ws/msw2004 and (ii) Ontology Learning and Population (OLP) at http://
olp.dfki.de/ecai04/cfp.htm for very first approaches to ontology learning

18 CHAPTER 2. SURVEY

inform.

• Unproductive conflict resolution, decision making, and negotiation, as most tools
supporting these activities do not help to identify or locate the essential participants.

• Poor collaboration, as the invisibility of changing work structures and responsibili-
ties makes it difficult to: transfer information amongst parties; integrate work; and
assign work to those with relevant knowledge and experience.

• Difficulty in dealing with the consequences when individuals leave a project and
with the integration of new individuals.

• Poor reuse of requirements, as reuse is mainly successful when those initially re-
sponsible for their production are either directly involved or readily accessible.

2.4.1.1 Selected Tools for Argument Visualization

As the number of available tools in this area is huge we pick out only one commercial
tool based on the most famous system to capture deliberations. From the research tools
we choose the ones most cited in the research community.

QuestMap QuestMap is an award-winning product for mediating meetings through Vi-
sual Information Mapping. QuestMap originates from the pioneering hypertext system
building by Jeff Conklin in the mid-1980s, whose team at MCC developed gIBIS[CB88]
for capturing software design rationale, and then went onto build QuestMap.

Compendium Compendium [SSS+01] builds on the gIBIS methodology. It is a se-
mantic hypertext tool to capture arguments and visualize them. It offers a conceptual
framework of argumentation, it promotes the use of a meeting facilitator and there exist a
number of tools to present the exchanged arguments to different audiences. Compendium
tools include Question based templates to facilitate the flow of the arguments. Hence,
the discussion can be lead by “pre-formulated” questions which structure the discussion.
The process of the discussion is visualized by different maps, interlinking and connecting
the exchanged arguments. In Compendium any kind of idea can be expressed since its
notation is very flexible.

ClaiMaker ClaiMaker [KSE03, LUM+02] focuses on scientific debate where scientists
can express the positions and contributions in a publication through a combination of free
text and structuring constructs.

2.4. EXISTING TOOLS 19

Tellis The Tellis tool [BG04, GR02] is a system for structured argumentation on any
topic where users progress from information sources to arguments that intermix free text
and structured connectors.

2.4.2 Ontology Engineering Tools

An early overview of tools that support ontology engineering can be found in [DSW+00].
However, there have been joint efforts of members of the thematic network OntoWeb7,
who provided an extensive state-of-the-art overview on ontology related tools, including
Ontology Engineering Environments (OEE, cf. [GPAFL+02]). A sign for the growing in-
terest in Ontologies and tools that support ontology engineering is the (recently updated)
published comparison of ontology editors on XML.com (cf. [Den02, Den04]). An evalu-
ation of ontology engineering environments has been performed as part of the EON 2002
workshop (cf. [SA02]). With respect to our work in SEKT, especially the following tools
are noteworthy.

APECKS [TS98] is targeted mainly for use by domain experts, possibly in the ab-
sence of a knowledge engineer, and its aim is to foster and support debate about domain
ontologies. It does not enforce consistency nor correctness, and instead allows different
conceptualisations of a domain to coexist.

Chimaera [MFRW00] is primarily a merging tool for ontologies. It contains only
a simple editing environment and relies on the Ontolingua Server for more advanced
modelling.

The DOGMAModeler is a set of tools for ontology engineering. It relies on ORM
(cf. [Hal01]) as graphical notion and its cross-bonding ORM-ML to ensure easy exchange
(cf. [DJM02]). It supports the database-inspired DOGMA ontology engineering approach
and is coupled with the DOGMA Server as a backend.

KAON OImodeller [MMV02, BEH+02] belongs to the KAON tool suite. The sys-
tem is designed to be highly scalable and relies on an advanced conceptual modelling
approach that balances some typical trade-offs to enable a more easily integration into ex-
isting enterprise information infrastructure. Recently the OWL-DL and SWRL reasoning
engine KAON2http://kaon2.semanticweb.org/ has been added to the KAON
landscape of tools. The extension of the KAON tool suit is part of the SEKT project.

OilEd [BHGS01]is a graphical ontology editor that initially was dedicated to mod-
elling of DAML+OIL (now OWL) ontologies. Thus, on the one hand it is dependent
on a particular representation language, but on the other hand offers strong support for
modelling such ontologies. A key aspect of OilEd is the use for FaCT [Hor98] to clas-
sify ontologies and check consistency via translation from OWL to the SHIQ description
logic. However, the tool is not extensible e.g. by plugins, nor does is provide sophisticated
support for collaboration aspects.

7see http://www.ontoweb.org/

20 CHAPTER 2. SURVEY

The Ontolingua [FFR96] Server is a set of tools and services that support the building
of shared ontologies between distributed groups. It provides access to a library of ontolo-
gies and translators to languages such as Prolog, CLIPS and Loom. The set of tools was
one of the first sophisticated ontology engineering environments with a special focus on
the collaboration aspects. However, the development has not kept pace with the evolving
current standards such as RDF or OWL, nor with the state-of-the-art technology.

Ontosaurus [SPKR96] consists of two modules: an ontology server, which uses
Loom as knowledge representation system, and an ontology ‘browser server’ that dy-
namically creates HTML pages to display the ontology hierarchy. Translators exist from
Loom to Ontolingua, KIF, KRSS and C++. Similar to the Ontolingua Server, it was a
milestone in the development of OEEs, but the development has not kept pace with the
evolving standards and technologies.

Protégé [NFM00] is a well established ontology editor with a large user community.
The design of the tool is very similar to OntoEdit since it actually was the first editor
with an extensible plugin structure and it also relies on the frame paradigm for modelling.
Numerous plugins from external developers exist. It also supports current standards like
RDF(S) and OWL. Recently also support for axioms was added through the “PAL tab”
(Protégé axiom language, cf. [HNM02]).

WebODE [ACFLGP01] is an “ontology engineering workbench” that provides var-
ious service for ontology engineering. Similar to OntoEdit, it is accompanied by
a sophisticated methodology of ontology engineering, viz. METHONTOLOGY (cf.
[GP96, FLGPSS99]). In contrast to OntoEdit and Protégé it (both Java standalone ap-
plications) is purely web-based and is built on top of an application server. At the same
time this gives WebODE an equal level of extensibility. For inferencing services it relies
on Prolog. It provides translators to current standards such as RDF(S) and OWL.

WebOnto [Dom98] and the accompanying tool Tadzebao support graphical ontol-
ogy engineering and in particular the argument between users on the ontology design,
using text, GIF images and even hand drawn sketches. The strength of this approach lies
in the advanced support for communication between ontology engineers and domain ex-
perts. However, the tool is not extensible nor does it provide sophisticated and specialized
inferencing support.

OntoEdit [SEA+02a, SAS03] supports explicitly the OTK Methodology [Sur03].
The open plug-in framework enables the integration of a number of extension to the basic
ontology management services OntoEdit provides. In particular OntoEdit offers advanced
support for collaboration and a integration of the inferencing capabilities. Noteworthy
is the plug-in which implements the recommendations of the OntoClean methodology
[GW02]. A re-implementation of OntoEdit based on IBM’s eclipse framework has re-
cently been made available under the new name OntoStudio8.

HCOME [KVA04] HCOME is probably the most recent development in the field

8http://www.ontoprise.de

2.5. PAST AND CURRENT RESEARCH 21

of ontology management tools in the research community. The tool supports a scenario
which is very similar to the objectives of the SEKT methodology. The tool supports
the usual ontology management functions such as versioning and editing. However, it is
not clear if they support inferencing. Besides those rather traditional functions, HCOME
supports the discussion of ontological decisions with support of the IBIS methodology
[KR70]. The ontology engineers may work distributively on different ontology, and are
supported in collaboratively engineering a shared ontology. Their methodology does not
include support for automated methods to ontology engineering, neither exists an elabo-
rated process to reach agreement towards a shared ontology.

2.4.3 Conclusions

There exists a plethora of ontology engineering tools. Major critique points from our
point of view are the following ones.

• The tools typically target manual ontology creation without integration of automatic
approaches to ontology learning.

• Only very few tools provide support for distributed engineering of ontologies.

• None of the tools supports structured argumentation during the creation of ontolo-
gies.

• Apart from KAON no tool supports properly the evolution of ontologies.

2.5 Past and Current Research

2.5.1 Visualization of Argumentation

As we could already see while analysing the available tools for argumentation visualiza-
tion, the number of them is huge. Similarly the number of argumentation models and
related research is very diverse. We attempt nevertheless to structure the area and provide
references to the research we will deploy for our methodology.

Therefore we distinguish several research areas which contribute to the field in a
whole. An important aspect of argumentation is the mode – synchronous, asynchro-
nous – in which it is performed. Different models have been developed to conceptualize
the way argumentation is done. Furthermore the conceptualization of arguments them-
selves is subject to investigation. In an argumentation conflicts can arise, thus models
of conflict exist and proposals how to resolve them systematically. We recall that our
objective is to deploy the findings from the selected areas to enhance ontology engineer-
ing. Hence, we finally analyse the work done in the intersection of argumentation and
ontology engineering.

22 CHAPTER 2. SURVEY

2.5.1.1 Synchronous and Asynchronous Argument Exchange

We start with separation when and how the argumentation takes place. One can distin-
guish synchronous and asynchronous interaction. Synchronous interaction implies that
the parties discuss the Claims at the same time (not necessarily at the same place). Asyn-
chronous interaction refers to discussions where Claims can be brought forward at various
points in time. The most obvious example are discussion per email. Asynchronous inter-
action is typically more difficult to support than synchronous.
[SK93] analysis which kind of arguments are exchanged in a discussion depending
whether it is performed asynchronous or synchronous. Therefore they distinguish argu-
ments related to the content, meeting management and project management. Their main
findings are that issues stated in one mode are continued in that mode and that the mode
was chosen according to the urgency of the required decision. Alternatives to content
related issues are presented five times as often as issue themselves.
The Compendium tool [SSS+01] offers support for both modes. However, they assume
that discussions take place in synchronous mode with the help of the facilitator. Sub-
sequent discussions can then be performed partly asynchronously. The support comes
mainly through visualizing the synchronous discussion in various ways.

2.5.1.2 Argumentation Model

The Toulmin model of argumentation was the first one presented in the literature. Today
IBIS is the most often used model to describe argumentation. When it comes to the
analysis of texts the Rhetorical Structure Theory is most often used. In the SEKT project
a tool will developed by BT to automatically identify the underlying rhetorical structures
of a text.

• Information based information systems (IBIS): IBIS (pronounced “eye-bis”)
stands for Issue-Based Information System, and was developed by Horst Rittel and
colleagues during the early 1970’s [KR70]. IBIS was developed to provide a simple
yet formal structure for the discussion and exploration of “wicked” problems. Prob-
lems that are wicked, as opposed to tame, do not yield to the traditional “scientific”
approach to problem solving, which is to gather data, analyse the data, formulate a
solution and implement the solution for the problem. With a wicked problem your
understanding of the problem is evolving as you work on a solution for it. One
sure sign of a wicked problem is that there is no clear agreement about what the
“real problem” is. Wicked problems cannot be solved in the traditional sense, be-
cause one runs out of resources (time, money, energy, people, etc.) before perfect
solutions for them can be implemented.

gIBIS [CB88] focuses on capturing collaborative deliberations about design in the
form of graphs containing text at their nodes. It is the first graphical interface for
the IBIS method.

2.5. PAST AND CURRENT RESEARCH 23

In IBIS the following terms are used to classify different arguments.

Question / Issue States a question, raises an Issue

Idea proposes a possible resolution for the question

Argument states an opinion or judgement that either supports or objects to one or
more ideas

response to Indicates a response to a question

supports Supports an argument

objects to Objects to an argument

Specializes Defines a question with more detail

Challenges Challenges an argument, an idea or a question

Justification Justifies an argument, an idea or a question

Expands-on Adds new information to an idea

Decision nodes Indicate that a decision was reached on a certain issue

• Rhetorical Structure Theory (RST): The aim of Rhetorical Structure Theory
(RST) [MT87] is to offer an explanation of the coherence of texts. It is assumed
that for every part of a coherent text there is some function. RST focuses on show-
ing an evident role for every part of a text. A text is usually divided into structures,
building blocks. These blocks are of 2 levels: nuclearity and relations. The most
frequent structure is two spans of text (virtually adjacent). These are usually related
such that one of them has a specific role relative to the other: the span making the
claim is the nucleus (N) and the span with the evidence is the satellite (S). Thirty
relations between 2 spans of text have already been identified and loosely defined.
[Mar97] presents an algorithm, which is able to extract the relations from natural
language text with high precision.

For the sake of completeness we here list some of the most important relations
found in RST: Elaboration, Evaluation, Justification, Contrast, Alternative, Exam-
ple, Counter Example, Background knowledge, Motivation, Summary, Solution-
hood, Restatement, Purpose Condition, Preparation, Circumstance, Result, Enable-
ment, List.

In the DILIGENT methodology we will rely on RST, a brief example for our notation
while using RST can be found in Section 4.6.2.

2.5.1.3 Formal Arguments

The formalization of arguments is a big topic in the AI community. Even though OWL
provides us with the necessary formalism to be able to state arguments in a formal way we

24 CHAPTER 2. SURVEY

do not believe that ontological decisions can be discussed in a completely formal way. At
least not if the ontology is to be used by humans. [GK97] for example proposes a formal
model of argumentation, using IBIS as argumentation model. With the formal model
it is possible to derive a user’s preferred solution for the issues based on the provided
arguments. Another interesting application is the selection of arguments based on the
user needs. In [Hun04] a formal model is presented how formal argumentation trees can
be pruned to best correspond to the users wishes.

2.5.1.4 Conflict Mediation

[Eas91] has summarized comprehensively the field of conflict mediation. He gives an
introduction to economic and behavioural models to conceptualize and resolve conflicts
in discussions. For our future work it is particularly interesting which kinds of conflicts
can arise in the area of knowledge acquisition.

[SG89] compares the entity-attribute models of different experts, and identify four
types of comparisons between conceptual systems:

• Consensus: experts use the same terminology to describe the same concepts

• Correspondence: experts use different terminology to describe the same concepts

• Conflict: experts use the same terminology to describe different concepts

• Contrast: experts use different terminology to describe different concepts

Each of these situations can be useful in capturing different perspectives, and in par-
ticular, the availability of alternative terminologies makes a knowledge-base more acces-
sible.

Given these different types which can lead to conflict [Eas91] propose a methodology
to resolve the conflicts. The first step is to establish correspondences between different
conceptualizations. Afterwards conflicting issues must be identified. They can be dis-
cussed using a system like gIBIS. The conflicting issues should be explained externalizing
the assumptions behind the decisions and justifying them. Thus goals and motivations be-
come clear to all participants. For conflicting issues resolution criteria should be defined.
In a next phase the participants must generate resolution options to resolve the different
conflicts. Given the evaluation criteria for the different issues, one can select the best
resolution criteria for each issue.

2.5.1.5 Arguments in Ontology Engineering

The application of argumentation models to ontology engineering is still in its infancy. In
[SMD02] a case study in engineering an ontology from the combination of three existing

2.5. PAST AND CURRENT RESEARCH 25

ones is described. The compendium tool is used to guide the discussion in a synchronous
meeting. The results of the case study show that structured argumentation in beneficial
for ontology engineering. The traceability of the decisions was enhanced. However, the
authors were more concerned with the evaluation of their tool than with the specific issues
arising in an discussion about an ontology. The authors do not examine which kinds of
arguments are exchanged and how the discussion could be made more efficient.

The authors of [ASvE04] propose and evaluate a three-phased knowledge mediation
procedure which is especially conceived to integrate different perspectives and informa-
tion needs into one consensual ontology. The knowledge mediation procedure consists of
three main phases. In the generation phase users are jointly brainstorming about relevant
concept and instances of the knowledge domain to outline the content of the ontology.
During the explication phase each user independently works out a taxonomy by adding
definitions and relations to the collected concepts. In the integration phase the knowledge
mediator supports the users to integrate their proposed taxonomies into a shared concep-
tualization. They test the procedure with and without a moderator. With a moderator
the participants exchange more elaborated arguments and try to structure their arguments
better. They identify useful questions which can guide the actors in the ontological dis-
cussion. However, they do not analyse the dominant types of arguments which are used
in the discussion.

KUABA The Kuaba design rational ontology [dMSF05] is a formal model of the
IBIS argumentation vocabulary. It is used to capture design rationales in the Software
Design domain. The Kuaba ontology is represented in OWL. It contains concepts and
relations to capture Arguments, Questions, Ideas, Decisions and other entities in order
to model Software design rationales. The use of the ontology shall enhance reusability
and traceability and makes them machine processable. Kuaba does not define a subset
of arguments particulary suitable for software design. Neither do the authors report on a
case study evaluation.

2.5.2 Methodologies

An extensive state-of-the-art overview of methodologies for ontology engineering can be
found in [GPFLC03] from where Table 2.1 has been taken. The book is partially the re-
sult of a joint efforts of the OntoWeb9 members, who produced an extensive state-of-the-
art overview of methodologies for ontology engineering (cf. [GPFLC+02, FLGPE+02]).
There exist also deliverables on guidelines and best practices for industry (cf. [LAB+02,
LBB+02]) with a focus on applications for E-Commerce, Information Retrieval, Portals
and Web Communities. Jones et. al compiled a review on ontology engineering method-
ologies in the end of the nineties [JBCV98]. More recently [CC05] proposed a framework
to compare ontology engineering methodologies and evaluated the established ones ac-
cordingly. A very practical oriented description to start building ontologies can be found

9see http://www.ontoweb.org/

26
C

H
A

PT
E

R
2.

SU
RV

E
Y

Feature Cyc Uschold &
King

Grüniger &
Fox

KACTUS METHON-
TOLOGY

SENSUS On-To-
Knowledge

HCOME

Ontology
management
activities

Scheduling NP NP NP NP Proposed NP Described NP
Control NP NP NP NP Proposed NP Described NP
Quality assurance NP NP NP NP NP NP Described NP

Ontology
development
oriented activities

Pre development
processes

Environment
study

NP NP NP NP NP NP Proposed NP

Feasibility study NP NP NP NP NP NP Described NP

Development
processes

Specification NP Proposed Described in
detail

Proposed Described in
detail

Proposed Described in
detail

Proposed

Conceptualization NP NP Described in
detail

Proposed Described in
detail

NP Proposed Proposed

Formalization NP NP Described in
detail

Described Described NP Described Proposed

Implementation Proposed Proposed Described Proposed Described in
detail

Described Described Proposed

Post development
processes

Maintenance NP NP NP NP Proposed NP Proposed Described
Use NP NP NP NP NP NP Proposed Described
Evolution NP NP NP NP NP NP NP Proposed

Ontology support
activities

Knowledge acquisition Proposed Proposed Proposed NP Described in
detail

NP Described NP

Distributed know. acquisition Proposed
Onto. Learning integration

Evaluation NP Proposed Described in
detail

NP Described in
detail

NP Proposed NP

Integration Proposed Proposed Proposed Proposed Proposed NP Proposed NP
Configuration management NP NP NP NP Described NP Described NP
Documentation Proposed Proposed Proposed NP Described in

detail
NP Described NP

Results
Decision process Proposed

Merging and Alignment NP NP NP NP NP NP NP Proposed

Table 2.1: Summary of ontology engineering methodologies taken from [GPFLC03]

2.5. PAST AND CURRENT RESEARCH 27

in [NM01].

With respect to our work, especially the following approaches to ontology engineering
from Table 2.1 are noteworthy. If appropriate we provide pointers to tools mentioned in
the previous section, whenever tool support is available for a methodology.

CommonKADS [SAA+99] is not per se a methodology for ontology development.
It covers aspects from corporate knowledge management, through knowledge analysis
and engineering, to the design and implementation of knowledge-intensive information
systems. CommonKADS has a focus on the initial phases for developing knowledge
management applications, we therefore relied on CommonKADS for the early feasibility
stage. E.g. a number of worksheets is proposed that guide through the process of finding
potential users and scenarios for successful implementation of knowledge management.
CommonKADS is supported by PC PACK, a knowledge elicitation tool set, that provides
support for the use of elicitation techniques such as interviewing, i.e. it supports the col-
laboration of knowledge engineers and domain experts.

Cyc [LG90] arose from experience of the development of the Cyc knowledge base
(KB)10, which contains a huge amount of common sense knowledge. Cyc has been used
during the experimentation in the High Performance Knowledge Bases (HPKB), a re-
search program to advance the technology of how computers acquire, represent and ma-
nipulate knowledge11. Until now, this methodology is only used for building the Cyc KB.
However, Cyc has different micro-theories showing the knowledge of different domains
from different viewpoints. In some areas, several micro-theories can be used, and each
micro-theory can be seen from different perspectives and with different assumptions. The
Cyc project strongly enhanced the visibility of the knowledge engineering community,
but at the same time it suffered from its very high goal to model “the world”. Recently
this goal has been lowered and now one has divided this too complex task into smaller
ones, i.e. the Cyc top-level ontology was separated into smaller modules.

DOGMA is one of the more recent ontology modeling approaches [JM02, SMJ02].
The database-inspired approach to ontology engineering relies on the explicit decomposi-
tion of ontological resources into ontology bases in the form of simple binary facts called
lexons and into so-called ontological commitments in the form of description rules and
constraints. The modeling approach is implemented in the DOGMA Server and accom-
panying tools such as the DOGMAModeler tool set.

The Enterprise Ontology [UK95] [UKMZ98] proposed three main steps to engineer
ontologies: (i) to identify the purpose, (ii) to capture the concepts and relationships be-
tween these concepts, and the terms used to refer to these concepts and relationships, and
(iii) to codify the ontology. In fact, the principles behind this methodology influenced
many work in the ontology community and they are also reflected in the steps kickoff and
refinement of the OTK Methodology and extended them. Explicit tool support is given by
the Ontolingua Server, but actually these principles heavily influenced the design of most

10Cyc knowledge base, see http://www.cyc.com
11HPKB, see http://reliant.teknowledge.com/HPKB/about/about.html

28 CHAPTER 2. SURVEY

of the more advanced ontology editors.

The KACTUS [BLC96] approach to ontology engineering requires an existing knowl-
edge base for the ontology development. They propose to use means of abstraction, i.e.
a bottom-up strategy, to extract on ontology out of the knowledge base as soon as an ap-
plication in a similar domain is built. There is no specific tool support known for this
methodology.

METHONTOLOGY [GP96, FLGPSS99] is a methodology for building ontologies
either from scratch, reusing other ontologies as they are, or by a process of re-engineering
them. The framework enables the construction of ontologies at the “knowledge level”.
The framework consists of: identification of the ontology development process with iden-
tification of the main activities (evaluation, configuration, management, conceptualiza-
tion, integration implementation, etc.); a lifecycle based on evolving prototypes; and the
methodology itself, which specifies the steps to be taken to perform each activity, the
techniques used, the products to be output and how they are to be evaluated. METHON-
TOLOGY is partially supported by WebODE.

SENSUS [SRKR97] is a top-down and middle-out approach to derive domain specific
ontologies from huge ontologies. The methodology is supported by Ontosaurus. The
approach does not cover the engineering of ontologies as such, therefore offers a very
specialized methodology.

TOVE [UG96] proposes a formalized method for building ontologies based on com-
petency questions. The approach to build ontologies using competency questions, that are
the questions an ontology should be able to answer, is very helpful and integrated it in
OTK Methodology.

HOLSAPPLE In [HJ02] a methodology for collaborative ontology engineering is
proposed. The aim of their work is to support the creation of a static ontology. A knowl-
edge engineer defines an initial ontology which is extended and changed based on the
feedback from a panel of domain experts. The feedback is collected with a questionnaire.
The knowledge engineer examines the questionnaires, incorporates the new requirements
and a new questionnaire is send around, until all participants agree with the outcome.
Their methodology does not support synchronous collaborative ontology engineering and
neither the evolution of ontologies.

HCOME In [KV03, KVA04] the authors present a very recent approach to ontology
development. HCONE stands for Human Centered ONtology Environment. It supports
the development of ontologies in a decentralized fashion. They introduce three different
spaces in which ontologies can be stored. The first one is the Personal Space. In this
space users can create and merge ontologies, control ontology versions, map terms and
word senses to concepts and consult the top ontology. The evolving personal ontologies
can be shared in the Shared Space. The shared space can be accessed by all participants.
In the shared space users can discuss ontological discission based on the IBIS [KR70]
model. After a discussion and agreement the ontology is moved to the Agreed space.

2.5. PAST AND CURRENT RESEARCH 29

OTK Methodology In [Sur03] the OTK Methodology is described. This method-
ology is the result of the EU project OnToKnowledge. The OTK Methodology divides
the ontology engineering task into five main steps. Each step has numerous sub-steps,
requires a main decision to be taken at the end and results in a special outcome. The
phases are “Feasibility Study”, “Kickoff”, “Refinement”, “Evaluation” and “Application
& Evolution”. The sub-steps of the e.g. “Refinement” are “Refine semi-formal ontology
description”, “Formalize into target ontology” and “Create prototype” etc. The documents
resulting from each phase are e.g. for the “Kickoff” phase an “Ontology Requirements
Specification Document (ORSD)” and the “Semi-formal ontology description” etc. The
documents are the basis for the major decisions that have to be taken at the end to pro-
ceed to the next phase, e.g. whether in the “Kickoff” phase one has captured sufficient
requirements. The major outcomes typically serve as decision sup- port for the decisions
to be taken. The phases “Refinement - Evaluation - Application - Evolution” typically
need to be performed in iterative cycles. One might notice that the development of such
an application is also driven by other processes, e.g. software engineering and human
issues. All steps of the methodology are supported by tools available for OntoEdit. In
a nutshell the OTK Methodology completely describes all steps which are necessary to
build an ontology for a centralized system. However the methodology does not cover sce-
narios where the participants are distributed in several locations. It provides no guidance
for systematically evolve an ontology and it does not incorporate automated methods for
ontology creation.

CO4 is a protocol to build consensual ontologies in a distributed setting and provides a
solution for a similar setting as the one we are aiming at. It is supported by the CO4 system
[Euz95, Euz97]. The starting point for this system are a number of knowledge bases (KB)
which are distributed but depend on each other hierarchically. The closer a knowledge
base is to the root knowledge base the more consensual knowledge it contains. The KBs
at a lower level can send requests for consensus building to higher level KBs. The higher
level KBs will then distribute the request to all KBs below in the tree and collect their
replies. If all KBs accept the change request it becomes part of the consensual knowledge.
The KBs can also comment on the request and the proposer can reply to the comments.
The protocol is concerned with the technical and formal aspects of the agreement process.
It does not specify the way comments should be provided. The protocol defines only
activities related to the formal model of the knowledge base, it is not concerned with the
specification or knowledge acquisition related activities. The protocol was evaluated in
two case studies.

IDEF5 is an ontology building methodology to support the creation of ontologies
[BMM+94] for centralized settings. It is well documented. It originates and is applied
by a company and is therefore not published on academic conferences. The methodology
is divided into five main activities: Organize and Define Project, Collect Data, Analyze
Data, Develop Initial Ontology and Refine and Validate Ontology. The organization and
definition activity defines the managerial aspects of the ontology development project.
During the collect data activity the domain analysis is performed and knowledge sources

30 CHAPTER 2. SURVEY

are determined and exploited. The result of the analyze data activity is a first conceptu-
alization of the domain. In the following activities the ontology engineers start defining
so called Proto-Concepts which are high level concepts characterizing the domain. These
are refined with relations and axioms. The Proto-Concepts are later refined until the vali-
dation results in an ontology which mets the requirements set in the beginning.

UPON the Unified Process for ONtology building, has been proposed in [NNM05].
Although the methodology has not been well tested in projects yet, and tool support is
still in its infancy, it is conceptually well founded. It is based on the Unified Software
Development Process and supported by UML (Unified Modeling Language). UPON de-
fines a series of work flows which are cyclically performed in different phases. The work
flows are (1) Requirements identification, e.g. by writing a story board and using compe-
tency questions, (2) Analysis, which includes the identification of existing resources and
the modeling of the application scenario, (3) Design and conceptualization, (4) Imple-
mentation and finally (5) Test, in which the coverage of the application domain should be
guaranteed and the competency questions are evaluated. The work flows are followed in
the four phases (1) Inception, (2) Elaboration, (3) Construction and (4) Transition defined
in the methodology. These phases are performed in a cyclic manner. After each cycle an
applicable ontology is produced.

Hsemann et. al [eV05] present an ontology engineering methodology which is based
on database schema design processes. They subdivide the task of ontology building into
four subprocess: Requirements analysis, Conceptual Design, Logical Design and Physi-
cal Design. Documentation and Evaluation are support activities which are performed in
parallel to each of the building activities. Each building activity has a predefined output,
namely a requirements specification as result of the Requirements analysis, a Conceptual
schema, a Logical schema and finally a Physical schema as a result of the Physical De-
sign. Each of the activities is described in detail; they combine a number of approaches to
e.g. knowledge elicitation from other methodologies with evaluation methods from data-
base design. The methodology is supported by the OntoMedia tool. The methodology
does not treat evolutionary or distributed aspects of ontology engineering.

Misc For the sake of completeness and without a detailed description we here refer-
ence some other proposals for structured ontology engineering. Among them are [PM01]
advocating an approach to ontology building by reuse. One of their major findings was
that current methodologies offer only limited support for axiom building even so it is a
part of ontology engineering which takes a lot of time. In [GPS98] the authors outline the
ONIONS approach to ontology integration. ONIONS (ONtologic Integration Of Naı̈ve
Sources) creates a common framework to generalize and integrate the definitions that are
used to organize a set of terminological sources. In other words, it allows to work out
coherently a domain terminological ontology (a terminological ontology is usually de-
fined as the explicit conceptualization of a vocabulary) for each source, which then can
be compared with the others and mapped to an integrated ontology library. Jones et. al.
[JBCV98] list additionally the MENELAS ontology, the Mikrokosmos ontology and the
PHYSSYS approach to ontology engineering. Those were early approaches to ontology

2.5. PAST AND CURRENT RESEARCH 31

development and their findings have been included into more general methodologies such
as the OTK methodology or METHONTOLOGY.

2.5.3 Cost Estimation in Ontology Engineering

Cost estimation methods have a long-standing tradition in more mature engineering dis-
ciplines such as software engineering or in industrial production [Boe81, Kem87, Ste95].
Although the importance of cost issues is well-recognized in the ontology engineering
community, no cost estimation model for ontology engineering is available so far. Ef-
fort estimation models for the development of knowledge based systems (e.g. [Fel04])
or object oriented information systems (e.g. [ACC+98])depend on the availability of the
conceptual model. [Men99] analysis qualitatively the costs and benefits of ontology use in
applications, but does not offer any model to estimate effort. [Kor05] adjusts the cost fac-
tors defined in a cost estimation model for web applications w.r.t. the usage of ontologies.
The cost factors, however, are not adapted to the requirements of ontology engineering
and no evaluation is provided.

2.5.4 Conclusions

From our point of view argumentation visualization is mature from the research perspec-
tive. First attempts were made to combine findings from argumentation visualization and
ontology engineering. However, as it is argued in [PB88, dMA03] argumentation is best
supported when the argumentation model such as IBIS is customized with respect to the
domain which is argued about. Hence, research is moving into the following directions.

• Identify the most relevant arguments in ontological discussions.

• Support synchronous as well as asynchronous discussions.

We have surveyed a number of ontology engineering methodologies and their main
strength. We conclude that none of the existing methodologies covers all aspects of on-
tology engineering and that there still exist many open issues. Most of the methodologies
address the engineering of a single ontology for a particular application and do not support
maintenance activities after the first release. The methodologies proposed more recently
do treat the evolution of the ontology seriously. However, while early phases of the devel-
opment process are well understood and detailed activity descriptions exists (e.g. how to
create competency questions), more fine-grained guidelines for later stages in the process
are still missing. For example, methodological support for the creation and evolution of
complex logical axioms is still an open issue. The number of best practices describing
concrete development efforts is still very small. With this ontology engineering approach
the quality of the development and maintenance effort depends mainly on the capabilities
of the actors involved. In particular for multi site development efforts no clear guidelines

32 CHAPTER 2. SURVEY

exist as here multiple views should be considered. Multiple views on the same domain,
can lead to different conceptualizations, making agreement on a shared one therefore par-
ticularly difficult.

Another important aspect of ontology building, namely the construction of ontolo-
gies with the help of automated methods is not directly supported by any of the existing
methodologies. Although the quality of ontology learning methods with regards to the
usability of results has increased tremendously in the past years, the selection of appro-
priate input information or the integration of the produced ontologies with manual ones is
still not well understood.

The number of existing methodologies covering different aspects of the ontology
building process, suggest developing a ’method engineering’ approach as has happened
in software engineering. Instead of constructing new methodologies for different appli-
cation scenarios, the methodology itself could include a step in which the engineers pick
from a list of available methods, e.g. for requirements analysis, the ones suitable for a
particular task and build up their own process model. Template process models covering
standard requirements could be available.

Furthermore current methodologies are not completely integrated in a broader process
model covering e.g. human, technological and process aspects of knowledge manage-
ment. Although the OTK and CommonKADS methodology consider in an early phase
business environment issues. These aspects are important to deploy knowledge manage-
ment in a holistic manner. In this context the costs incurred by the ontology building
effort become an issue. Estimating these costs is still a vague businesses and none of the
existing methodologies provides guidelines for this activity.

To summarize, the following issues are still open:

1. Ontology maintenance support

2. Distributed ontology engineering

3. Fine grained guidelines for all phases

4. Representation of multiple views

5. Agreement support under conflicting interests

6. Best practices

7. Ontology engineering with the help of automated methods

8. Process definition by single process step combination

9. Integration into business process model

10. Cost estimation and pricing

2.5. PAST AND CURRENT RESEARCH 33

This chapter has been able to survey only a few of the ontology engineering tools.
Since the introduction of the plug-in concept to OEEs, the number of features available
for the more established tools has increased tremendously and for many tasks one can
find a tool supporting it. However, integration with different process models is still lack-
ing. Some tools offer support for a specific process model, but none can be customized to
provide guidance through an arbitrary process. As there are many tools offering different
functionalities the slightly different implementations for the standardized representation
languages hinders inter-operability. Besides these more procedurally oriented require-
ments, the technical solutions to support e.g. versioning, ontology learning or distributed
engineering of ontologies, are also in need of improvement.

34 CHAPTER 2. SURVEY

Chapter 3

The HIKNOW maturity level analysis

The work presented in this chapter is based on [HK05].

We describe an ontology-based software infrastructure for retaining and maintaining
theoretical Knowledge Management Maturity Models (ONTOKNOM3) by the use of a
KM Maturity Model Ontology. Moreover ONTOKNOM3 provides technical means for
designing a web-based system, that supports the form-based self-evaluation of an orga-
nization w.r.t. its current maturity level, as well as for providing concrete organizational
recommendations and measures in order to achieve a higher one.

3.1 Introduction

There is no doubt that Knowledge Management (KM) has to be integrated in daily busi-
ness in order to handle typical knowledge processes like the acquisition, structuring, de-
velopment and distribution of knowledge in a more efficient way. A look at KM literature
shows that there has already been spent a lot of work on developing methods and instru-
ments for supporting the introduction and the steady use of KM [DP98], [PRR99]. Fur-
thermore it is clear, that KM introduction necessarily has to focus on organizational, tech-
nical and human aspects in equal measure by considering already existing organizational
structures, technical infrastructure and (knowledge intensive) processes [MAAY03].

Figure 3.1 introduces the HIKNOW methodology that provides an overview of what
has to be at least considered when accomplishing a successful introduction of holistic
KM in an organization. The major tasks to be considered are arranged along a time line
from the early project initiation over project execution and controlling until the end of
the project and the transcending continuous improvement. In reality, when bringing such
a KM introduction methodology to practice, one is faced with organizations that have a
varying level w.r.t. already realized KM activities. At the first level we find organizations
only sensitized with KM, but aware of the benefits KM could cause. Businesses on the
second level others have already established first methods and solutions for dealing with

35

36 CHAPTER 3. THE HIKNOW MATURITY LEVEL ANALYSIS

typical knowledge problems like information overflow, knowledge capturing and distri-
bution. Finally, there are organizations that run sophisticated knowledge management
systems and have well organized their KM activities. But there are also organizations that
have a brilliant KM system from a technical point of view but do not have its organization
in place. They realize after its deployment, that no one is using the system, because the
employees were not integrated in the system planning and development process, as a result
the system does not meet the real requirements of the work force. In the described cases,
it is not possible to start KM again from the beginning, but rather to extensively adapt a
continuous implementation methodology to the real organizational needs. Therefore it is
necessary to identify by all means the current KM maturity level of an organization before
starting a KM implementation project in order to avoid from the first KM project failures
which are associated with unexpected costs and time to somehow rescue them.

Organi-
sational
aspects

Identification of existing knowledge

Knowledge aquisition
(if necessary)

Knowledge Distribution

Knowledge Development

Planning of costs/
benefits ressources,

time

Identification of Problems and Requirements

Technno-
logical

Aspects

Human
aspects

Project Initiation Project Execution and Controlling
Project
Status Continuous Improvement

Identification of Knowledge bearers

Identification and analysis of
knowledge-intensive processes

contiuous optimization of
knowledge-intensive processes

Evaluation
of Prototype

Evaluation
of Results

Creation of Knowledge Base (i.e. ontology) knowledge extraction

refinement of knowledge base

knowledge capturing

system maintenance and modification

definition of
(knowledge) goals

risk analysis

definition of
evaluation criteria

using/ sharing knowledge

training peoplechange organisational culture (if necessary)

motivating people (incentives)

Identification of
existing

infrastucture

System
requirements

Choose and integrate appropriate KM System

Identification of
barriers and culture

Incorporate top
management

form KM team

System Refinement,
Finalisation and

Integration

Implementation of a new KM system

Implementation of KM System
Prototype

System
Specification

System
Design

Organi-
sational
aspects

Identification of existing knowledge

Knowledge aquisition
(if necessary)

Knowledge Distribution

Knowledge Development

Planning of costs/
benefits ressources,

time

Identification of Problems and Requirements

Technno-
logical

Aspects

Human
aspects

Project Initiation Project Execution and Controlling
Project
Status Continuous Improvement

Identification of Knowledge bearers

Identification and analysis of
knowledge-intensive processes

contiuous optimization of
knowledge-intensive processes

Evaluation
of Prototype

Evaluation
of Results

Creation of Knowledge Base (i.e. ontology) knowledge extraction

refinement of knowledge base

knowledge capturing

system maintenance and modification

definition of
(knowledge) goals

risk analysis

definition of
evaluation criteria

using/ sharing knowledge

training peoplechange organisational culture (if necessary)

motivating people (incentives)

Identification of
existing

infrastucture

System
requirements

Choose and integrate appropriate KM System

Identification of
barriers and culture

Incorporate top
management

form KM team

System Refinement,
Finalisation and

Integration

Organi-
sational
aspects

Identification of existing knowledge

Knowledge aquisition
(if necessary)

Knowledge Distribution

Knowledge Development

Planning of costs/
benefits ressources,

time

Identification of Problems and Requirements

Technno-
logical

Aspects

Human
aspects

Project Initiation Project Execution and Controlling
Project
Status Continuous Improvement

Identification of Knowledge bearers

Identification and analysis of
knowledge-intensive processes

contiuous optimization of
knowledge-intensive processes

Evaluation
of Prototype

Evaluation
of Results

Creation of Knowledge Base (i.e. ontology) knowledge extraction

refinement of knowledge base

knowledge capturing

system maintenance and modification

definition of
(knowledge) goals

risk analysis

definition of
evaluation criteria

using/ sharing knowledge

training peoplechange organisational culture (if necessary)

motivating people (incentives)

Identification of
existing

infrastucture

System
requirements

Choose and integrate appropriate KM System

Identification of
barriers and culture

Incorporate top
management

form KM team

System Refinement,
Finalisation and

Integration

Implementation of a new KM system

Implementation of KM System
Prototype

System
Specification

System
Design

OTK D I L I -
G E N T

Figure 3.1: Methodology for the holistic introduction of KM (HIKNOW)

The basic idea of identifying an organization’s KM maturity level derives from soft-
ware engineering, where the Capability Maturity Model® for Software (SW-CMM®)
[PWCC95] has been developed in order to evaluate the quality of software development
processes in an organization by the use of a survey-based evaluation method. The model
distinguishes between the following five maturity levels, in terms of an evolutionary path
from ad hoc, chaotic processes to mature, disciplined software processes:

1. Initial. The software process is characterized as ad hoc, and occasionally even
chaotic. Few processes are defined, and success depends on individual effort and

3.1. INTRODUCTION 37

heroics.

2. Repeatable. Basic project management processes are established to track cost,
schedule, and functionality. The necessary process discipline is in place to repeat
earlier successes on projects with similar applications.

3. Defined. The software process for both management and engineering activities is
documented, standardized, and integrated into a standard software process for the
organization. All projects use an approved, tailored version of the organization’s
standard software process for developing and maintaining software.

4. Managed. Detailed measures of the software process and product quality are col-
lected. Both the software process and products are quantitatively understood and
controlled.

5. Optimizing. Continuous process improvement is enabled by quantitative feedback
from the process and from piloting innovative ideas and technologies.

Except for Level 1, each maturity level is decomposed into several key process areas
that indicate the areas an organization should focus on to improve its software process. In
the meanwhile, there exist various theoretical KM maturity models, that are based on the
original idea of SW-CMM®. An overview is given in the section 3.4. Our basic idea was
not to develop yet another theoretical KM maturity model, but to design ONTOKNOM3,
a flexible and ontology-based system infrastructure for supporting the easy storage and
maintenance of any theoretical KM maturity model into an ontology. Further require-
ments for such a system were the support for a web-based determination of an organiza-
tion’s current and evolving maturity level with regard to KM. This will be done by analyz-
ing an organization’s structure and technical infrastructure using question and answering,
like it’s done in any CMM audit. Moreover, ONTOKNOM3 should help organizations
in reaching a higher maturity level w.r.t. KM by providing concrete organizational rec-
ommendations and measures based on the underlying KM maturity model. Therefore we
concentrated on the identification of an existing preferably all-embracing theoretical KM
maturity model, which in addition focuses on a holistic KM introduction. After analyzing
several KM maturity models we finally selected Kochikar’s maturity model [Koc00] as a
suitable basis for developing our model.

The rest of this chapter is organized as follows: Our methodological approach com-
prising the definition of a procedure of identifying an organization’s KM maturity level
as well as a detailed description of the selected KM maturity model from Kochikar is pre-
sented in section 3.2.2. Section 3.3.1 describes our developed KM Maturity Model Ontol-
ogy, which is needed for retaining theoretical KM maturity models (levels, questions and
associated measures), organization profiles, as well as an evolving organization’s matu-
rity level of an evaluating organization. After a discussion of related work in section 3.4,
concluding remarks outline some future work in section 3.5.

38 CHAPTER 3. THE HIKNOW MATURITY LEVEL ANALYSIS

3.2 Methodological Approach

Our methodological approach has been divided into firstly defining a typical procedure of
identifying an evolving organization’s maturity level to be supported by ONTOKNOM3

and secondly analyzing Kochikar’s model, in order to derivate requirements to the KM
Maturity Model Ontology as well as to our software infrastructure to be developed.

3.2.1 Procedure of Identifying an Organization’s KM Maturity Level

As a result of defining the typical procedure of identifying an organization’s KM maturity
level, we obtained the following seven major steps:

1. Firstly, the selected representative of the organization that is directly involved in the
KM implementation process has to point out, if he is doing an evaluation process
for the first time or if he would like to continue an ongoing evaluation.

2. If the user is doing an evaluation for the first time, he registers with the system by
choosing a password and answering some general questions that are describing her
company (i.e. company size, sector, etc.). After that, the system returns a company
identifier for logging in.

3. If the user is continuing an ongoing evaluation process, he is asked for her company
identifier and password. After that the system presents questions of the current
maturity level to be answered.

4. The user selects the provided questions and gives answers to them by the use of a
web-based form. If the user exits the system during an ongoing evaluation, the state
of the evaluation is automatically saved and restored upon continuation.

5. After answering all questions of a maturity level, the system calculates the eval-
uation results in the form of a maturity level on a scale from m to n (where m
represents the maturity model’s start level and n represents the model’s stop level).
After that, the current maturity level is provided to the user and combined with
recommendations about how to reach a higher one.

6. After e.g. printing out the evaluation results/recommendations, the user logs out
and puts them into practice.

7. Upon completion of all displayed measures, the user logs in again and continues
the evaluation process by answering the previously failed questions. As soon as all
questions of a certain level are answered correctly, the level is considered as reached
and the questions of the next level are presented.

3.2. METHODOLOGICAL APPROACH 39

3.2.2 Kochikar’s KM Maturity Model

The KM maturity model presented by V.P. Kochikar [Koc00] is based on the above-
mentioned SW-CMM®. The model consists of the five KM maturity levels Default, Re-
active, Aware, Convinced and Sharing. Each of these maturity levels ”is characterized by
certain observable capabilities along each of the three major prongs People, Process and
Technology. Table 3.1 depicts the five maturity levels of the KMM model.

Level Organizational Capability
Level 1 Default

• Complete dependence on individual skills and abilities

Level 2 Reactive
• Ability to perform tasks constituting the basic business of

the organization repeatable

Level 3 Aware
• Restricted ability for data-driven decision-making
• Restricted ability to leverage internal expertise
• Ability to manage virtual teams well

Level 4 Convinced
• Quantitative decision-making for strategic and operational

applications widespread
• High ability to leverage internal and external sources of ex-

pertise
• Organization realizes measurable productivity benefits

through knowledge sharing
• Ability to sense and respond proactively to changes in tech-

nology and business environment

Level 5 Sharing
• Ability to manage organizational competence quantitatively
• Strong ROI-driven decision making
• Streamlined process for leveraging new ideas for business

advantage
• Ability to shape change in technology and business envi-

ronment

Table 3.1: Level-Organizational Capability Mapping, Source: [Koc00]

Moreover the model has a set of Key Result Areas (KRAs) for each level. Each KRA
is specific to one of these three “prongs” and represents at a given maturity level the
organization’s KM capability.

40 CHAPTER 3. THE HIKNOW MATURITY LEVEL ANALYSIS

For example on Level 3 the KRAs for the prongs are, for people: ”Central Knowledge
Organization”, ”Knowledge Education”, for the process: ”Content Structure Manage-
ment”, and for technology: ”Knowledge Technology Infrastructure”.

3.3 A Conceptual Data Model for Representing KM Ma-
turity Models

In order to achieve a conceptual data model for representing one or more theoretical KM
maturity model(s), that are consisting of different levels, questions and linked measures
as well as for retaining and managing organization profiles that have to be associated with
evolving maturity levels, we modeled an ontology [SS04], which is providing the data
layer.

Figure 3.2: Excerpt of KM Maturity Model Ontology

3.3. A CONCEPTUAL DATA MODEL FOR REPRESENTING KM MATURITY MODELS41

3.3.1 Description of Ontology Terms

The KM Maturity Model Ontology is modeled in KAON language and contains, among
others, the top concepts ”Company”, ”(Maturity-)Model”, ”Question”, and ”Measure”,
as well as the properties ”(Company) uses Model”, ”(Model) consists of (Question)” and
”(Question) has Measure”. Each property has at least one domain concept (e.g. the do-
main concept for the property ”uses Model” is the concept ”Company”). Its range may
either be a literal (e.g. the ”Company-ID” property for the concept ”Company”), or a set
of at least one concept (e.g. the range concept for the property ”uses Model” is the con-
cept ”Model”). Domain and range concept restrictions are treated conjunctively. Conse-
quently, all of them must be fulfilled for each property instantiation. Further, it is possible
to say that two properties are inverse to each other. Concepts and properties can basically
be arranged in a hierarchy. The hierarchy relation relates directly connected concepts
(properties) and it is defined as a transitive relationship. The ontology has an instance
pool associated with it. It is constructed by specifying instances (e.g. companies c1, c2...
cn and maturity models m1, m2... mn) of different concepts and by establishing property
instantiations between instances (e.g. ”company c1 uses maturity model m2). Property
instantiations must follow the domain and range constraints. In the following two sec-
tions, the conceptual layer of our developed KM Maturity Model Ontology is described
in detail. The ontology provides the underlying data model for retaining (instantiating)
user-defined maturity models, which are including levels, questions and associated mea-
sures. Furthermore, the ontology stores authors and users of a maturity model, general
information about an organization to be evaluated, which is used for statistical purposes,
as well as information about an organization’s current (and past) maturity level(s) and
measures to be carried out in order to achieve a higher maturity level.

3.3.2 Retaining KM Maturity Models

An author or maintainer of a maturity model can be instantiated by the ontology using the
concept ”Author”. Maturity models created by an author are referenced via the ”(author)
hasCreated-Model” property. Additional attributes for the ”Author” concept are ”name”
and ”email address”. In order to instantiate different models by the ontology, each model
is an instantiation of the ”(Maturity-) Model” concept. A maturity model is specified by
the attributes ”model name”, ”start-” and ”stop-level” as well as by the attribute ”count
direction”. The ”hasTopic” property describes the topic (e.g. ”KM”, ”software engineer-
ing”, etc.) of the maturity model. Valid answers are marked with the ”hasValidAnswer”
property. This allows to store maturity models, which use more possible answers than the
usual yes/no. The creation date of a maturity model is described by the ”Model-Creation-
Date” attribute. Every maturity model marks its associated questions with the ”consist-
sOf” property. The ”Question” concept is linked to a level by the use of the ”hasLevel”
property, which indicates to which level a question belongs. The ”hasAnswer” property
states whether the right answer of the question instance is ”yes”, ”no” or another user-

42 CHAPTER 3. THE HIKNOW MATURITY LEVEL ANALYSIS

defined value. The creation date of a question is stored in the ”Question-Creation-Date”
attribute. The actual question is described by the ”Question-Text” attribute, while the ”is-
Active” attribute states, whether the question instance should be presented to the user or
not. The property ”(question) hasMeasure” indicates the connection between the concept
”Question” and the Concept ”Measure”, whose attribute ”Measure-Text” is displayed to
the evaluating organization, if that question has been answered wrong. In addition, the
”hasLink” property points to the ”Link” concept which comprises a ”Link-URL” and a
”Link-Description” attribute. The ”hasImage” property is related to the ”Link” property
and stores an image URL as well as an image description. The ”Saved-State” concept
contains the history of selected changes to the ontology. Every time a company finishes
answering questions of a level, relations are instantiated to already answered and accom-
plished questions for statistical purposes. In order to realize the demand for retaining
maturity models, that are a subset of (an) already defined maturity model(s), the KM Ma-
turity Model Ontology provides the property ”(model) consists of model”. Furthermore
an inverse property ”(model) is part of model” has been defined. Questions and levels
that have to be arranged in a hierarchy are treated analogously by the use of the properties
”(level) consists of level” and ”(question) consists of question” and their corresponding
inverse properties ”(level) is part of level” and ”(question) is part of question. Due to
a more concise view, part-of-relations are faded out in figure 3.2. Figure 3.3 shows the
concept ”model”, including these previously faded out properties ”(model) consists of
model” and ”(model) is part of model”. These properties are used to unitize/subdivide
models or to derive new models from existing ones. Alternatively, it is possible to create
(meta-) models that are a superior model of (an) already existing model(s). Furthermore,
the hierarchization of models (and with it the hierarchization of questions and methods)
provide the distributed creation of (complex) models by several authors as well as the
distributed self-evaluation by several persons of an organization.

Figure 3.3: Hierarchization of models

3.3.3 Identification of a Company’s Maturity Level

Each registered company is represented as an instance of the ”Company” concept that
comprises properties for company size, sector and location as well as the attributes
”Login-Counter”, ”Registration-Date”, ”Last-Login-Date” and ”Company-ID” that are
used for statistical purposes. The property ”hasAnswered” marks already answered ques-
tions of a company, while the property ”hasAccomplished” marks questions that were an-

3.4. RELATED WORK 43

swered correctly. Defined measures are later determined by looking for questions that are
marked with an instantiation of the property ”hasAnswered” but not with an instantiation
of the property ”hasAccomplished”. The property ”hasCur-rentQuestion” is used to mark
questions for temporary internal purposes of the system. In order to verify, if a company
has reached a particular maturity level, the later described evaluation component accesses
the ontology and checks out, if all questions of that level have been answered right. This
will be done by checking the availability of the property instantiation ”hasAccomplished”
for every answered question. If there exists a question that has not been answered right
by the user, the corresponding instance of the concept ”Measure” is presented to the user,
which is directly related to the wrong answered question using an instantiation of the
property ”(Question) has Measure”. After the realization of the provided measure(s) and
the consecutive system login, the system again provides previously wrong answered ques-
tions to the user. If the company now answers right all questions and with it reached a
particular maturity level, the level is stored into the ontology by a new drawn instantiation
of the property ”hasCompanyLevel”. To identify the state of evaluation for a company
that would like to continue a not yet completed evaluation on a particular level, the on-
tology provides the property ”hasAnswered”. This will guarantee that already answered
questions of a particular level are not given again to the user.

3.4 Related Work

At this stage, there exist several theoretical but also tool-supported models for identifying
the current KM maturity level of an organization (i.e. the KM Maturity Model (KMMM®)
from Siemens [LE04], Kochikar’s KM Maturity Model [Koc00], Berztiss’ Capability Ma-
turity for KM [Ber02], the Knowledge Process Quality Model (KPQM) [PP02] and oth-
ers) which base in the majority of cases on the Capability Maturity Model® for Software
(SW-CMM®) [PWCC95]. An overview and detailed description of KM maturity models
is also given in [WPH02]. However, from our point of view, our tool-supported approach
of an easy maintainable and therefore sustainable ontology-based software infrastructure
for web-based self-evaluation is rather unique in this context.

3.5 Conclusion and Future Work

We have described ONTOKNOM3, an ontology-based software infrastructure for techni-
cally supporting the retainment, representation and autonomous application of any the-
oretical KM maturity model. This will be realized by providing a KM Maturity Model
Ontology as well as a tool kit for supporting the creation, modification and enhance-
ment of different maturity models or even their synergetic combination. Based on one or
more selected or even nestable maturity model(s), ONTOKNOM3 furthermore supports
the web-based identification of an organization’s KM maturity level and provides based

44 CHAPTER 3. THE HIKNOW MATURITY LEVEL ANALYSIS

on the underlying model(s) organizational measures to achieve a higher one. In the future
we will perform the further validation of ONTOKNOM3 by integrating and combining
additional existing theoretical KM maturity models. Furthermore we will evaluate the
capability of our approach on providing means for the flexible management of ontology-
based maturity models as well as their flexible combination. This will be done by e.g.
applying ONTOKNOM3 for consulting organizations in the holistic introduction of KM
more efficiently. Moreover, critical, time- or cost-consuming steps of a KM implementa-
tion, that require the optimization or even replacement of recommendations and measures
will be identified by the use of ONTOKNOM3.

Chapter 4

DILIGENT Process and Argumentation
Framework

We here sketch the DILIGENT process and the argumentation framework. In Section 4.1
we motivate our work with a typical scenario for our approach to develop ontologies. Fol-
lowing in Section 4.2 is an overview of the DILIGENT process. The process is refined
in two ways. On the one hand we offer a detailed action list, adapted for a particular use
case, in Section 4.3. On the other hand we analyzed the process w.r.t. other engineer-
ing methodologies, and provide a very general detailed description in Section 4.4. The
process has already been applied in a real world scenario. Results and lessons learned
from the application are described in Section 7.4. Finally, we elaborate on a thorough
analysis of a taxonomy evolution in the biology domain. The analysis motivated our ex-
tension of the DILIGENT process by an argumentation framework and the development
of an argumentation ontology. The hypothesis generated from the analysis was evaluated
in two in-situ experiments at the Institute AIFB. The analysis as well as the experiments
are described in Section 4.6.

4.1 Motivational Scenario

In distributed development there are several experts, with different and complementary
skills, involved in collaboratively building the same ontology. For instance, in Virtual
Organizations, Open Source and Standardization efforts, experts belong to different com-
peting organizations and are geographically dispersed. In these cases, builders typically
are also users and, although some users are not directly involved in changing the ontology,
they take part in the process by using the ontology.

An initial ontology is made available and users are free to use it and modify it locally
for their own purposes. There is a central board that maintains and assures the quality of
the shared ontology. This central board is also responsible for deciding updates, but these

45

46 CHAPTER 4. DILIGENT PROCESS AND ARGUMENTATION FRAMEWORK

are based on user re-occurring changes and requests, therefore the board loosely controls
the process. It is expected that the change rate of the ontology made available should be
higher than the usual due to maintenance, therefore this is a more evolving process.

4.2 DILIGENT Overview

We will now describe the general process, roles and functions in the DILIGENT process.
As shown in Figure 4.1 it comprises five main activities: (1) build, (2) local adaptation,
(3) analysis, (4) revision, (5) local update (cf. figure 4.1). The process starts by having
domain experts,users, knowledge engineers and ontology engineers building an initial
ontology. In contrast to known ontology engineering methodologies available in the lit-
erature [GPS98, GPFLC03, PM01, UK95] our focus is distributed ontology development
involving different stakeholders, who have different purposes and needs and who usually
are not at the same location. Therefore, they require online ontology engineering support.

Domain
Expert

Knowledge
Engineer

Ontology
Engineer

Ontology
User 1

Ontology
User n

Control Board
Editors

Control Board
Editors

OIOI

O1

On

�

1

5

3 4

2

Ontology
User

Figure 4.1: Roles and functions in distributed ontology engineering

The team involved in building the initial ontology should be relatively small, in order
to more easily find a small and consensual first version of the shared ontology. Moreover,
we do not require completeness of the initial shared ontology with respect to the domain.

Once the product is made available, users can start using it and locally adapting it
for their own purposes. Typically, due to new business requirements, or user and orga-
nization changes, their local ontologies evolve in a similar way as folder hierarchies in a
file system. In their local environment they are free to change the reused shared ontol-
ogy. However, they are not allowed to directly change the ontology shared by all users.
Furthermore, the control board collects change requests to the shared ontology.

The board analyses the local ontologies and the requests and tries to identify simi-
larities in users’ ontologies. Since not all of the changes introduced or requested by the
users will be introduced,1 a crucial activity of the board is deciding which changes are

1The idea in this kind of development is not to merge all user ontologies.

4.3. DETAILED PROCESS DESCRIPTION: USE CASE ORIENTED 47

going to be introduced in the next version of the shared ontology. The input from users
provides the necessary arguments to underline change requests. A balanced decision that
takes into account the different needs of the users and meets user’s evolving requirements
for the ontology2 has to be found. The board should regularly revise the shared ontology,
so that local ontologies do not diverge too far from the shared ontology. Therefore, the
board should have a well-balanced and representative participation of the different kinds
of participants involved in the process.

In this case, users are involved in ontology development, at least through their re-
quests and re-occurring improvements and by evaluating it, mostly from an usability point
of view. Knowledge providers in the board are responsible for evaluating the ontology,
mostly from a technical and domain point of view. Ontology engineers are one of the
major players in the analysis of arguments and in balancing them from a technical point
of view. Another possible task for the controlling board, that may not always be a require-
ment, is to assure some compatibility with previous versions. Revision can be regarded
as a kind of ontology development guided by a carefully balanced subset of evolving user
driven requirements for the ontology. Ontology engineers are responsible for updating
the ontology, based on the decisions of the board. Revision of the shared ontology entails
its evolution.

Once a new version of the shared ontology is released, users can update their own
local ontologies to better use the knowledge represented in the new version. Even if the
differences are small, users may rather reuse e.g. the new concepts instead of using their
previously locally defined concepts that correspond to the new concepts represented in
the new version.

4.3 Detailed Process Description: Use Case Oriented

In order to provide a detailed guidance for the participants in the process and to identify
potential technical support for the single process steps we have analysed them with more
detail. The result is depicted in figure

The analysis includes the identification of (1) the major roles, (2) the input and (3)
output information, (4) the decisions and (5) the actions within the process step.

We provide a detailed description of the process on two levels. The description pro-
vided in this section focuses on concrete actions a user has to perform to reach the desired
output. In the next section we look at the process from an ontology engineering per-
spective and elaborate on the activities an ontology engineer follows, when applying the
process model.

2This is actually one of the trends in modern software engineering methodologies (see Rational Unified
Process).

48 CHAPTER 4. DILIGENT PROCESS AND ARGUMENTATION FRAMEWORK

4.3.1 Local Adaptation: Detailed View

1. Roles The actors involved in the local adaptation step are users of the ontology.
They use the ontology to retrieve e.g. documents which are related to certain topics
modelled in the ontology or more structured data like the projects an employee was
involved in. Information gathering need not be their main objective, but they may
rather need the information to fulfill their individual tasks.

2. Input Besides the common shared ontology, in the local adaptation step the in-
formation available in the local information space is used. This can be existing
databases, ontologies or folder structures and documents.

3. Output The output of the process step is a locally changed ontology which better
reflects the users needs. Each change is supported by arguments explaining the
reasons for a certain change. We here emphasize that changes are not propagated to
the shared ontology. Only in the analysis step the board gathers all ontology change
requests and the corresponding arguments to be able to evolve the common shared
ontology in the revision step. The result is a set of locally changed ontologies and a
set of requests for changes made to the board. All these are associated to arguments
underlying the required changes.

4. Decisions The actors must decide which changes they want to make to their on-

11. Formalization
of relevant
changes

12. Aggregation
of arguments

13. Documen-
tation

Local
Adaptation

Analysis Revision Local
Update

2. Understand
shared
ontology

3. Identify
communalities

4. Map equivalent
5. Identify missing
6. Change locally
7. Organize local

knowledge

8. Gather
updated
ontologies

9. Analyze
changes
conceptually

10. Decide on
changes to be
made

14. Distribution of
the new
ontology

15. Tagging of the
old ontology

16. Local inclusion
of the update

17. Alignment of old
and new
versions

Build

1. Small group
builds initial
shared
ontology
according
established
methodologies

- Locally
changed

Ontologies
- Arguments

Initial
shared

Ontology

Shared
ontology fits? Sufficient?

List of
conceptual
changes

Documented
new shared

ontology

Most important
changes?

Consensual
formalization? Update?

Local
ontology

merged with
new shared

one

Figure 4.2: Process stages (1-5), actions (1-17) and structures

4.3. DETAILED PROCESS DESCRIPTION: USE CASE ORIENTED 49

tology. Hence, they must decide if and where new concepts are needed and which
relations a concept should have. 3. They must further provide reasons why they
made certain decisions. To evaluate the decisions we propose to calculate the ratio
between available information and the information which can be classified accord-
ing to the adapted ontology. The proportion should ideally be high. Further classi-
fications should be specific. Local concepts which could not be aligned with shared
concepts should be introduced as local adaptations.

5. Actions: To achieve the desired output the user takes different actions namely Un-
derstand shared ontology, Identify commonalities between own and shared concep-
tualization, Map equivalent conceptualizations of different actors, Identify missing
conceptualizations, Change conceptualization and finally Organize local knowl-
edge according to the conceptualization.

The last three actions of the process are performed in a cyclic manner until a new
common ontology is available and the entire process step starts again.

The single actions performed manually would require a grounded understanding
of ontologies and their underlying formal representation. We cannot expect such
knowledge from all actors participating in the process. The process should rather
be integrated seamlessly in the environment the user works in. Hence we now
indicate for each of the actions the available technology to support the actors.

6. Tool support: Building is supported by existing ontology editors like [SEA+02b,
NFM00]. In [LET04] we describe how existing structure on local machines can be
utilized to facilitate the creation of ontologies. The tool supports thus actions (3)
and (5). We have further integrated ontology mapping to support step (4) [ES04].
(6) is a manual step. (7) is currently a manual step, too, but it could be supported
by semi automatic classification cf. e.g. [HSC02].

• Understand shared ontology: An ontology is a conceptualization of the real
world. An ontology should represent a shared conceptualization. In fact a com-
pletely shared ontology can never be engineered, since different people have vary-
ing interpretations of the real world. Therefore it is necessary as a first action to
relate the own interpretation of the world to the shared conceptual model. Thus
the actor must learn where the different concepts are located in the ontology and
how they are interrelated with other concepts. The ontology can be very complex,
thus comprehension of the ontology depends mainly on its presentation. Different
technologies can be used to provide the user with a context sensitive view on the on-
tology which does not overwhelm him. Relevant technology to support this actions
are text classification methods, natural language processing and ontology learning
methods. We might also consider alternatives to technology driven teaching meth-
ods, e.g. handbooks or offering a new tip to users each day.

3When we talk about changing the ontology or introduce new concepts this applies also to relations and
axioms

50 CHAPTER 4. DILIGENT PROCESS AND ARGUMENTATION FRAMEWORK

• Identify commonalities between own and shared conceptualization: Following
the comprehension of the ontology the user can realize the communality between
the own and shared conceptualization. We here point to the work of [SG89] which
we introduced in section 2.5.1.4. He identified the different types of conflict when
comparing two or more ontologies.

To support this step technically we can use the available formal conceptualization
on the local machines. To identify the degree of communality we can use mapping
methods to find correspondences between locally available formal models and the
shared ontology.

The documents can be operationalized in part for ontology learning which then
identifies concepts and relations based on the local text or the documents the user
has browsed through.

• Map equivalent conceptualizations of different actors: After the identification
of commonalities it is necessary to make them explicit. Otherwise the system will
not be able to make use of the findings. The expressivity of the used ontology lan-
guage may set a limit this. For example explicit formalization of mappings is only
possible with OWL. RDF(S) does not support it originally. Different implementa-
tions may add specialized add-ons. Mappings have the advantage, that they leave
the original structures unchanged. Of course users may also decide to change their
local structures in favour of the common structure. In this case the changes must be
traceable, so that the actor can retain its old version.

• Identify missing conceptualizations: Besides the identification of communality
the same techniques can be applied in the subsequent step to support the user in
identifying missing conceptualizations.

Depending on the scenario the user might have access to other users ontologies and
use their local adaptations as further input to identify missing concepts in her own
conceptual model.

• Add missing conceptualizations: After identification of missing conceptualiza-
tions the user must be enabled to introduce the changes. This is not so much a
technical challenge than a usability challenge. The user should not be bother with
suggestions all the time and he might not tolerate wrong suggestion. Since auto-
mated methods can not be 100% correct it depends on the user context when and
how to apply the changes to the ontology.

The board analysis the changes performed by the users. To be able to understand
the change requests the actor should provide reasons for each request. Again the
rationales used within the automated methods can be used as input here. To support
the user further in providing reasons a part of the process model is an argumentation
framework to focus the user on the relevant arguments he can provide.

4.3. DETAILED PROCESS DESCRIPTION: USE CASE ORIENTED 51

• Organize local knowledge according to ontology: At this point the ontology
should reflect the users conceptualizations. Now he can instantiate the ontology
with the information available locally and hence contribute to the collective knowl-
edge. Again text classification and natural language processing can be used to fa-
cilitate this action.

The implementation of tools to support the single actions must be done in close coop-
eration with the user and with respect to usability. The steps are complex so that an easy
way must be found to enable the users to follow the process.

We have shown how different techniques developed in the course of the SEKT project
can be used within the process to support the actors to follow the process. The output
is a locally adapted ontology. Hence the board can retrieve the changes and analyse the
reasons underlying each change. The reasons can either provided automatically by the
supporting methods or manually following the argumentation model describe with more
detail in section 4.6.

4.3.2 Analysis

Depending on the frequency and volume of changes the board will make adjustment cy-
cles as needed.

1. Roles In the analysis stage we can distinguish three roles played by board mem-
bers: (i) The domain expert decides which changes to the common ontology are
relevant for the domain and which are relevant for smaller communities only. (ii)
Representatives of the users explain different requirements for the shared ontology
from the usability perspective. At this stage, work is conducted at a conceptual
level. (iii) The ontology engineers analyze the proposed changes from a knowledge
representation point of view foreseeing whether the requested changes could later
be formalized and implemented.4

2. Input The analysis stage takes as input the ontology changes proposed and/or made
by the participating actors. To be able to understand the change requests, users
should provide their reasons for each request. Both manual and automated methods
can be used in the previous stages. Besides of arguments by ontology stakeholders,
one may here consider rationales generated by automated methods, e.g. ontology
learning. The arguments underlying the proposed changes constitute important in-
put for the board to achieve a well balanced decision about which changes to adopt.

3. Output The result is a list of the major changes to be introduced that were agreed
by the board. Hence, all changes which should not be introduced into the shared
ontology are filtered. In this stage it is not required to decide the final modelling of
the shared ontology.

4In the revision stage.

52 CHAPTER 4. DILIGENT PROCESS AND ARGUMENTATION FRAMEWORK

4. Decisions The board must decide which changes to introduce into the new shared
ontology at the conceptual level. Metrics to support this decision are (i) the number
of users who introduced a change in proportion to all users who made changes. (ii)
The number of queries including certain concepts. (iii) The number of concepts
adapted by the users from previous rounds.

5. Tool support: In [PSST04] we present an extension to an ontology editor, which
supports actions (8) and (9) and (10). (8) Ontologies can be collected from the
users in a Peer-to-Peer system. Different sorting and grouping mechanisms help
the board to analyze the introduced changes systematically. The identification of
relevant changes is in the end a community process. Here we support decision
making by structured argumentation support as described in [TPSS05].

6. Actions: To achieve the desired output the board takes different actions namely
Gather locally updated ontologies and corresponding arguments, Analyse the in-
troduced changes and Identify changes relevant for all actors.

• Gather locally updated ontologies and corresponding arguments: Depending
on the deployed application the gathering of the locally updated ontologies can be
more or less difficult. It is important that the board has access to the local changes
to be able to analyse them. In a centralized ontology based system in which users
can make their changes within their workspace this task is very easy. In peer-to-
peer scenarios some peers might not always be reachable, to be able to collect the
local ontologies. For the board it might also be interesting not only to analyse the
final changed ontology, but also the evolution process. However, with an increasing
number of participants this in-depth analysis might not be feasible. Since analy-
sis takes place at the conceptual level, reverse engineering is usually an important
technique to get the conceptual model from the formalized model [GPFLC03]. To
support users providing their reasons, an argumentation framework that focuses the
user on the relevant arguments was developed cf. [TPSS05].

• Analyse the introduced changes: The number of change requests may be huge and
also contradictory. First the board must identify the different areas in which changes
took place. Within analysis the board should bear in mind that changes of concepts
should be analyzed before changes of relations and these before changes of axioms.
Good indicators for changes relevant to the users are (i) overlapping changes and (ii)
their frequency. Furthermore, the board should analyze (iii) the queries made to the
ontology. This should help to find out which parts of the ontology are more often
used. Since actors instantiate the ontology locally, (iv) the number of instances
for the different proposed changes can also be used to determine the relevance of
certain adaptations.

• Identify changes relevant for all actors: Having analyzed the changes and having
grouped them according to the different parts of the ontology they belong to, the

4.3. DETAILED PROCESS DESCRIPTION: USE CASE ORIENTED 53

board has to identify the most relevant changes. Based on the provided arguments
the board must decide which changes should be introduced. Depending on the
quality of the arguments the board itself might argue about different changes. For
instance, the board may decide to introduce a new concept that better abstracts
several specific concepts introduced by users, and connect it to the several specific
ones. Therefore, the final decisions entail some form of evaluation from a domain
and a usage point of view. The outcome of this action must be a reduced and
structured list of changes that are to be accomplished in the shared ontology.

4.3.3 Revision

While we could evaluate the local update and analysis step of our process model already
in small experiments the revision phase and local update phase are not well tested yet.
Hence, due to the early stage of the project the revision phase and the local update phase
are not yet very well elaborated. We here just sketch some general observations and point
our future directions of research.

1. Roles The ontology engineer judges the changes from an ontological perspective,
more exactly at a formalization level. Some changes may be relevant for the com-
mon ontology, but may not be correctly formulated by the users. The domain ex-
perts should judge and decide whether new concepts/relations should be introduced
into the common ontology even so they were not requested by the users.

2. Input The input for the revision phase is a list of changes at a conceptual level
which should be included into the ontology.

3. Decisions The main decisions in the revision phase are formal ones. All intended
changes identified during the analysis phase should be included into the common
ontology. In the revision phase the ontology engineer decides how the requested
changes should be formalized. Evaluation of the decisions is performed by compar-
ing the changes on conceptual level with the final formal decisions. The differences
between the original formalization by the users and the final formalization in the
shared ontology should be minimal.

4. Actions: To achieve the desired output the user takes different actions namely (11)
Formalization of the requested changes, (12) Aggregation of arguments and (13)
Documentation. Judging entails Evaluation of proposed changes from a knowledge
representation/ontological point of view.

5. Output The revision phase ends when all changes are formalized and well docu-
mented in the common ontology.

54 CHAPTER 4. DILIGENT PROCESS AND ARGUMENTATION FRAMEWORK

6. Tool support: For the revision phase we do not envision any special tool support
beyond the one provided by classical ontology engineering environments. In par-
ticular the ontology evaluation framework described in the companion deliverable
7.2.1 will help the users in this activity.

• Formalization of the requested changes: Similar to established methodologies
the requested changes must be formalized with respect to the expressivity of the
ontology. We will not go into detail with this step since it is already described in
methodologies referred to in the related work section.

• Aggregation of arguments: As arguments play a major role in the decision process
we expect that the changes which are eventually included into the common ontology
are supported by many arguments. One of the reasons for keeping track of the
arguments is to enable users to better understand why certain decisions have been
made with respect to the ontology. Hence, the user should be able to retrieve the
most convincing arguments made to introduce a certain change.

• Documentation With the help of the arguments, the introduced changes are already
well documented. However, we assume that some arguments might only be under-
standable for the domain expert and not for the users. Hence, we expect that the
changes should be document to a certain level.

4.3.4 Local Update

1. Roles The local update phase involves only the users. They perform different ac-
tions to include the new common ontology into their local system before they start
a new round of local adaptation.

2. Input The formalized ontology including the most relevant change request is the
input for this step. We also require as an input the documentation of the changes.
For a better understanding the user can request a delta to the original version.

3. Output The output of the local update phase is an updated local ontology which
includes all changes made to the common ontology. However, we do not require the
users to perform all changes proposed by the board. The output is not mandatory,
since the actors could change the new ontology back to the old one in the local
adaptation stage.

4. Decisions The user must decide which changes he will introduce locally. This
depends on the differences between the own and the new shared conceptualization.
The user does not need to update her entire ontology. This stage interferes a lot with
the next local adaptation stage.

4.4. GENERIC DETAILED PROCESS DESCRIPTION 55

5. Actions: To achieve the desired output the user takes different actions namely (14)
Distribution of the new ontology to all actors, (15) Tagging of the old ontology to
allow for a roll back, (16) Local inclusion of the updated version and (17) Alignment
of old and new versions.

6. Tool support: The Local update stage is very critical from a usability point of view.
Changes cannot be introduced without the user’s agreement. Further he should not
be bothered too often. In case of equivalent but local conceptualizations it must
be possible to change to the common conceptualization. From a technical point of
view this stage is supported by tools like KAON cf. [MMS03]. We do not exclude
the possibility of conflicts. Unresolved conflicts, though, will reduce the utility of
the ontology. Even in this cases attempts are under way to resolve them as far as
possible automatically cf. [HvHH+05].

• Distribution of the ontology to all actors: Analogously to step 4.4.3 the shared
ontology must be distributed to the different participants. Depending on the overall
system architecture different methods can be applied here.

• Tagging of the updated version: To ensure user satisfaction, the system must en-
able the user to return to her old version of the ontology at any time. The user might
realize that the new updated version of the common ontology does not represent her
needs anymore and thus want to leave the update cycle out. To reach a better ac-
ceptance this must be possible and is foreseen in the methodology. The user can
always balance between the advantages of using a shared ontology or using her own
conceptual model.

• Inclusion of the updated version: The system must support the user to easily
integrate the new version into her local system. It must be guaranteed that all anno-
tations made for the old version of the ontology are available in the new version.

• Update of local adaptations which are not included in the common ontology:
The update of the local ontology can lead to different kinds of conflict. Changes
proposed by the user may indeed have found their way into the common ontology.
Hence, the user should be enabled to use from now on the shared model instead
of her own identical model. Furthermore, the board might have included a change
based on arguments the user was bringing forward, but has drawn different conclu-
sions. Here the user can decide whether he prefers the shared interpretation. Other
option might emerge in the course of the case studies.

4.4 Generic Detailed Process Description

In this section we describe the details of the DILIGENT process on a generic level. In-
stead of describing the actions a particular user has to perform in a specific use case, we

56 CHAPTER 4. DILIGENT PROCESS AND ARGUMENTATION FRAMEWORK

provide a generic activity description; this, however, must be adapted, if it is applied in
a specific use case. The generic description is inspired by the mapping between the cost
model (cf. chapter 5) and the DILIGENT process. The mapping revealed some problems
w.r.t. the use case specific definition of the process actions (Section 5.3.1). The process
actions are not defined at the same conceptual or granularity level from an ontology en-
gineering perspective. The cost model shall be applicable independently of the chosen
ontology engineering process, thus its definition must be generic5. Therefore, we decided
to generalize the actions defined so far, and integrate them into more general activities.
The process stages and the the cost factors can thus easily be aligned (cf. 5.3). The generic
detailed process model is depicted in figure 4.3

As in the use case oriented description, we have analyzed the different process stages
in detail. For each stage we have identified (i) major roles, (ii) input, (iii) decisions, (iv)
activities (v) and output information that occur in each stage. We do not define tool sup-
port in this description, as this is use case specific. In some cases the general description
an the use case specific one is equivalent; we repeat the description in these cases.

4.4.1 Building

The build phase in the DILIGENTprocess model is so far not defined, as we assume that
this step is performed according to established engineering methodologies. In order to
achieve a homogeneous description of the process activities from a granularity point of
view we decided to further specify this phase at the same level of detail as the subsequent
ones. As summarized in [GPFLC03] the available methodologies separate the building
process in different activities, while each of the methodologies focuses on different as-
pects. For our purposes and for the alignment with the cost model we separated ontology
building into the four activities Domain analysis, Conceptualization and implementation
of shared ontology, Evaluation of shared ontology, Argument provision and Documenta-
tion.

In contrast to a common full ontology engineering cycle the objective of this Build
task is not to generate a complete and evaluated ontology but rather to quickly identify
and formalize the main concepts and main relations.

4.4.1.1 Roles

Classical ontology engineering methodologies introduce three different roles: Knowledge
engineer, ontology engineer and domain expert. The domain expert provides the knowl-
edge engineer and ontology engineer with the domain knowledge to be modeled. The
domain expert knows for the domain of interest the relevant concepts and the interdepen-
dencies between them; he can point to further information found in the literature. The

5We introduced new and redefined cost factors as well in the cost model. This is reported in section
5.3.2

4.4. GENERIC DETAILED PROCESS DESCRIPTION 57

knowledge engineer extracts from the domain expert the conceptual model w.r.t. to the
domain. The ontology engineer generates from the conceptual model a machine read-
able ontology. It is often observed that the same person takes the role of the knowledge
engineer and ontology engineer.

Additionally to these classical roles we also propose the involvement of users in this
stage. The user should evaluate the designed ontology from a usability perspective.

The persons involved in the build stage are the initial board members.

4.4.1.2 Input

The build stage takes as input the task to build an ontology and the results of a feasibility
study. This includes a general task description and the identification of main domain
experts.

Local
Adaptation

6. Local analysis of shared
ontology

7. Specification of new
requirements

8. Ontology utilization
9. Ontology instantiation
10.Local analysis of additional

ontologies
11.Customization of relevant

ontologies
12.Integration of reused local

ontologies to the shared
ontology

13.Modification of shared
ontology

14.Argument provision
15.Evaluation of new local

ontology
16.Documentation

Build

1. Domain analysis
2. Conceptualization

and implementation
of shared ontology

3. Evaluation of shared
ontology

4. Documentation
5. Argument provision

- Locally
changed

Ontologies
- Arguments

Initial
shared

Ontology

Shared
ontology fits? Sufficient?

Analysis

17.Information collection from
users

18.Analysis of obtained
information

19.Control of previously shared
ontology

20.Specification of new
requirements

21.Customization of relevant
local ontologies

22.Integration of reused local
ontologies

23.Integration of reused local
ontologies to the shared
ontology

24.Modification of shared
ontology

25.Argument provision

List of
conceptual
changes

Most important
changes?

List of
conceptual
changes

Most important
changes?

26.Evaluation of new
shared ontology

27.Documentation
28.Argumentation

aggregation
29.Distribution of new

shared ontology

Revision

Documented
new shared

ontology

Consensual
formalization?

Documented
new shared

ontology

Consensual
formalization?

Local
Update

30.Control new shared
ontology

31.Local analysis of
changes in the new
shared ontology

32.Integration of new and
old version

Update?

Local
ontology

merged with
new shared

one

Update?

Local
ontology

merged with
new shared

one

Local
ontology

merged with
new shared

one

Figure 4.3: Process stages (1-5), activities (1-32) and structures

58 CHAPTER 4. DILIGENT PROCESS AND ARGUMENTATION FRAMEWORK

4.4.1.3 Output

The result of the build stage is an ontology, which models the main concepts of the do-
main. In contrast to established methodologies we do not require completeness of the
domain model.

4.4.1.4 Decisions

Critical decision’s of the build stage are: How big shall the initial ontology be? Does
the initial ontology capture sufficient domain knowledge? Can the users understand the
initial ontology?

4.4.1.5 Activities

In the following we describe the activities of the central build stage, namely Domain
analysis, Conceptualization and implementation of shared ontology, Evaluation of shared
ontology, Argument provision and Documentation.

Domain analysis In our case the domain analysis covers all tasks necessary to con-
ceptualize the ontology. We thereby assume that the result of the feasibility study for
the project was positive. A detailed definition on the execution of a feasibility study can
be found in the OTK methodology [SAB+03, SS02]. The domain analysis itself covers
tasks as defined in the specification phase in METHONTOLOGY [GPFLC03]. In the
OTK methodology this activity is performed in the kickoff phase. We emphasize that
the domain analysis includes the definition of modules covering sub domains in order
to keep the building trackable. Competency questions are a good possibility to capture
detailed requirements for the ontology. An interesting special case occurs when existing
ontologies should be reused. Here, domain analysis involves also the identification and
selection of the reusable ontologies [PM00]. METHONTOLOGY introduces also man-
agement activities supporting the building process. These are of course necessary during
the entire building process. However, as our process explicitly assumes only loose con-
trol we leave the level of management to the participants and their particular requirements
for overall management. Knowledge acquisition is foreseen as a parallel activity to the
building process in METHONTOLOGY. We acknowledge that knowledge acquisition is
performed in all stage of the process but rather regard it as an implicit activity than an
explicit one.

Conceptualization and implementation of shared ontology In contrast to other
methodologies we subsume conceptualization and implementation of the ontology as one
activity. As most building processes are supported by ontology editors, the actual im-
plementation is mostly done automatically. For the applicant of the methodology the

4.4. GENERIC DETAILED PROCESS DESCRIPTION 59

separation seems thus artificial. Conceptualization and implementation covers the tasks
essential to build the shared ontology. We here emphasize that the resulting model need
not to be complete w.r.t. the domain. The ontology should represent as much detail as
necessary for its initial usability and usefulness. However, the costs to build the initial
ontology should not outweigh its benefits.

Argument provision In existing ontology building methodologies the capturing of the
argumentation during the construction was neglected. In the field of Software Engineer-
ing capturing of arguments during the requirements analysis has been well-researched
in the last decade. We have introduced an argumentation model tailored for the specific
requirements for ontology building and maintenance [TPSS05] (cf. section 4.7). In our
process the explanation of the design principles underlying the conceptual model is of
particular interest, since not all users are necessarily involved in the first building process
but are allowed to change the ontology in later stages. Therefore, the arguments in favor
and against certain design decisions must be captured to allow the users of the ontology
to extend and change the shared ontology adequately.

Evaluation of shared ontology Ontology evaluation is not a mature area of ontology
engineering yet. Several approaches to evaluate ontologies propose partial solutions for
the evaluation of ontologies, from a general-purpose or a usage-related perspective. Ap-
proaches to evaluate ontologies in the first category introduce methods focusing on the on-
tologies schema, i.e. the quality of the conceptual model [GPFLC03, GW02, UHW+98].
Assessing the usability of an ontology in a target application context, the second category,
is addressed for example in OntoMetric [LTGP04], a framework for selecting appropriate
ontologies. Additionally to these categories, we find approaches to evaluate ontologies
aiming at evaluating the a-posteriori usage of an ontology for a specific task such as se-
mantic annotation of texts.

Documentation Ideally the documentation step should be performed in parallel to the
aforementioned activities, in order to ensure an efficient process quality control and im-
prove the reusability of the prototypical ontology, which is subject of further changes on
the basis on its usage in a variety of environments in the distributed setting. Likewise
Software Engineering it is crucial that the documentation is performed not only at the
implementation level, but during the entire building process, including domain analysis
and evaluation. Additionally to standard documentation procedures, in our process it is
helpful to capture the participants in the original building process, who were involved in
the initial design decisions.

60 CHAPTER 4. DILIGENT PROCESS AND ARGUMENTATION FRAMEWORK

4.4.2 Local Adaptation

Once an initial ontology is built and released, users will start to adapt it locally for their
own purposes.
New shared ontologies are made available to users either by push or pull mechanisms.
The users deciding to utilize a new version of the shared ontology first get familiar with
the shared ontology in order to be able to use it correctly. In the next step they may interact
with the ontology in parallel in a threefold manner, depending on the concrete application
setting. Some users will use the ontology only for retrieving information either locally or
from other participants. Others will also actively instantiate the ontology with their own
information. Performing both activities the user may detect missing conceptualizations
in the shared ontology. This and the analysis of shared ontology can result in the local
definition of new requirements for the shared ontology.

4.4.2.1 Roles

The actors involved in the local adaptation step are users of the ontology. They use the
ontology to retrieve e.g. documents which are related to certain topics modeled in the on-
tology or more structured data like the projects an employee was involved in. Information
gathering need not be their main objective, but they may rather need the information to
fulfill their individual tasks.

4.4.2.2 Input

Besides the common shared ontology, in the local adaptation step the information avail-
able in the local information space is used. This can be existing databases, ontologies
or folder structures and documents. Furthermore the user can consult at any time the
ontologies and e.g. folder structures of other users.

4.4.2.3 Output

The output of the process step is a locally changed ontology which better reflects the
users needs. Each change is supported by arguments explaining the reasons for a certain
change. We here emphasize that changes are not propagated to the shared ontology. Only
in the analysis step the board gathers all ontology change requests and the corresponding
arguments to be able to evolve the common shared ontology in the revision step. The
result is a set of locally changed ontologies and a set of requests for changes made to the
board. All these are associated to arguments underlying the required changes.

4.4. GENERIC DETAILED PROCESS DESCRIPTION 61

4.4.2.4 Decisions

The actors must decide which changes they want to make to their ontology. Hence, they
must decide if and where new concepts are needed and which relations a concept should
have. 6. They must further provide reasons why they made certain decisions. To evaluate
the decisions we propose to calculate the ratio between available information and the
information which can be classified according to the adapted ontology. The proportion
should ideally be high. Further classifications should be specific. Local concepts which
could not be aligned with shared concepts should be introduced as local adaptations.

4.4.2.5 Activities

Conceptualizing the new requirements for the ontology incorporates activities as they are
known from classical ontology engineering. Ontology users might decide to integrate ex-
isting ontologies (originating from different local parties involved in the process) to the
local one or to conceptualize the desired changes from scratch. As other users, in partic-
ular the board, should be able to understand these changes, argument provision becomes
crucial. Documentation is the last activity in the process. We acknowledge though that
documentation was rarely done in most of our case studies. Figure 4.4 visualizes the
dependencies between the single activities.

To achieve the desired output the user takes different activities namely Local analy-
sis of shared ontology, Specification of new requirements, Ontology utilization, Ontology
instantiation, Local analysis of additional (local) ontologies, Customization of relevant
(local) ontologies, Integration of reused (local) ontologies to the shared ontology, Mod-
ification of shared ontology, Argument provision, Evaluation of new local ontology and
Documentation.

The evaluation of the adapted shared ontology might suggest that not all local require-
ments for the ontology are met yet, thus we define a cyclic behavior inside the process
stage. The single activities performed manually would require a grounded understanding
of ontologies and their underlying formal representation. We cannot expect such knowl-
edge from all actors participating in the process. The process should rather be integrated
seamlessly in the environment the user works in.

Local analysis of shared ontology The goal of this activity is to understand the ontol-
ogy. An ontology is a conceptualization of the real world. It should furthermore be the
result of a common agreement w.r.t. modeling issues. A completely shared ontology can
never be engineered, since different people have varying interpretations of the real world.
Therefore it is necessary as a first action to relate the own interpretation of the world to
the shared conceptual model. Thus the user should learn where the different concepts are

6When we talk about changing the ontology or introduce new concepts this applies also to relations and
axioms

62 CHAPTER 4. DILIGENT PROCESS AND ARGUMENTATION FRAMEWORK

located in the ontology and how they are interrelated with other concepts. The ontology
can be very complex, thus comprehension of the ontology depends mainly on its presenta-
tion. Different technologies can be used to provide the user with a context-sensitive view
on the ontology to reduce complexity.

Local
Adaptation

Local analysis of
shared ontology

Ontology InstantiationOntology utilizationSpecification of new
requirements Ontology InstantiationOntology utilizationSpecification of new
requirements

Evaluation of new local
ontology

Documentation

Local analysis of
additional (local)

ontologies
Argument provisionModification of shared

ontology

Local analysis of
additional (local)

ontologies
Argument provisionModification of shared

ontology

Customization of
relevant local

ontologies

Integration of reused
local ontologies to the

shared ontology

Figure 4.4: Local Adaptation: Activity Diagram

4.4. GENERIC DETAILED PROCESS DESCRIPTION 63

After completing this activity the user is able to instantiate the ontology and to use it
to answer her information needs. It is not necessary that the user understands the entire
ontology immediately. The analysis can be performed gradually. However for the parts
the user modifies, instantiates or uses in subsequent activities she must first understand
what these parts are about.

In order to understand the shared ontology the user should first look at the different
modules (implicitly) defined in the ontology. She can then consult the definitions of the
concepts and read the available documentation. The arguments underlying the conceptu-
alization may also be helpful.

As a guideline the user should start to understand the concept hierarchy before looking
at the relations between the concepts. Defined axioms and inference rules are likely to be
regarded last, because their understandability assumes a satisfactory comprehension level
of the concepts, taxonomy and interconceptual relations. The meaning of the instances
defined in the shared ontology may serve as good examples.

The analysis of the shared ontology is followed by three alternative activities. The
user might organize her local knowledge according to the ontology, modify it in order
to improve its usability in the local context or use it to retrieve knowledge from the sys-
tem. Hence, the underlying ontology can actually change depending whether the user has
modified it in any of the parallel activities.

Ontology utilization This activity summarizes the general utilization of the ontology
as a means to query and gather local and remote information. Depending on the restric-
tions imposed by privacy laws, the utilization can be automatically monitored in order to
detect usage patterns. Frequency of use of certain entities in the ontology can enable the
board to enhance the quality of the conceptual model. In case users miss concepts when
formulating their information needs new requirements for the ontology emerge.

The activity continues during the entire local adaptation step and is not proceeded by
other activities.

Ontology instantiation Ontology instantiation also known as ontology population is
the activity of classifying the available knowledge in terms of the ontology. The local
information is one source of available knowledge7 Other sources are the participants in
the process and external providers. With this activity all participants contribute to the
collective knowledge available in the system. Users also integrate knowledge they have
retrieved from third parties into their own knowledge base. Relations between own and
other conceptualizations beyond the already shared ontology might be detected during the
integration of external knowledge to the local repository. This activity includes also the
provision of mappings between equivalent conceptualizations from different users.

7In our case studies the local information consisted of documents, contacts, emails, Web bookmarks etc.

64 CHAPTER 4. DILIGENT PROCESS AND ARGUMENTATION FRAMEWORK

The local and remote information may contain knowledge which cannot be formalized
in the shared ontology and thus can lead to the specification of new local requirements
for the ontology. Depending on the ontology and the objective of system, information can
be organized thematically. In our case studies the ontology comprised a topic hierarchy.
Which knowledge is finally encoded in the ontology depends on the design of the ontology
and the user needs. We have observed also different instantiation styles. Some users are
very enthusiastic and instantiate the ontology very quickly other are more reluctant and
shy away from the initial extra effort.

The activity continues during the entire local adaptation step and is not proceeded by
other activities.

Specification of new requirements During the local adaptation phase, the more impor-
tant activities from an ontology engineering perspective occur when the user realizes that
the shared ontology does not conform to the requirements for the local application setting
and should thus be modified to met these additional requirements. The objective of this
activity is to identify and specify the requirements for the local ontology.

The task(s) the ontology is involved in play(s) an important role in identifying the
requirements for the local ontology. The possibilities are wide-ranging. As already men-
tioned in the build phase trained ontology engineers can use ORSD documents to capture
the requirements for the ontology in this phase [Sur03]. Other methods to identify re-
quirements have also been mentioned in conjunction with traditional ontology building
efforts. 8 Requirements for the ontology can be derived from competency questions as it
was suggested in [GF95a]. Existing ontologies might be the driver for new requirements
as well. In our case study the identification of requirements for the local ontology by
the analysis of existing folder structures was particularly useful. It is important to note
that requirements for the local ontology can also come from other users – one partici-
pant in the process captures the requirements for the shared ontology of other users as a
representative.

The user must decide whether to implement the requirements for the local ontology
consulting other users, adapting the local ontology on her own or to submit the require-
ments to a representative.

Local analysis of additional (local) ontologies Depending on the ontology develop-
ment scenario the user might have access to other parties’ ontologies and integrate their
local adaptations in her own application ontology as a resource saving alternative to a
new build. This activity is related to the activities defined in ontology building by reuse.
As described above in the reuse setting ontology engineers must thoroughly examine the

8The users in our case study were mainly missing topics to be able to classify their documents in a
enough fine granular manner. In this case the requirements analysis was less structured and mainly driven
by the users experiences in instantiating the ontology.

4.4. GENERIC DETAILED PROCESS DESCRIPTION 65

candidate ontologies. The ontology engineer should for example consider which concep-
tualizations must be change, removed, relocated, which definitions and documentations
must be changed etc. Note that the translation of the ontologies involved in this reuse
attempt is not an issue in DILIGENT, which assumes the usage of a unique representation
language for the shared and local ontologies in the distributed scenario.

Reusing existing ontologies is a feasible alternative for both technically versed on-
tology engineers, which follow established reuse methodologies to fulfill this task, and
eventually less experienced ontology users. The users should analyze the external ontolo-
gies in a straightforward manner. The shared ontology allows for examining only certain
parts of the ontology and consider only them for reuse. Furthermore, users reuse other
ontologies although they might not exactly fit their requirements for the ontology, since
they do not agree building it on their own. If only small modifications of the shared on-
tology are needed to meet the user requirements for the local ontology then users will not
consider remote local ontologies.

In any case the result of the activity is the decision from whom to reuse which parts
of the remote local ontologies.

Customization of relevant local ontologies The goal and the content of this activity
depend on the result of evaluating external ontologies w.r.t. their local suitability. In the
extreme fusion case the reused ontology serves only as an input to be completely reor-
ganized. In the case of integration to the shared ontology parts of the remote ontologies
can be reused unchanged. Depending on the reuse level the remote ontologies might be
subject of more or less radical customization measures. However, a lower customization
effort will help the board to find reuse patterns.

The result of this activity is an ontology which can be integrated with the local shared
ontology.

Integration of reused local ontologies to the shared ontology Finally the reused re-
mote ontologies should be locally aligned to the shared ontology. This may result in the
modification in their shared ontology. Again generalization or refinements can be neces-
sary in order to integrate the reused ontologies.

Additionally to the traditional reuse activity the integration with the shared ontology
involves a mapping task. The users keep a direct reference to the reused conceptualiza-
tions, with the beneficial consequences that they can access the remote users data and that
the board can recognize communalities between different users, and utilize this knowl-
edge when changing the shared ontology.

The result of this activity is an locally adapted shared ontology with adaptations based
on remote users ontologies. The origin of the adaptations is stored in mappings between
the reused and local ontologies.

66 CHAPTER 4. DILIGENT PROCESS AND ARGUMENTATION FRAMEWORK

Modification of shared ontology The modification of the shared ontology is another
option to adapt it to the local requirements for the ontology. Modifications range from
small changes e.g. adding a new concept or relation to a complete restructuring of the
shared ontology. The local requirements for the local ontology can also implicate that an
entire new module should be integrated into the shared ontology.

The user should decide which parts of the ontology should be changed and how to
implement the desired changes. The changes the user introduces may point to missing
abstractions in the existing model.

Furthermore this activity starts from similar assumptions as they were described in
the Sensus methodology [SPKR96]. The shared ontology represents far more knowledge
than the user actually needs. This implies that the user will remove a number of concep-
tualizations from the shared ontology and maintain only a smaller part. In this case the
board has the challenging task to decide which parts of the shared ontology should be
removed because they are not needed and which parts are e.g. to general to be used but
helpful for inter-user communication.

This activity includes the conceptualization as well as the implementation of the re-
quired changes.

As a result of this activity the local ontology mets the local requirements on it.

Argument provision As far as possible the user should track the reasons why certain
modeling decisions were performed in a certain way. We propose the provision of argu-
ments according to a specific model [TPSS05, PSTS04] to capture these decisions. The
model defines the process of providing arguments and several kinds of arguments, and
aids decision making. While the latter is particularly relevant to collaborative ontology
engineering, the first two aspects will help the board to understand the users decisions.

Arguments can range from simple usage examples (e.g., some document could not be
classified using the ontology, some query could not be answered by the ontology to a sat-
isfactory extent) to twisted argumentations trading-off the pro’s and con’s of a decision.
The more expressive the argumentation is, the easier it will be for the board to understand
the reasons for the decisions and to integrate the newly submitted change requests to the
shared ontology. Additionally, users intending to reuse the conceptualization – as afore-
mentioned in the previous, reuse-oriented activities – are provided considerable support
to comprehend and use the corresponding ontology correctly.

Evaluation of new local ontology The evaluation procedure is divided into three cate-
gories. The syntactic, semantic and pragmatic evaluation of the new local ontology. As
the user utilizes the ontology mainly to organize her own knowledge the pragmatic evalu-
ation is predominant in this activity. She can quickly realize whether the proposed way of
organizing her knowledge in the shared ontology is sufficient to capture her local knowl-
edge. The user requirements for the local ontology change with time, hence a sufficient

4.4. GENERIC DETAILED PROCESS DESCRIPTION 67

local ontology can become insufficient after some time. In this case the user will start the
process again and capture the emerging requirements for the ontology.

Documentation As far as possible the user should document the changes introduced
into the shared ontology. Documentation includes the meta data provision like, when a
change was performed, who has performed the change, if the change was done on request
from an other user etc. Furthermore, brief description of the added conceptualizations
will facilitate the boards task.

4.4.2.6 Use Case Specific Actions in the Generic Description

In the use case specific version of the DILIGENT process model six actions are defined
for the Local Adaptation stage. The scope of Understand shared ontology is broad-
ened by adding evaluation aspects and is now called Local analysis of shared
ontology emphasizing the different location between creation and usage of the ontol-
ogy. The activities Identify communalities and Identify missing are merged and found
in Specification of new requirements. The activity Map equivalent is part
of the Ontology instantiation and the Integration of reused local
ontologies to the shared ontology. Organize local knowledge is included
in the Ontology instantiation activity. The use of the ontology is not an explicit
activity in the use case version of the methodology, but since it is a major source for
the detection of new requirements for the local ontology we introduced it as Ontology
utilization.

The local adaptation of the shared ontology, is for the user one action, viz. Change
locally, and spread along four activities Local analysis of additional
ontologies, Customization of relevant ontologies, Integration
of reused local ontologies to the shared ontology and
Modification of shared ontology to account for the different ways of
realizing it. In case ontologies from other users are reused we use the terminology
established in the literature for these purposes. Note that this is a different activity than
the modification of the shared ontology, since it implies for instance the comprehension
and evaluation of ontologies developed at different sites in the local context.

In compliance with established ontology engineering methodologies we further
introduced the activities Argument provision, Evaluation of new local
ontology and Documentation, which are not explicit in the use case specific ver-
sion.

68 CHAPTER 4. DILIGENT PROCESS AND ARGUMENTATION FRAMEWORK

4.4.3 Analysis

As described in the methodology, the board will come together in fixed time lines or when
a certain threshold of change requests has been reached. The frequency of this analysis is
determined based on the frequency and volume of changes to the local ontologies. They
will subsequently analyze the activities which have taken place. They will gather the
ontologies from all participating peers on one central peer. The main task of the board is
to incorporate the change requests into the core ontology and to identify common usage
patterns. Our tool supports the board members in different ways to fulfill their task.

4.4.3.1 Roles

In the analysis stage we can distinguish three roles played by board members: (i) The
domain expert decides which changes to the common ontology are relevant for the domain
and which are relevant for smaller communities only. (ii) Representatives of the users
explain different requirements for the shared ontology from the usability perspective. At
this stage, work is conducted at a conceptual level. (iii) The ontology engineers analyze
the proposed changes from a knowledge representation point of view foreseeing whether
the requested changes could later be formalized and implemented.9

4.4.3.2 Decisions

The board must decide which changes to introduce into the new shared ontology at the
conceptual level. Metrics to support this decision are (i) the number of users who intro-
duced a change in proportion to all users who made changes. (ii) The number of queries
including certain concepts. (iii) The number of concepts adapted by the users from previ-
ous rounds.

4.4.3.3 Input

The analysis stage takes as input the ontology changes proposed and/or made by the par-
ticipating actors. To be able to understand the change requests, users should provide
their reasons for each request. Both manual and automated methods can be used in the
previous stages. Besides of arguments by ontology stakeholders, one may here consider
rationales generated by automated methods, e.g. ontology learning. The arguments un-
derlying the proposed changes constitute important input for the board to achieve a well
balanced decision about which changes to adopt.

9In the revision stage.

4.4. GENERIC DETAILED PROCESS DESCRIPTION 69

4.4.3.4 Output

The result is a list of the major changes to be introduced that were agreed by the board.
Hence, all changes which should not be introduced into the shared ontology are filtered.
In this stage it is not required to decide the final modelling of the shared ontology.

4.4.3.5 Activities

The board meets regularly in order to include emerging requirements for the shared ontol-
ogy to the existing one. To achieve the desired output the board takes different activities
namely Information collection from users Analysis of obtained information Control of
previously shared ontology Specification of new requirements .

We now detail each one of the proposed activities:

Centralized
Analysis

Analysis of the
obtained information

Information collection
from users

Specification of new
requirements

Control of previously
shared ontology

Specification of new
requirements

Control of previously
shared ontology

Argument Provision
Customization of

relevant local
ontologies

Modification of shared
ontology Argument Provision

Customization of
relevant local

ontologies

Modification of shared
ontology

Integration of reused
local ontologies to the

shared ontology

Figure 4.5: Analysis: Activity Diagram

70 CHAPTER 4. DILIGENT PROCESS AND ARGUMENTATION FRAMEWORK

Information collection from users Before the board can identify new requirements for
the shared ontology it collects the local ontologies from all participants, the respective
argumentation, change requests provided by other means, usage information and finally
mapping information.

Depending on the deployed application the gathering of the locally updated ontologies
can be more or less difficult. It is important that the board has access to the local changes
from users to be able to analyze them.

This activity reminds of the classical reuse approach to ontology building in which
candidate ontologies must be gathered. In contrast to the classical reuse approach to build
ontologies the ontologies which must be integrated into the shared ontology is given.
Furthermore the domain and application scenario are already defined. Usage information
for the ontology is available, hence the relevance for the shared ontology is easier to
determine. No translation must be performed in order to integrate the ontologies.

Control of previously shared ontology The goal of this activity is to examine the
changes introduced in the last cycle. Specifically the board checks how many users have
integrated the proposed changes and the tasks the shared ontology was used for. The board
can detect if the users accept the common conceptualizations, if the analysis methods are
appropriate and if the users understand and agree with the view of the board.

The averaged adaptation rate of concepts from the core ontology and also of concepts
from different users is an indicator of how well a concept fits the user needs (cf. 4.1). If a
concept of the core ontology was not accepted by the users it probably has to be changed.
Alternatively, a concept introduced by a user which has been reused by many other users
can easily be integrated into the core ontology.

adaptation rate :=
No of participant who have locally included the concept

No of participants
(4.1)

Specification of new requirements New requirements for the shared ontology can be
obtained by analyzing the change requests, the changes in the local ontologies and the
arguments provided by the users.

Analysis of obtained information It might also be interesting not only to analyze the
final user ontology, but also its evolution. However, with an increasing number of partic-
ipants this in-depth analysis might be unfeasible. Since analysis takes place at the con-
ceptual level, reverse engineering is usually an important technique to get the conceptual
model from the formalized model [GPFLC03].

The number of change requests may be huge and also contradictory. First the board
must identify the different areas in which changes took place. Within analysis the board

4.4. GENERIC DETAILED PROCESS DESCRIPTION 71

should bear in mind that changes of concepts should be analyzed before changes of re-
lations and these before changes of axioms. Good indicators for changes relevant to the
users are (i) overlapping changes and (ii) their frequency. Furthermore, the board should
analyze (iii) the queries made to the ontology. This should help to find out which parts
of the ontology are frequently used. Since actors instantiate the ontology locally, (iv) the
number of instances for the different proposed changes can also be used to determine the
relevance of certain adaptations.

Argument provision As described above we have conceived an argumentation frame-
work to support the discussion taking place in collaborative ontology engineering. The
board is also supported in making decisions.

4.4.3.6 Use Case Specific Actions in the Generic Description

In the use case specific version of the process we define six activities for the centralized
analysis. The activity Gather updated ontologies is broader in the general case and in-
cludes the collection of all relevant information from the users, such as arguments and
informal change requests. It is called Information collection from users.
The activity Analyze changes conceptually is thus broader in the general case and is
called Analysis of obtained information accounting for the different ways
change requests can be made. We further introduce a controlling activity, Control
of previously shared ontology, in order to establish a feedback loop in our
process.

The activity Decide on changes to be made is described as Specification of
new requirements.

4.4.4 Revision

While we could evaluate the local update and analysis step of our process model already
in small experiments the revision phase and local update phase are not well tested yet.
Hence, due to the early stage of the project the revision phase and the local update phase
are not yet very well elaborated. We here just sketch some general observations and point
our future directions of research.

4.4.4.1 Roles

The ontology engineer judges the changes from an ontological perspective, more exactly
at a formalization level. Some changes may be relevant for the common ontology, but
may not be correctly formulated by the users. The domain experts should judge and

72 CHAPTER 4. DILIGENT PROCESS AND ARGUMENTATION FRAMEWORK

decide whether new concepts/relations should be introduced into the common ontology
even so they were not requested by the users.

4.4.4.2 Input

The input for the revision phase is a list of changes at a conceptual level which should be
included into the ontology.

4.4.4.3 Decisions

The main decisions in the revision phase are formal ones. All intended changes identified
during the analysis phase should be included into the common ontology. In the revision
phase the ontology engineer decides how the requested changes should be formalized.
Evaluation of the decisions is performed by comparing the changes on conceptual level
with the final formal decisions. The differences between the original formalization by the
users and the final formalization in the shared ontology should be minimal.

4.4.4.4 Output

The revision phase ends when all changes are formalized and well documented in the
common ontology.

4.4.4.5 Activities

Customization of relevant local ontologies Integration of reused local ontologies to the
shared ontology Modification of shared ontology Argument provision Argumentation ag-
gregation Evaluation of new shared ontology Documentation and Distribution of new
shared ontology

Customization of relevant local ontologies After analyzing the changes and assigning
them according to the concrete ontology modules they address, the board has to identify
the most relevant changes. Based on the provided arguments the board must decide which
changes should be introduced. Depending on the quality of the arguments the board itself
might argue about different changes. For instance, the board may decide to introduce
a new concept that better abstracts several specific concepts introduced by users, and
connect it to the several specific ones. Therefore, the final decisions entail some form of
evaluation from a domain and a usage point of view.

Integration of reused local ontologies to the shared ontology The customized reused
local ontologies must be integrated with shared ontology. Here again it might be necessary

4.4. GENERIC DETAILED PROCESS DESCRIPTION 73

to include abstractions or refinements into the shared ontology in order to be able to
integrate the reused ontologies adequately.

Modification of shared ontology Similar to established methodologies the requested
changes must be formalized with respect to the expressivity of the ontology. We will not
go into detail with this step since it is already described in methodologies referred to in
the related work section.

Evaluation of new shared ontology The board will evaluate the shared ontology from
an syntactic and semantic perspective.

Revision

Argumentation
aggregationDocumentation Argumentation
aggregationDocumentation

Evaluation of new
shared ontology

Distribution of new
shared ontology

Specification of new
requirements

Figure 4.6: Revision: Activity Diagram

74 CHAPTER 4. DILIGENT PROCESS AND ARGUMENTATION FRAMEWORK

Argumentation aggregation As arguments play a major role in the decision process
we expect that the changes which are eventually included into the common ontology are
supported by many arguments. One of the reasons for keeping track of the arguments is
to enable users to better understand why certain decisions have been made with respect to
the ontology. Hence, the user should be able to retrieve the most convincing arguments
made to introduce a certain change. Here the board aggregates the arguments exchanged
during their discussion and makes them more accessible.

Documentation Additionally to the regular documentation suggested for all ontology
development process, like authors, number of concepts, purpose of the ontology, we sug-
gest to include the names of the board members, the number of users participating in the
ontology evolution, the version very important, the date of revision, in case of conflicting
design decisions the voting of the board, the alternatives, the next planned revision date,
the voting mechanism, decision procedure and included ontologies.

With the help of the arguments, the introduced changes are already well documented.
However, we assume that some arguments might only be understandable for the domain
expert and not for the users. Hence, we expect that the changes should be document to a
certain level. In particular it should be documented who supported certain conceptualiza-
tions and the alternatives.

Distribution of new shared ontology Analogously to step 4.4.3 the shared ontology
must be distributed to the different participants. Depending on the overall system archi-
tecture different methods can be applied here.

4.4.4.6 Use case Specific Actions in the Generic Description

Existing methodologies describe the activity Formalization of relevant changes as four
separate activities: Customization of relevant local ontologies,
Integration of reused local ontologies, Integration
of reused local ontologies to the shared ontology and
Modification of shared ontology. On the one hand the board will
reuse the local ontologies from the users to extend the shared ontology on the other
hand user can request changes informally which then lead to modifications of the shared
ontology.

We further introduce explicitly the activity for Argument provision and for the
Evaluation of new shared ontology.

The activities Aggregation of arguments and Documentation are unchanged, though
they are renamed to Argumentation aggregation and Documentation, re-
spectively.

In order to separate activities performed centrally or locally the last activity of this

4.4. GENERIC DETAILED PROCESS DESCRIPTION 75

stage is the Distribution of new shared ontologywhich was previously an
activity of the Local Update stage.

4.4.5 Local Update

As a result of the revision stage the participants in the process are aware of the new
version of the shared ontology. They must now decide which parts - if any - they use
from the new shared ontology. Switching from one ontology to an update incurs effort for
understanding the new parts and partly reorganizing the local knowledge base. The gains
of updating are lower communication effort and actual information. The incentives for the
user to update are higher the more change requests to the shared conceptualizations are
included in the shared ontology. Thus the user controls how many of the own proposals
are included in the new version and in which way they are implemented. Furthermore the
user analyzes all changes to the shared ontology and decides whether to finally integrate
the new version with her local ontology.

4.4.5.1 Roles

The local update phase involves only the users. They perform different activities to in-
clude the new common ontology into their local system before they start a new round of
local adaptation.

4.4.5.2 Input

The formalized ontology including the most relevant change request is the input for this
step. We also require as an input the documentation of the changes. For a better under-
standing the user can request a delta to the original version.

4.4.5.3 Output

The output of the local update phase is an updated local ontology which includes all
changes made to the common ontology. However, we do not require the users to perform
all changes proposed by the board. The output is not mandatory, since the actors could
change the new ontology back to the old one in the local adaptation stage.

4.4.5.4 Decisions

The user must decide which changes he will introduce locally. This depends on the differ-
ences between the own and the new shared conceptualization. The user does not need to
update her entire ontology. This stage interferes a lot with the next local adaptation stage.

76 CHAPTER 4. DILIGENT PROCESS AND ARGUMENTATION FRAMEWORK

4.4.5.5 Activities

This stage can be divided into the three activities Control of new shared ontology Local
analysis of changes in the new shared ontology and Integration of new and old version.

Control of new shared ontology Likewise the board controlling the acceptance of the
shared ontology the user controls the implementation of her own proposals. The user
controls whether the proposed changes are implemented in the new shared ontology at

Local analysis of
changes in the new

shared ontology

Control of new shared
ontology

Integration of new and
old version

Input:
- New shared ontology
- Arguments

Output:
- Integrated local ontology

Figure 4.7: Local Update: Activity Diagram

4.4. GENERIC DETAILED PROCESS DESCRIPTION 77

all, conceptually or as proposed. This allows the user to judge which of her proposal
are interesting for the community. Furthermore she learns how the board translates the
proposals into conceptualizations in the shared ontology.

overlapMeasure =
#integratedChanges

#totalLocalRequests
(4.2)

directOverlapMeasure =
#directlyIntegratedChanges

#totalLocalChanges
(4.3)

conceptualOverlapMeasure =
#conceptuallyIntegratedChanges

#totalLocalRequests
(4.4)

#integratedChanges = #directlyIntegratedChanges +

#conceptuallyIntegratedChanges +

#integratedChangesArguments (4.5)

Local analysis of changes in the new shared ontology The user changes locally to the
new shared ontology only if her benefits predominate the effort of updating. The analysis
of the introduced changes inform her whether the changes effect her or not.

Technically this step requires the construction of a delta view on the ontology.

Integration of new and old version The result of the analysis is the decision to inte-
grate completely or partially the new shared ontology with the existing local ontology.
The new shared ontology may contain refinements of existing model. In this case the user
should consider to adapt her instantiations with respect to the refinements. The outcome
of the controlling activity allows the user to decide which restructuring she must perform
in order to stay in line with the new model. The new version can also be a model for
knowledge which was previously not covered by the shared ontology. In this case the
existing local knowledge can be the source for the population of the ontology in the next
stage.

From a technical point of view we could identify several requirements for the accep-
tance of the process model from the case study. Acceptance and usability of the process
model largely depends on the ease of translation from old to new versions. As in other
systems the possibility to switch automatically between the different versions of the on-
tology enhances user experience. The system must support the user to easily integrate the
new version into her local system. It must be guaranteed that all annotations made for the
old version of the ontology are available in the new version.

The user should be enabled to use from now on the shared model instead of her own
identical model. Furthermore, the board might have included a change based on argu-
ments the user was bringing forward, but has drawn different conclusions. Here the user
can decide whether he prefers the shared interpretation. Other option might emerge in the
course of the case studies.

78 CHAPTER 4. DILIGENT PROCESS AND ARGUMENTATION FRAMEWORK

To ensure user satisfaction, the system must enable the user to return to her old version
of the ontology at any time. The user might realize that the new updated version of
the common ontology does not represent her needs anymore and thus want to leave the
update cycle out. To reach a better acceptance this must be possible and is foreseen in
the methodology. The user can always balance between the advantages of using a shared
ontology or using her own conceptual model.

After the local update took place the iteration continues with local adaptation. During
the next analysis step the board will review which changes were actually accepted by the
users.

4.4.5.6 Use Case Specific Actions in the Generic Description

The activity Distribution of the new ontology is part of the previous stage in the general
version. The activities Tagging of the old ontology and Local inclusion of the update in
the old version of the process model are technically motivated. Though technically neces-
sary, methodologically they are rather part of the Integration of new and old
version activity as define in the general version. This covers also the Alignment of old
and new versions. Before the actual integration of the new version with the old version
can be processed we introduced a Control new shared ontology activity to al-
low for feedback to the users. Furthermore we left the decision whether to update to the
new version explicitly to the user. The Local analysis of changes in the
new shared ontology is the basis for this decision.

4.5 Requirements for DILIGENT Tool Support

The efficient application of a process model depends on the tool support for its phases.
Therefore we analyze each phase, taking into account the defined activities, in order to
derive the requirements to support them. Our case study experiences in ontology en-
gineering, literature analysis and our scenario are the main drivers of our requirements
specification, therefore in other application scenarios new requirements for tool support
can emerge. The requirements derived from activities described in other methodologies
are summarized briefly and we focus on those specific to our process model.

Grouped by the process stages we describe for each activity the process specific re-
quirements for tool support. In case an activity duplicates the requirements for tool sup-
port of another activity we reference the ones mentioned earlier. As the requirements are
later mapped to the functionality provided by the tools we list them and highlight their
names, e.g requirement.

4.5. REQUIREMENTS FOR DILIGENT TOOL SUPPORT 79

4.5.1 Build

As mentioned earlier the building stage is based on established methodologies. Accord-
ingly many requirements for the different activities have already been identified. We sum-
marize them in the following and go into detail only for the requirements arising from the
Argument provision activity.

Available methodologies propose different ways to perform the domain analysis
(Domain analysis) , e.g. domain expert interviews, literature study or workshops. Results
of these activities are e.g. transcripts, lists of documents, lists of competency questions or
mind maps depending on the elicitation procedure. A tool should be able to integrate
all information which lead to the requirement specification for the ontology. Addition-
ally the tool should support requirements specification according to the ontology require-
ments specification document (ORSD) and should store information such as the domain
description, the defined sub domains, the reusable ontologies, the competency questions
and other relevant meta information.

Ones the requirements are specified the board builds the shared ontology. A tool
should support adding and removing of concepts, ontology management tasks, e.g. ver-
sioning, storing and evolution and ontology visualization tasks (Ontology editing) . In
case ontologies are reused their integration should be supported, thus import of ontologies
serialized in different formalization languages, copy and paste etc..

The board should evaluate the shared ontology according to predefined metrics
(Ontology evaluation) . On the syntactic level the tool should ensure the correctness
of the ontology w.r.t. the chosen representation language. Several metrics have been de-
fined to facilitate ontology evaluation on the semantic level, which should be supported
by the tool. The usability of the ontology is tested on the pragmatic level. Integrated
feedback mechanisms can help to capture user satisfaction with the ontology.

Argument provision is an activity so far not defined in other methodologies. There-
fore we elaborate on the requirements for tool support with more detail. Based on our
experiments and a review of requirements for tools supporting arbitrary argumentation
[CB88] we identified the following requirements for argumentation tool support. These
requirements are later on refer to as (Argument provision) .

1. (Communication) In our scenario participants in the ontology engineering discus-
sion are distributed. Thus discussion can take place online. This means that all
participants should be able to obtain up-to-date information about the exchanged
arguments, the agreed upon issues, the issues currently under discussion and the
available participants. On the other hand the engineering process can be organized
asynchronously. In this case the discussants provide their arguments independently
of the others. In this case the tool should highlight the new information and inform
participants if someone has opposed or agreed to their suggestions.

2. (Issue / Idea stack) The issues and ideas should be grouped according to their

80 CHAPTER 4. DILIGENT PROCESS AND ARGUMENTATION FRAMEWORK

priority. Not all issues/ideas can be discussed at the same time. The tool should
visualize which issues have already been agreed upon, which are under discus-
sion and which have been postponed. The status of an issue/idea should be easily
changeable.

3. (Classifiable arguments) As we have predefined the types of arguments the tool
should support the user in selecting them. This can be achieved by templates, which
suggest a way of formulating a specific argument. Another option is the automatic
classification of the argument types, if the arguments are provided as free text.

4. (Voting mechanism) If an issue or idea cannot be agreed upon unanimously, the
participants must vote for their favorite. The tool should support different decision
mechanisms such as majority voting. The participants should be given a time frame
to vote.

5. (Integration into Ontology Editor) The integration of the argumentation with
an ontology editor is important, as the argumentation is a support activity. The
discussants should not be forced to change tools for discussing the ontology and
building it. Although argument capturing has immediate and long term benefits, it
requires additional effort from the users. Usability aspects are therefore in particular
important. It has the further advantage, that reasoning capabilities and different
visualization techniques are already available.

6. (Concurrent ontology visualization) During the discussion the ontology evolves
in different ways. Hence different models of the same ontology exit, while some
parts are already agreed by all participants, other are still under discussion. To
enable the participants to evaluate and compare the different proposals, the tool
should be able to visualize the concurrent versions of the ontology. This includes
selection mechanisms, which allow the participants, to select parts of the ontology
proposed by one actor, or to exclude parts of the ontology proposed by another
actor. Furthermore the agreed parts should be selectable and it should be possible
to export these parts in a formal language.

7. (Moderator) In online discussion the tool should allow the moderator to decide
who talks how long and which issue is under discussion. Furthermore, the tool
should provide the moderator with some predefined questions to focus the partici-
pants or restrict their contributions.

As elaborated in other methodologies a tool supporting (Documentation) should
facilitate the description of the ontology on the general level as well as on the concept
level. The tool should ensure the accessability of the documentation. As documentation is
particular important for reuse scenarios of the ontology, the documentation should come
in different languages and include links to the argumentation underlying the modeling
decisions.

4.5. REQUIREMENTS FOR DILIGENT TOOL SUPPORT 81

4.5.2 Local Adaptation

In order to select the requirements for tools motivated by the activities in the local adap-
tation step we distinguish two main types of users. The less frequent type is the user with
ontology engineering competence who analyzes her personal needs, conceptualizes and
formalizes them. He uses established ontological guidelines [GW02] in order to maintain
soundness and validity. Besides, she annotates her knowledge according to her locally
extended ontology. Accordingly, the respective requirements are very similar to the ones
already defined in the previous section.

The more common type of user is a non-ontology engineer. The shared ontology
is regarded as a predefined categorization schema, such as the categorization he defines
in her daily work (e.g. her folder structures). Annotations of documents are primarily
provided in the form of assignments to a specific category. A good shared ontology is
thus one, which allows them to structure their documents and other information.

The analysis of the shared ontology can be facilitated by an appropriate visualization
(Visualization) . A detailed requirements analysis for ontology visualization is beyond
the scope of this thesis. However, in particular for our scenario it is important that the user
has access to the arguments supporting certain parts of the ontology. As the shared on-
tology grows in size highlighting of concepts most relevant for the user context becomes
necessary.
In some application scenarios the user might not be aware that the information is repre-
sented in an ontology. Therefore it depends predominantly on the specific use case for the
application, which kind of user interface is used to efficiently use the ontology (Ontology
use) . Important aspects are a domain specific query interface and answer visualization.
Detailed requirements for tool support should be defined application dependent.

Some users organize their local information according to the ontology. One aspect
is that the local information must be accessed (Access to local information) . The
general solution to link a source with an repository is the introduction of mediators
[AvE04, Wie92], which extract information from the sources and transform it in the tar-
get representation language. In order to support later phases in our process we require
that provenance information is stored. Another aspect regards the annotation of the local
information according to the ontology (Annotation) . As the manual instantiation of an
ontology requires sparse human resources an automated support is desirable. A prominent
information source in the context of the semantic web are web sites. For this particular
case [Han05] has identified the requirements for annotating web sites.

Local information is not only a source for ontology population but can also indicate
that the ontology itself should be changed. The emerging requirements for the ontology
are captured following the argumentation model (Argument provision) . For example in
our case studies the users organized their information in classification structures accord-
ing to their individual views. Requirements for the shared ontology arise mainly from a
mismatch between the locally available classification and the shared ontology. The new

82 CHAPTER 4. DILIGENT PROCESS AND ARGUMENTATION FRAMEWORK

requirements for the local ontology are met by locally editing the shared ontology or by
consulting and integrating ontologies from other users (Ontology editing) . Automatic
generation of an ontology based on locally available information can facilitate the former
strategy (Ontology learning) . A prerequisite to follow the later strategy is the avail-
ability and accessibility of remote ontologies (Access to remote ontologies) . Although
in our case studies all participants represented their ontologies in the same representation
language translation support is required in other cases. The assessment (Visualization)
, including documentation analysis, argument analysis, concept analysis, of the retrieved
ontologies is followed by their local integration, including entity selection, entity map-
ping, entity alignment (Integration) , and provenance storing (Provenance) . The
evaluation of the adapted ontology is performed according to the predefined measures
(Evaluation) and documented to facilitate future usage (Documentation) .

4.5.3 Analyzing

The analysis of the user requests is preceded by the collection of information (Access
to remote ontologies) . The board might trigger the information collection more fre-
quently than having joint meetings, as they gather only if a certain number of changes
has been introduced. Favorably the local ontologies can be obtained directly from the
users. Informal requests of the users should be collected centrally, e.g. a board member is
responsible to collect the information. If the local update procedure should be performed
semi-automatically it is essential that provenance information is delivered with the local
ontologies and the arguments.

In order to analyze the obtained information the board needs to visualize
(Visualization) and group it according to different measures (Clustering) . Experi-
ence from our case studies suggest that the analysis can start with a simple alphabetical
sorting of the introduced ontology entities. However, more sophisticated groupings ac-
cording to similar topics or similar aspects of the ontology are desirable. In particular
arguments and issues provided as part of the argumentation framework, which point in
the same direction should be grouped together. Progress information and responsibilities
should be assigned to the change requests, if their number is very large .

Another important aspect is calculation of the defined metrics (Measurement cal-
culation) , which depends on the availability of provenance and usage information. The
metrics defined w.r.t the utilization and adaptation of the shared ontology support the
board judging their previous revision. The metrics defined w.r.t the requested changes
allow the board to identify the parts of the shared ontology which need a revision. Based
on the change requests and the local changes to the shared ontology the board is able to
specify new requirements for the next version of the shared ontology.

4.5. REQUIREMENTS FOR DILIGENT TOOL SUPPORT 83

4.5.4 Revision

The conceptualizations following from requirements identified in the previous phase must
be implemented in the revision phase. This requires basic editing functionality (Ontology
editing) from a supporting tool. The ontology changes must be resolved taking into
account that the consistency of the underlying ontology and all dependent artifacts are
preserved and may be supervised [SMMS02].

The integration of the new shared ontology with the user’s local ontologies should be
as easy as possible (Provenance) . The changes to the shared ontology based on direct
integration of user proposals should reference the original change. This is also required
for changes which are inspired by user changes or arguments. In this case the provenance
information should include all arguments and changes which lead to the specific decision.
Similarly the trace between summarizing arguments and summarized arguments should
be maintained.

The final changed shared ontology is made available to the users (Publishing) . Either
it can be published centrally and the users are required to obtain on their own request or
it is send to to the user directly.

4.5.5 Local update

The users of the shared ontology have already obtained the shared ontology and decide in
the local update stage if they update to the new version or not. In order to analysis the new
version of the shared ontology they need different (Visualization) options. In particular
the parts of the ontology which have changed in comparison to the users actual version
should be highlighted. The changes based on the user’s own requests are of particular
interest to her. The user’s requests can be integrated into the shared ontology, either
directly, conceptually or based on arguments. The evaluation of the control measurements
can help the user making her decision (Measurement calculation) . The identification of
the directly integrated ontology entities is straightforward and the directOverlapMeasure
can be calculated. In order to calculate the conceptualOverlapMeasure, the local changes
which are not directly integrated must be identified and possibly (automatically) mapped
onto changes introduced in the new shared ontology. The changes introduced based on
user arguments can be recognized if they are represented in the argumentation ontology.

The user finally decides which changes to the shared ontology should be integrated
locally (Local integration) . For this activity it is important, that the consistency of the
local model is kept. The instantiation according to the new local model should not result
in a loss of information in comparison to the previous local model. However, if the user
realizes that h decision to update was a mistake a possibility to restore the old status is
required.

Summarizing, we have identified the following requirements on tool support:

84 CHAPTER 4. DILIGENT PROCESS AND ARGUMENTATION FRAMEWORK

• Access to local information

• Access to remote ontologies

• Argument provision

– Classifiable arguments

– Communication

– Concurrent ontology visualization

– Integration into Ontology Editor

– Issue / Idea stack

– Moderator

– Voting mechanism

• Annotation

• Clustering

• Documentation

• Domain analysis

• Evaluation

• Integration

• Measurement calculation

• Ontology editing

• Ontology evaluation

• Ontology learning

• Ontology use

• Provenance

• Publishing

• Visualization

4.6. ARGUMENTATION FRAMEWORK FOR DILIGENT 85

4.6 Argumentation Framework for DILIGENT

In this section we describe how we specifically investigated whether some argumentation
structures dominate the progress in the ontology engineering task and should therefore be
accounted for in a fine-grained methodology.

4.6.1 Threads of Arguments

A central issue in the DILIGENT process is keeping track of threads of exchanged argu-
ments. We can identify several stages in which arguments play an essential part:

• Ontology is defined as “a shared specification of a conceptualization” [Gru95]. Al-
though “shared” is an essential feature, it is often neglected. In DILIGENT experts
exchange arguments while building the initial shared ontology in order to reach
consensus;

• When users make comments and suggestions to the control board, based on their
local adaptations, they are requested to provide the arguments supporting them;

• while the control board analyses the changes introduced and requested by users,
and balances the different possibilities, arguments are exchanged and balanced to
decide how the shared ontology should change.

There is evidence that distributed ontology development can be rather time consum-
ing, complex and difficult, in particular getting agreement among domain experts. There-
fore, one needs an appropriate framework to assure it in a speedier and easier way. In
order to provide better support, one needs to identify which kind of arguments are more
relevant and effective to reach consensus. The Rhetorical Structure Theory (RST) can be
used to classify the kinds of arguments most often used and identify the most effective
ones.

4.6.2 RST Example

The RST has already been introduced in Section 2.5. In the examples provided within the
case study section we will highlight the different elements of RST in the following way.

span nucleus . . . relation indicator . . .
span satellite Relation

On the one hand we have presentational relations, such as background that increases
the ability of the reader to comprehend an element in N, evidence, where reader’s com-
prehension of S increases his/her belief of N, justify, restatement, summary, etc. On the

86 CHAPTER 4. DILIGENT PROCESS AND ARGUMENTATION FRAMEWORK

other hand we have subject-matter relations, such as elaboration, where S presents addi-
tional detail about what is presented in N, for instance set::member; abstraction::instance;
whole::part, object::attribute, etc., evaluation, purpose, solutionhood, etc. There are
also other relations that do not carry a definite selection of one nucleus, such as contrast,
where the reader recognizes the comparability and differences in situations described in
two N, etc.

The analysis process is intended to give a structured, definite way for a person to
understand the text to state a part of what that understanding includes. Sometimes one
may not find some structural role for every element of the text. A text may have more
than one analysis, either because the observer finds ambiguity or finds that a combination
of analyses best represents the author’s intent. The analysis gives an account of textual
coherence that is independent of the lexical and grammatical forms of the text.

The available tools are tables that explain the relations between spans of text. There-
fore the analysis process is manual, intensive and requires understanding of natural lan-
guage.

4.6.3 Analysis in the Biology Domain

In this section we report how the hypothesis underlying DILIGENT argumentation model
has been developed. We have found in the field of biology a taxonomy that has been
evolving since 1735 for over 200 years, following a DILIGENT 5-step process. A thor-
ough analysis led to a well-defined subset of RST arguments which allows to explain
most of the evolution of the biology taxonomy. In the following Section 4.6.4 we de-
scribe experiments which have been carried out to provide evidence that our approach
to discuss ontologies is applicable in practice and the reduction of arguments leads to a
better process instantiation and better results.

Based on the RST analysis of real arguments that are exchanged and used to support
changes in this taxonomy, we formulated as hypothesis that there is a subset of arguments
that can focus, speed and ease this kind of ontology engineering. In order to prove our
hypothesis we performed an in situ experiment in two rounds. In the first one partic-
ipants were not constrained. In the second one participants were requested to use the
subset of arguments that had been found more effective in the first round. We show the
improvements that were achieved using the restricted set of arguments, proposed in the
fine-grained DILIGENT model of ontology engineering by argumentation.

The taxonomy of living things is essential for those studying, classifying and under-
standing life. When we analyse its evolution since 1735 one notes that it completely
follows the 5-step DILIGENT process. It was initially proposed/built by Linnaeus based
on phenetics (observable features). Each branch of the tree can have at most 26 levels,
depending on how rich a taxa is, in terms of number of beings sharing a given classify-
ing feature. Since the initial proposal, the taxonomy has changed a lot. Let us take the
“highest” level: kingdom. Initially two taxa were identified: animals and plants. When

4.6. ARGUMENTATION FRAMEWORK FOR DILIGENT 87

microorganisms were discovered the moving ones were classified in the animals kingdom
and the colored (non moving) ones in the plants kingdom. A few of them were classified
in both kingdoms. Users were locally adapting the taxonomy for their own purposes. To
more easily identify organisms in both classes, Haeckel (1894) proposed a new kingdom
to more easily identify them, the Protista kingdom. This still exists today and is regarded
as a “junk-basket” category.

Naming is an important issue. Lineaus binomial system (genus and species) is still in
use, because it can univocally identify a given being in the taxonomy.10 Given the diffi-
culty and similarity of some names, the ever evolving new knowledge about ever growing
number of life forms, and the difficulty of making available up-to-date knowledge to all
stakeholders about so many life forms, several problems in designing and managing this
complex and live/dynamic taxonomy arose. For some time, names of plants and animals
have been controlled by different boards, that have to some extent, recorded the problems
and solutions found for each kingdom. They receive requests for changes, analyse them,
balance pros and cons, decide upon the most adequate changes to introduce and revise the
taxonomy accordingly. Once a new version is made available users should use it/locally
update.

After being divided for two centuries and being controlled by two different boards,
there were some communication problems between the two communities. Given the avail-
ability of online information about lifeforms and the need to exchange information about
new results, the need to develop a common language and a BioCode arouse. This effort
is now beginning.

So, the evolution of the taxonomy is driven by a specialized set of users, taxonomists,
and the revision is loosely controlled by appropriate boards, that make new versions avail-
able for all users.

In this case the central board is the scientific community, the peers, who analyse the
different proposals to explain new knowledge and accomodate new life forms, and once
in a while revise the common understanding of the domain.

One can summarize the major force for reorganization of the taxonomy over time
as the identification of important classifying features and gathering all beings sharing a
given value for that feature into that class. For instance, the classical version by Whit-
taker (1969) recognizes 5 kingdoms: Monera, Protista, Plantae, Animalia and Fungi.
Regarding all eukaryotic organisms, Plantae, Animalia, Fungi and Protista, the first three,
classify multicellular organisms according to nourishment, autotrophic, heterotrophic and
saprotrophic, respectively. Fungi were promoted from one subclass (taxa) in the Plantae
kingdom to a kingdom of its own.

However, there are currently more advanced classifications, that is, several classifi-
cations coexist. Therefore, classes can be promoted, moved, folded, deleted, merged,
renamed, etc. as more is known about life on earth.

10One can reuse names in different kingdoms.

88 CHAPTER 4. DILIGENT PROCESS AND ARGUMENTATION FRAMEWORK

Currently, given the advances in molecular biology, the tendency is to use a cladistic
approach to specify the taxonomy of life, in which the taxonomy is organized according
to the evolutionary relationships between live forms based on derived similarity. In a
cladogram, each split is ideally binary (two-way), and all the organisms contained in any
one clade share a unique ancestor for that clade. This entails a major reorganization of
the Tree of Life. The reason is that the design decisions are radically different from the
previous approach to model the Tree of Life.

EXAMPLE When analysing the arguments exchanged by taxonomists to change the
names and organization of the taxonomy one can perceive its vast array and complexity.11

. . . Acinetosporaceae, including the genera Acinetospora,

Feldmannia, . . . Elaboration
This group forms a well-supported clade in molecular trees based on rbcL

data. Evidence
So far, trees from nuclear ribosomal data do not reveal them as a well-
supported group Antithesis
but are not contradictory to their recognition. Concession
. . .

DISCUSSION The analysis of the arguments driving the evolution of the taxonomy
of life on earth led to the assumption that RST could be useful to analyse arguments
exchanged in ontology building process in distributed environments.

From an arguments point of view, the focus of this paper, we can see that although
elaborated, there are a few arguments in the biology case study which play a major role,
such as examples/evidence, counter examples, elaboration, alternatives and comparisons
to convey a certain decision.

4.6.4 Evaluation of Argumentation Framework

In order to substantiate our hypothesis that an appropriate argumentation framework can
facilitate the ontology engineering process, we pursued experiments in a computer science
department, viz. at the Institute AIFB12. Arguments in collaborative, distributed settings
take place in a social environment. Therefore organizational issues are non negligible and
were also taken into account.

We performed two experiments: in the first, participants were not constrained in any
way; in the second, participants were asked to (1) use a subset of arguments, those that
that had been found more effective in the first round,(2) and were given stricter rules,
and a better environment to conduct their discussions. The task in both sessions was to

11Example taken from http://www.ncbi.nlm.nih.gov/Taxonomy/taxonomyhome.
html/index.cgi?chapter=CHANGETOCLASS

12see http://www.aifb.uni-karlsruhe.de/

4.6. ARGUMENTATION FRAMEWORK FOR DILIGENT 89

build an ontology, which (1) represents the knowledge available in the research group,
(2) can be used for internal knowledge management, (3) and makes the research area
comprehensible for outsiders. Both experiments lasted each for one hour and a half. From
the eleven participants - all from the computer science department, thus domain experts
- three were unexperienced in ontology engineering. Seven of them were very active in
both discussions. Concepts were only added after argumentation and some consensus was
achieved.

4.6.4.1 First Experiment

The goal of the first experiment was to identify the dominant arguments used to push
forward ontology development.

1. Setting: The participants met in a virtual chat room. Each one had their own client
and all of them could see the current ontology. All arguments were exchanged via
the chat room, no other forms of communication were allowed. A moderator was
responsible to remind people to stay on the subject and to include the modelling de-
cisions into the formal ontology which was visualized on a web page. At this stage
very few procedural and methodological restrictions were a-priori imposed. The
subjects were instructed of the high level goal of the experiment, of the procedure
and of their goals.

2. Example:13 An excerpt from the real dialogues taking place:
. . . sa: i dont care whether someone plays baseball or not when I am
modelling research domain. Evaluation cs: sa just an example...
Circumstance ct: maybe it is the purpose of the website, that people
get also informed about hobbys Purpose cs: so we have
person Restatement jt: what I find a bit more interesting is the
conference problem Motivation
. . .

3. Result: In the beginning participants brought forward different kinds of arguments,
like background knowledge, examples, elaboration and so on. This led to differ-
ent argumentation threads and the participants were discussing different topics at
the same time. At some points there were 4 threads at the same time, most of the
time there was more than one, including procedural and noise. Therefore, discus-
sion was very tangled and at some points rather difficult to follow. Topics which
were discussed included: the appropriate formalism to model the ontology, detailed
elaboration of leaf concepts, which top level concepts to begin with, philosophi-
cal modelling decisions (roles vs. multi inheritance), which are the main modules,
topic lists etc. From time to time participants called for a vote. However a deci-
sion was seldom reached. The moderator interacted only rarely in the discussion,

13We have changed the transcripts a bit, for the sake of readability.

90 CHAPTER 4. DILIGENT PROCESS AND ARGUMENTATION FRAMEWORK

because timely moderating multiple threads is very difficult: by the time an inter-
vention was issued two or three other interventions from participants had already
been issued. As a result, a core ontology with two concepts, Role and Topic, was
agreed upon.

LESSONS LEARNED: We analysed the discussion with the help of RST. Table 4.1
lists the frequency of the different arguments exchanged during the experiment. We could
identify the arguments which had most influence on the creation of the ontology, viz.
elaboration, evaluation/justification, examples, counter examples, alternatives.

With respect to the experimental setup we identified the following problems: (1) Par-
ticipants started too many discussion threads and lost the overview, (2) the discussion pro-
ceeded too fast, hence not everybody could follow the argumentation, (3) the moderator
was too reluctant to intervene, (4) there was no explicit possibility to vote or make deci-
sions. Even in this setting with participants sharing a very similar background knowledge,
the creation of a shared conceptualization without any guidance was almost impossible,
at least very time consuming. We concluded, that a more controlled approach to discuss
ontology design decisions is needed, which structures the process and the moderation.

4.6.4.2 Second Experiment

The goals of the second experiment, were to underline that with an appropriate argumen-
tation framework the ontology creation proceeds faster, more effectively and the resulting
ontology represents a shared view.

1. Setting: In the second experiment participants were asked to extend the ontology
built in the first round. In this phase the formalism to represent the ontology was
fixed. The most general concepts were also initially proposed, to avoid philosoph-
ical discussions. The initial ontology defined the modelling primitives for topics
and the different roles people are involved in. For the second round the arguments
elaboration, examples, counter examples, alternatives, evaluation/justification
were allowed.

The participants in the second case study joined two virtual chat rooms. One was
used for providing topics for discussion, hand raising and voting. The other one
served to exchange arguments. When the participants - the same as in the first
experiment - wanted to discuss a certain topic e.g. the introduction of a new concept,
they had to introduce it in the first chat room. The topics to discuss were published
on a web site, and were processed sequentially. Each topic could then be expatiated
with the allowed arguments. Participants could provide arguments only after hand
raising and waiting for their turn. The participants decided autonomously when a
topic was sufficiently discussed, called for a vote and thus decided how to model
a certain aspect of the domain. The evolving ontology was again published on a
web site. The moderator had the same tasks as in the first experiment, but was more

4.6. ARGUMENTATION FRAMEWORK FOR DILIGENT 91

Arguments First Round Second round
Elaboration 24 36
Eval. & Just. 14 33
Contrast & Alter-
native

12 17

Example 12 9
Counter Example 10 8
Background
knowledge

9 3

Motivation 5
Summary 5 3
Solutionhood 4 8
Restatement 3 6
Purpose 3
Condition 2
Preparation 1
Circumstance 1
Result 1
Enablement 1
List 1 1
Concepts agreed
on

2 10

Relations agreed
on

3 0

Table 4.1: Arguments used and outcome

92 CHAPTER 4. DILIGENT PROCESS AND ARGUMENTATION FRAMEWORK

restrictive. Whenever needed, the moderator called for an example of an argument
to enforce the participants to express their wishes clearly.

2. Example: An example from the arguments window:

. . . cs: We have done quite a bit of research in distributed knowledge
management (DKM) lately. So I suggest DKM as a topic plus a subtopic
“peer to peer” (P2P) Elaboration ah: I suggest knowledge
management (KM) as super concept of DKM because every DKM is
a kind of KM Elaboration, Justification jt: Well
I am now wondering whether P2P is DKM, because File exchange

is not always KM is it? Counterexample ph: I suggest Distributed
Comp. (DC) with P2P and Grid as subtopics; DKM as subtopic of
DC and KM Elaboration do: PRO ph : because his approach
separates KM and distributiveness Justification,
Evaluation cs: I’d like to agree to ph and do suggestion. . . . ad: km
is a kind of kp Elaboration h: can you
elaborate? schm4704: I think we can subsume kdd and km under kp,
because both are disjoint, and still both related to knowledge processing
(as far as I see it). Justification, Comparison pc: knowledge
managament is about managing knowledge, structuring, organizing etc.
to organize it you need to process it so for sure KP is more special that
KM Elaboration, Justification, Comparison ad: I did not
understand your argument! Why should kp be more specal than km. If I
manage something than it is also a kind of process Counter
Example pc: KP is a part of KM so we should model it as a subpart or
something Justification
. . .

3. Result: As expected the discussion was more focused, due to the stricter procedural
rules. Agreement was reached quicker. A total of ten new concepts were agreed on.
With the stack of topics which were to be discussed (not all due to time constraints),
the focus of the group was kept. Some relations were proposed, but they were not
agreed upon.

From a methodological point of view, one can classify the ontology engineering ap-
proach followed as middle-out. The restricted set of arguments is easy to classify
and thus the ontology engineer was able to build the ontology in a straightforward
way. It is possible to explain new attendees why a certain concept was introduced
and modelled in such a way. It is even possible to state the argumentation line used
to justify it. The participants truly shared the conceptualization and did understand
it. In particular in conflict situations when opinions diverged the restriction of ar-
guments was helpful. In this way participants could either prove their view, or were
convinced.

4.7. AN ARGUMENTATION ONTOLOGY FOR DILIGENT PROCESSES 93

LESSONS LEARNED: Our experiments provide strong indication – though not yet
full-fledged evidence – that a restriction of possible arguments can enhance the ontology
engineering effort in a distributed environment. In addition the second experiment un-
derlines the fact that appropriate social management procedures and tool support help to
reach consensus in a smoother way. From an RST analysis perspective, the fact that the
discussion was more focused eased the task enormously.

Another rather interesting conclusion is the fact that a middle-out approach to ontol-
ogy building comes naturally for people with knowledge engineering skills when given
an appropriate work environment. Moreover, middle-out combined with appropriate ar-
gumentation and management can be used to quickly find a shared, consensual ontology
even when participants must provide all and only written arguments.

The process could certainly be enhanced with better tool support. Besides the argu-
mentation stack, an alternatives stack would be helpful. Arguments in particular elabo-
ration, evaluation & justification and alternatives were discussed heavily. However,
the lack of appropriate evaluation measures made it difficult, at some times, for the con-
tradicting opinions to achieve an agreement. The argumentation should then be focused
on the evaluation criteria. The evaluation can take place off-line, or can be based on
modelling advices from practical experience. Discussion can proceed. As to the use of
the RST to analyse real dialogues, instead of carefully written texts, one should mention,
in particular in the first round were the discussion was rather tangled, that it was rather
difficult to classify at some parts. However, the restricted set is easy to identify and we
conjecture that the provision of template arguments will ease the task further. In both
rounds one should stress the lack of tools to automatize it, although one can foresee the
difficulty, since this kind of analysis requires deep NL understanding.

4.7 An Argumentation Ontology for DILIGENT
Processes

In the previous section we have motivated the relevance of argumentation for the ontology
engineering process. The case studies show that exchange of arguments constitutes a
major part in collaborative ontology building. We have further shown, that not all types
of arguments advance the building process.

This observations from our case studies are inline with the experiences made in soft-
ware and requirements engineering. There, extensions of the IBIS methodology[SMD02]
are used to capture design deliberations, thus make them traceable, and formal models
have been developed to allow for structured queries on the arguments[RD92]. They have
shown that formal argumentation models enhance traceability of design decision, help in
conflict resolution, enhance reusability and facilitates the integration of new participants
in the design process. Although, these models are very general, we have identified sev-
eral requirements – further elaborated in section 4.7.3 – for argumentation support and its

94 CHAPTER 4. DILIGENT PROCESS AND ARGUMENTATION FRAMEWORK

formalization which are unique for OE processes:

1. General argumentation models allow for all types of arguments and are very flex-
ible. However, we have shown that a restricted set of arguments can facilitate OE
processes [PSTS04], thus a formal model for OE should take this into account.

2. Within general argumentation models, inconsistencies in the discussion can not be
easily detected, since arguers do not formalize their arguments. Ontologies are
themselves formal models, thus inconsistencies should be considered during the
discussion.

3. Ontology Engineering is often augmented with input from Ontology
Learning[MS01]. No methodology provides an integrated view on manual
and automatically created ontologies. An ontology learning algorithm can be seen
as an agent providing arguments for design decisions. This should be regarded an
integral part in a formalized argumentation model for OE.

Threads of arguments A central issue in the DILIGENT process is keeping track of
threads of exchanged arguments. We can identify several stages in which arguments play
an essential part:

• Ontology is defined as “a shared specification of a conceptualization” [Gru95]. Al-
though “shared” is an essential feature, it is often neglected. In DILIGENT experts
exchange arguments while building the initial shared ontology in order to reach
consensus;

• When users make comments and suggestions to the control board, based on their
local adaptations, they are requested to provide the arguments supporting them;

• while the control board analyzes the changes introduced and requested by users,
and balances the different possibilities, arguments are exchanged and balanced to
decide how the shared ontology should change.

4.7.1 The argumentation process

The DILIGENT argumentation process has been defined has a result of our observations
in the case studies. It follows the general recommendations for the organization of group
discussions. The process supports asynchronous and synchronous ontology engineering
discussions. In asynchronous ontology engineering (OE) discussions the participants do
not meet at the same time to discuss, while in synchronous discussions all participants are
available at the same time.

4.7. AN ARGUMENTATION ONTOLOGY FOR DILIGENT PROCESSES 95

4.7.1.1 Roles

A moderator should guide the argumentation process. The moderator ensures that the
participants provide relevant argument types, that they stay focused on the discussion,
that they adhere to the decision procedures, and that everybody is allowed to argue. These
rules apply to asynchronous as well as synchronous OE discussions. If the ontology
engineering discussion is synchronous the moderator has the additional task to ensure
that one issue is discussed at a the time and that a discussion is followed by a decision.

4.7.1.2 Input

Depending on the stage in which the an argumentation process is initiated, the argumen-
tation prozess takes as input the ontology requirements specification document (ORSD),
the shared ontology and the arguments provided locally.

4.7.1.3 Output

The objective of the argumentation process is, that the participants agree on a shared con-
ceptualization for their domain. Besides the shared ontology, the argumentation process
results in list of arguments supporting the design decisions.

4.7.1.4 Activities

The argumentation process is divided into the following five activities Choose moderator,
Choose decision procedure, Specify issues, Provide arguments and ideas, and Decide
on issues and ideas which are performed sequentially. It is not necessary to specify all
issues before the provision of argument, though. New issues can emerge, while others are
already formalized.

Choose moderator The participant of the ontology engineering discussion choose a
moderator. The basic rules for moderation also apply for ontology engineering discus-
sions. The moderator should not participate in the discussion with contribution to the
content, but organizes the discussion. The moderator does not take part in decision, but
organizes the decision process.
Each of the participants can take the role of the moderator and the moderator role can
move from one participant to the next.

Choose decision procedure The participants should agree on a decision procedure. On
the one hand, they should agree on a voting mechanism to decide which option should be
chosen. Well know voting mechanisms are the

96 CHAPTER 4. DILIGENT PROCESS AND ARGUMENTATION FRAMEWORK

majority based model All participants have the same voting weight. An issue is ac-
cepted if more than e.g., half or two-thirds of the participants accept it.

dictator model One participant decides if an issue is accepted or not

core veto model A core group of participants has a veto, if they do not agree with the
majority vote.

On the other hand they should decide, when they want to vote on the available op-
tions. They can vote in certain time intervals or if no new arguments have been brought
forward for some time. Depending on the scenario the one or the other model can be more
adequate.

Specify issues The participants start identifying the issues they want to discuss. The
issues define the conceptual requirements for the ontology. All requirements defined in
the ORSD should be inserted as issues. The competency questions can serve as a starting
point for a list of issues. New issues can emerge during the discussion. Issues which are
specification or elaborations of already existing issues, should be classified as elabora-
tions. The issues should be grouped according to the sub-domains they belong to. Any
participant should be allowed to bring insert new issues. The decision, wether an issue
is relevant and should be modeled should not be discussed during the issue generation
phase. The issues should be grouped according to their priority for the application. In
particular in synchronous discussions not all issues can be discussed at the same time. If
there is no other option the First-in First-out (FIFO) principle can be applied to determine
the sequence of the issues.

Provide arguments and ideas The participants discuss the issues, and bring forward
their arguments in favor or against an issue. The possible kinds of arguments are specified
in the Argumentation Ontology. The moderator asks the participants to reformulate their
arguments, in case they do not correspond to the allowed argument types. The participants
should first agree that an issue is relevant, before they suggest ideas to formalize the
issues. Arguments should be concise. The ideas represent the formalization of an issue.
If a formalization depends on more than one issue, all relevant issues should be agreed
first. Each argument can only be brought forward ones. Participants can agree or disagree
with arguments, ideas or issues. They should not repeat them.

In case of conflict the participants should first determine the type of conflict. The dif-
ferent types of conflict have been described in [SG89] and adapted to ontologies according
to [ASvE04]. Table 4.2 summarizes the different types.

The solution strategies for the four cases can be:

Consensus Agreement on Idea and Issue level

4.7. AN ARGUMENTATION ONTOLOGY FOR DILIGENT PROCESSES 97

Correspondence Agreement on Issue but not on Idea level. They must agree on a com-
mon formalization.

Conflict Two issues should be model in the same way. They should belong to different
modules in the ontology.

Contrast Different Issues refer to different Ideas. The issues should belong to different
modules in the ontology.

Terminology

C
on

ce
pt

s

same different
sa

m
e Consensus Correspondence

Experts use terminol-
ogy and concepts in the
same way

Experts use different
terminology for the
same concepts

di
ff

er
en

t

Conflict Contrast

Experts use same ter-
minology for different
concepts

Experts differ in termi-
nology and concepts

Table 4.2: Types of conflict according to Shaw and Gaines, 1989

Decide on issues and ideas The participants can agree, disagree or postpone the discus-
sion on an issues and an idea. Only idea which are agreed, are part of the shared ontology.
Decisions follow the agreed decision procedure.

4.7.2 Use Case

Before we describe the requirements for a formal model to support the argumentation in
DILIGENT processes we introduce a number of use cases for the ontology.

4.7.2.1 Traceability

As new partners get involved into the ontology building process, modelling decision are
discussed more than once, since the modelling reasons of the existing version are not

98 CHAPTER 4. DILIGENT PROCESS AND ARGUMENTATION FRAMEWORK

Inconsistency Description
Idea inconsistency Arguer introduces Idea1 and Idea2 which are

inconsistent
Argumentation incon-
sistency

Arguer argues first in favor and then against an
issue. The lines of reasoning followed by the
arguer lead to inconsistent ideas

Position inconsistency Assuming Issue/Argument 1 and 2 are contra-
dicting. An Actor produces a position inconsis-
tency when he votes in favor of Issue/Argument
1 and then introduces Issue/Argument 2

Table 4.3: List of possible inconsistencies

documented. Although, the actors in the current OE discussion present reasons for design
modification, the number of e-mails makes it infeasible to retrieve them at a later stage.
The ability to present the reasons and arguments for a modelling decision to the new en-
trants could speed up the design process. A similar problem arises, when the ontology
is revised and the ontology engineers need to recall the reasons for the previous design.
The users of the ontology can as well profit from a well documented ontology for a better
understanding. Currently, they rely on the sparse explicit documentation, since documen-
tation is a time consuming, often neglected task. A structured integration of the ongoing
discussions can ease it.

Another issue is size. The current version of PROTON has more than two hundred
concepts. Therefore, it is difficult to track which parts of the ontology are agreed and
which are not. In an OE discussion actors often agree only implicitly with a certain
modelling decision. For example a participant proposes B as subconcept of A without
explicitly agreeing with A.

PROTON had to be build from scratch. Although there are a number of ontologies
available on the Semantic Web, the availability of an ontology is not sufficient for it to
be reused. Only if the design rationales behind the model are available to others, can
ontologies easily be included into new applications.

4.7.2.2 Inconsistency Detection

During the argumentation process different participants exchange their opinions about
the issue under discussion. A requirement on an efficient discussion is, that the arguments
one participant brings forward are consistent with her previous arguments. A participant
may change her opinion, but then he should discard earlier contradicting arguments. A
model to conceptualize arguments should be able to detect at least some inconsistencies
and point the arguer to the contradicting arguments 4.3.

4.7. AN ARGUMENTATION ONTOLOGY FOR DILIGENT PROCESSES 99

4.7.2.3 Argument Selection

In the applications for the SEKT case studies the user of PROTON may wonder why
some concepts, etc. were introduced in the ontology or he may ask why certain modelling
decisions were made. However, even when we trace the underlying arguments, some of
them may be very detailed and not understandable to normal users. Hence, if a user asks
for the arguments underlying the ontology modelling decisions it would be beneficial
to provide an answer which best fits the users needs. In this case we can assume that
the best answer to such a query would be one which convinces the requester most. The
selection of the appropriate arguments is only possible if not only the argumentation but
also the arguments are formalized. Then we can build on models as presented in [Hun04]
that show how formal argumentation trees can be pruned to best correspond to the users
wishes. On the other hand in tangled discussion it is not always obvious which proposal
receives the strongest support. [GK97] presents a formal model to establish the winner of
a discussion.

4.7.3 Requirements

We have identified several requirements for our Argumentation Ontology from the the
SEKT PROTON case study and others where we have been involved such as IEEE SUO.
Before we describe the ontology in the next section we now develop its requirements for
it.

1. Use common vocabulary Research in argumentation and its visualization has a
long history and is a mature field (cf. 2.5.1.2). To enhance acceptability for the
ontology usage of the established vocabulary is essential.

2. Focus on relevant arguments As observed in section 4.6 the restriction of avail-
able argument types can focus and speed up OE discussions. Hence the ontology
should not model all possible kinds of arguments of a discussion, but focus on the
relevant ones. This view is supported by [BGDM03] who have developed an on-
tology for a different domain but for a similar purpose and found that a smaller
ontology enhances usability.

3. Ontology focus Following the results of [PB88], that IBIS should be enhanced
with domain specific knowledge, the developed ontology should be particularly
well suited for ontology design.

4. Adaptivity The Argumentation Ontology should allow for capturing the structure of
argumentation. Hence, the design must take into account that e.g. humans discuss
on a free text basis while ontology learning algorithms use formal, structured and
detailed reasons for different proposals.

100 CHAPTER 4. DILIGENT PROCESS AND ARGUMENTATION FRAMEWORK

5. Support entire argumentation The Argumentation Ontology should support the
full argumentation cycle. This includes issue raising, conflict mediation, bargain-
ing, clarification and agreement. Participants should be aware of which issues are
currently under discussion, postponed, agreed and discarded.

6. Conceptual as well as formalization level People might agree on the need for a
certain conceptual model but not on its actual implementation. The model should
support argumentation on both conceptual and formal models.

7. Modularization Although the ontology should support the ontology engineering
process we do not aim to support every part of it. As described in [SS02] the
ontology engineering process involves the definition of requirements, owners and
other meta attributes like Dublin core meta data. These should not be modelled
here.

8. Formalism independence The Argumentation Ontology should be independent of
the formalism used to model the final ontology. Each formalism allows different
sets of modelling decisions and all can be subject to discussion. However, the
formal model of the finally agreed ontology should be a result of the instantiation
of the Argumentation Ontology.

9. Process awareness The Argumentation Ontology is embedded into the DILIGENT
process presented in section 4.4. Essential properties of this process are its col-
laborative aspects, its distributiveness and the asynchronous way participants can
provide arguments.

10. Argumentation formalization Although we do not currently plan to provide the
arguments themselves in a formal way, the Argumentation Ontology should allow
us to do so. As our last use case has illustrated ontology engineering and ontology
usage could gain from such a formalization.

4.7.4 Argumentation Ontology Description

The DILIGENT Argumentation Ontology is visualized in figure 4.814. The main concepts
in our ontology are issues, ideas and arguments, which are represented as classes.
These are in line with the terminology proposed by the IBIS methodology (req. 1). Issues
introduce new topics in the discussion from a conceptual point of view. They are used
to discuss what should be in the conceptual model of the ontology without taking into
account how these items should actually be formalized and implemented in the ontology
(req. 8). Ideas refer to how these concepts should be formally represented in the ontology,

14The corresponding OWL ontology is available online at http://diligentarguonto.
ontoware.org/.

4.7. AN ARGUMENTATION ONTOLOGY FOR DILIGENT PROCESSES 101

for instance as a class, an instance, etc. They relate to concrete ontology change oper-
ations15. Ideas are related to issues in the sense that they respond to them. Ideas refer
to how issues should actually be implemented in the ontology. Therefore, “respond to”
is a relation between an Idea and Issue. In this way discussions can take place in both
the conceptual level and the formalization level (req. 6). Arguments are arguments on
either one particular idea or one particular issue. Typically, our domain experts will start
by proposing new issues to be introduced in the ontology. Arguments will be exchanged
over them. Then, they discuss how these issues should be formalized through concrete
ideas. Domain experts can also provide elaborations. These are issues that refine an
issue under discussion, elaborates on.

Figure 4.8: The major concepts of the argumentation ontology and their relations
Since concepts to be represented in an ontology should be consensual, this requires

some consensus building discussions. In DILIGENT processes, concepts are only added
to the ontology if they can be agreed upon, that is after some arguments have been ex-

15For example [SMMS02] presents a formal model for ontology change operations.

102 CHAPTER 4. DILIGENT PROCESS AND ARGUMENTATION FRAMEWORK

changed, positions by different actors have been issued on them and some decisions have
been made. Arguments for (pro) an idea or issue are called justifications. Arguments
against (con) an idea or issue are called challenges. In what regards arguments in favor,
particularly useful OE processes, we identified examples and evaluation&justification.
Two classes in challenges are also particularly used in OE discussions: counter exam-
ples and alternative&contrast. These arguments focus the IBIS argumentation method-
ology for Ontology Engineering (req 3).

Those involved in discussions can state positions. They clarify the position on one
issue, one idea, or an argument under discussion. Either one agrees or disagrees. Once
enough arguments have been provided and positions have been stated on them decisions
can be made. In general, positions lead to decisions. Decisions are taken on issues.
A decision has a status that can vary from under-discussion, postponed, discarded
and agreed (req 5). A decision records not only the issue on which it was taken, but also
both the positions issued when final with-votes (several positions) were cast and the line of
reasoning (a sequence of arguments) underlying the decision on that issue. A decision can
also state the idea on-idea underlying its issue. This allows one to focus on the relevant
arguments (req 2).

Arguments are given by actors (req 9). We can have different kinds of Actors: ei-
ther Humans or Machines. Different kinds of actors provide different argumentations
(req. 4). In what regards argumentation humans (HumanArgumentation) tend to ar-
gue by providing strings of text stating (provides text) their reasons while machines tend
to use other kinds of argumentation measures like Frequency and TFIDF [MS01]. For
each algorithm used, new subclasses of argumentation need to be introduced to model the
different kinds of measures.

4.7.4.1 Example: An Argumentation Ontology for DILIGENT Processes

The following discussion transcript was a part of an experiment performed at our institute
(cf. [PSTS04], section 4.6.2). The participants were asked to build an ontology for mod-
elling the research interests of our group. The experiment lasted for 90 min. and involved
eleven actors. The participants provided their arguments in free text without formal re-
strictions. Hence, in the following example we model the discussion ex post. Moreover,
we do not aim to model the entire discussion, but pick out an excerpt to exemplify our
model.

. . .
cs: We have done quite a bit of research in distributed knowledge manage-
ment (DKM) lately. So I suggest DKM as a topic plus a subtopic “peer to
peer” (P2P)

The actor suggests on the one hand to introduce “DKM” and “P2P” in the ontology (Is-
sues), and proposes on the other hand to model them as “topics” (Ideas).

4.7. AN ARGUMENTATION ONTOLOGY FOR DILIGENT PROCESSES 103

Formalization
Individual(issue1 type(Issue) value(states “I suggest DKM”))
Individual(issue1 type(Issue) value(given-by actorCS))
Individual(justi1 type(Justification) value(hasArgumentation argumentation1))
Individual(justi1 type(Justification) value(arguments-on issue1))
Individual(argumentation1 type(HumanArgumentation) value(providesText “We have
. . . lately”))
Individual(idea1 type(Idea) value(respondsTo issue1))
Individual(idea1 type(Idea) value(ontoChange add(DKM:Topic)))
Individual(elaboration2 type(Elaboration) value(states “P2P subtopic DKM”))
Individual(idea2 type(Idea) value(respondsTo elaboration2))
Individual(idea2 type(Idea) value(ontoChange add(DKM supertopic P2P)))

ah: I suggest knowledge management (KM) as super concept of DKM be-
cause every DKM is a kind of KM

The second actor agrees implicitly with the suggestion to introduce “DKM” in the
ontology. In contrast to the first one he proposes to model it as a “concept”.
Formalization
. . .
Individual(idea3 type(Idea) value(ontoChange add(KM:Concept)))
. . .

jt: Well I am now wondering whether P2P is DKM, because File exchange
is not always KM is it?

A third actor agrees also implicitly, that “P2P” and “DKM” are important for the domain,
but challenges that they should be modelled in the proposed way.
Formalization
Individual(counter1 type(CounterExample) value(hasArgumentation argumenta-
tion3))
Individual(counter1 type(CounterExample) value(arguments-on elaboration2))
Individual(argumentation2 type(HumanArgumentation) value(providesText “File ex-
change . . . KM”))

ph: I suggest Distributed Comp. (DC) with P2P and Grid as subtopics; DKM
as subtopic of DC and KM

The fourth actor presents a new issues which could resolve the conflict.
Formalization
. . .
Individual(issue2 type(Issue) value(states “I suggest DC”))

104 CHAPTER 4. DILIGENT PROCESS AND ARGUMENTATION FRAMEWORK

Individual(elaboration3 type(Elaboration) value(.))
. . .

do: PRO ph : because his approach separates KM and distributiveness

The actor “do” agrees with the suggestion and provides additional reasons for the design.
Implicitly he also agrees that “KM” should be part of the ontology.
Formalization
Individual(position1 type(Agree) value(position-on elaboration3))
. . .

cs: I’d like to agree to ph and do suggestion.
. . .

The first actor agrees with the new solution to introduce DKM as subclass of KM and DC
and discards his original proposal to introduce P2P as subtopic of DKM.

This example demonstrates that OE discussion can be modelled with the DILIGENT
Argumentation Ontology. The applicability of the ontology will depend on the available
tool support. We do not intent to automatically annotate a free discussion. We rather
envision a template based approach to provide arguments. Currently we use a WIKI to
support the argumentation process. However, integration with reasoners and inclusion
into existing OE environments is desirable, but remains to be done.

Chapter 5

ONTOCOM cost estimation model

5.1 Introduction

Ontology Engineering is currently advancing from a pure research topic to real applica-
tions. This state of the art is emphasized by the wide range of European projects with
major industry involvement and, in the same time, by the ever-growing interest of small
and medium size enterprizes asking for consultancy in this domain. A core requirement
in all of these efforts is, however, the availability of proved and tested methods which al-
low an efficient engineering of high-quality ontologies, be that by reuse, new building or
automatic extraction methods. Several elaborated methodologies, which aid the develop-
ment of ontologies for particular application requirements, emerged in the last decades.
Nevertheless, in order for ontologies to be built and deployed at a large scale, beyond
the boundaries of the academic community, one needs not only technologies and tools to
assist the engineering process, but also means to estimate and control its overall costs.
These issues are addressed only marginally by current ontology engineering approaches
though their importance is well recognized in the community.

A first attempt to bridge this gap has been made with the ONTOCOM approach to
estimate costs[PBM05b, PBM05a], which is intended to be used as a method to estimate
the efforts involved in building, reusing and maintaining ontologies. Likewise in the adja-
cent field of Software Engineering, a discipline in which cost prediction models belong to
standard development environments, ONTOCOM proposes a top-down, parametric cost
estimation method on the basis of pre-defined process stages and cost drivers, whose im-
pact has been derived in advance by taking into account research and historical data from
previous projects.

ONTOCOM distinguishes among three top-level phases of an ontology engineering
process: 1). the development of a new ontology from scratch in conjunction with 2).
reusing existing ontological sources and 3). the maintenance of ontologies in form of
insertions, deletions and modifications of the initial content. For these categories cost
drivers influencing the required development effort (in terms of person months) have been

105

106 CHAPTER 5. ONTOCOM COST ESTIMATION MODEL

identified on the basis of a comprehensive analysis of current engineering methodologies
and related case studies. Every cost driver is associated with effort multipliers (from very
high to very low), depending on the individual characteristics of the application. A first
estimation of the importance factors was performed based on ex post analysis of differ-
ent ontology engineering efforts and preliminary expert validations with very promising
results. Nevertheless more empirical data as well as an in-depth model validation and
refinement are essential requirements for the elaboration of a reliable cost estimation
method. The validation of the model [PBM05a] is based on the quality framework for
cost prediction by Boehm [Boe81], which is a list of required and desirable features for
these category of models, showing many similarities with established frameworks for
evaluating the quality of general purpose information or data models [Epp01].

For the DILIGENT methodology we have decided to incorporate the ONTOCOM cost
estimation model into the methodology. In the following we describe our experiences in
the application of ONTOCOM to the DILIGENT methodology. This attempt was mo-
tivated by the results of the above mentioned preliminary validation of the cost model,
which made clear that the usability of the model would be significantly improved if we
directly associate the cost drivers to more specific sub-tasks of the ontology engineer-
ing process, because this alignment would enable the definition of a more precise and in
the same time more reliable data extraction procedure. DILIGENT offers a fine-grained
description of steps and activities required to collaboratively develop ontologies in appli-
cation scenarios which have to cope with both distributed ontology usage and evolution,
and volatile requirements arising during its life cycle. For this purpose it covers the most
important process stages and activities which are well-recognized to be part of every typi-
cal ontology engineering scenario, thus being an excellent candidate for the refinement of
the (yet very high-level) cost estimation methodology. On the other hand, DILIGENT cur-
rently lacks any support to estimate the effort required by the corresponding engineering
process. The decision to exit a certain stage and enter a new cycle of the process model
is not supported adequately. For this reason, a second goal of aligning ONTOCOM to
the engineering methodology was to extend the latter with a cost estimation dimension in
order to examine the ways costs could be involved as a decision support criteria to justify
transitions between various process stages.

The remaining of this chapter is organized as follows: after introducing the ONTO-
COM cost model in Sections 5.2, we describe the refinement of the cost model towards
applying it to the DILIGENT process model and the changes triggered by this mapping
(Section 5.3). The results of this mapping are used to specify the cost prediction proce-
dure for concrete DILIGENT case studies in Sections 5.4 and 5.5. An overview of related
and future work are given in Sections 2.5.3 and 5.6, respectively.

5.2. THE ONTOCOM COST MODEL 107

5.2 The ONTOCOM Cost Model

ONTOCOM is a parametric cost estimation model for ontologies which aims at predict-
ing the effort invested in building, maintaining and reusing ontologies on the basis of
pre-defined cost drivers. For the definition of the relevant factors, we adopted a combi-
nation of three general-purpose cost estimation methodologies [Boe81], which are in our
opinion applicable to Ontology Engineering according to the current state of the art in
the field (see [PBM05a] for an overview of the examined methods). We started with a
top-down approach to identify the cost drivers, by identifying upper-level sub-tasks of the
ontology engineering process and defining the associated costs using a parametric method
in correlation with a human-driven first validation. Expert judgement was used to evaluate
the set of cost drivers associated to each process stage and to specify their start values in
the a-priori model. Initially, we distinguished among three areas, whose costs were to be
defined separately:

Ontology Building includes the typical stages of an ontology engineering
process[FL99]: domain analysis (result: requirements specification), the con-
ceptualization (result: conceptual model), the implementation (result: specification
of the conceptual model in the selected representation language) and the ontology
population i.e. the generation of instances and their alignment to the model (result:
instantiated ontology).1

Ontology Maintenance includes getting familiar with and modifying the ontology (in-
sert or delete new ontological primitives, re-model parts of the ontology etc.)

Ontology Reuse involves costs for the discovery and re-usage of existing (source) on-
tologies in order to generate a new (target) ontology. The latter includes under-
standing, evaluating and adapting the former ones to the requirements of the latter.

This upper-level distribution is of course subject of future refinements in order to
increase the usability of the estimation method in real-world engineering projects. In par-
ticular, the ontology building area should be elaborated in the same top-down manner in
order to partition this tedious and complex process down to a level in which the associ-
ated efforts can be reliably predicted. In this case, the cost drivers relevant the overall
ontology building process (see below) are to be aligned (or even re-defined) to the cor-
responding sub-phases and activities. In particular, this issue will be further discussed
in Section 5.3, where we describe the revision of the cost drivers related to building and
reusing ontologies in conjunction with the DILIGENT framework.

Starting from a typical ontology engineering scenario, in which an ontology is
developed—from scratch, by adapting existing knowledge sources, or both—and de-

1At this point we restrict to manual ontology building activities. Automatic ontology generation methods
as those proposed in the area of ontology learning are not considered in this work yet.

108 CHAPTER 5. ONTOCOM COST ESTIMATION MODEL

ployed/maintained by its users, ONTOCOM calculates the necessary person-months ef-
fort using the following equation:

PM = PMB + PMM + PMR (5.1)

PMB , PMM and PMR represent the person months associated to building, main-
taining and reusing ontologies, respectively and are calculated as:

PMX = SizeX ∗
∏

CDXi (5.2)

Each of the three development phases is associated with specific cost factors. Experi-
ences in related engineering areas [Kem87, Boe81] let us assume that the most significant
factor is the size of the ontology involved in the corresponding process or process stage.
In the formula above the size parameter SizeX is expressed in thousands of ontological
primitives – concept, relations, axioms and instances.2 SizeB corresponds to the size
of the newly built ontology i.e. the number of primitives which are expected to result
from the conceptualization phase. In case of ontology maintenance the size of the on-
tology (SizeM) depends on the expected number of modified items. For reuse purposes
the relevant factor SizeR is the (total) size of the original source(s) after being tailored
to the present application setting. In particular this involves the parts of the source on-
tologies which have to be translated to the final representation language, the ones whose
content has to be adapted to the target scope and the fragments directly integrated. The
cost drivers CDXi—where X stays for B, R and M , respectively—have a rating level
(from very low to very high) that expresses their impact on the development effort. For
the purpose of a quantitative analysis, each rating level of each cost driver is associated
to a weight (effort multiplier - EM). In the a-priori cost model a team of 3 ontology
engineering experts assigned start values between 0.7 and 1.9 to the effort multipliers,
depending on the perceived contribution of the corresponding cost driver to the overall
development costs.3 These values are subject of further calibration on the basis of the sta-
tistical analysis of real-world project data. Additionally the values of the a-priori model
(i.e. containing non-calibrated values) will be included in the expert validation process,
which will is currently being performed as part of the mapping between ONTOCOM and
the engineering methodology DILIGENT.

In the following we turn to a brief description of the cost drivers in ONTOCOM.4

These parameters were derived after surveying recent literature and from empirical find-
ings of various case studies in the ontology engineering field. For each cost driver we
specified in detail the decision criteria which are relevant for the model user in order for
him to determine the concrete value of the driver in a particular situation. For example for
the cost driver LEXP—accounting for costs produced by the level of experience of the en-
gineering team w.r.t. ontology representation languages—we pre-defined the meaning of

2For example for an ontology with 1000 concepts and 100 relations Size will have the value 1.1.
3A list of the values is available in [PBM05a].
4See [PBM05a] for a detailed explanation of the approach to estimate costs.

5.2. THE ONTOCOM COST MODEL 109

the effort multipliers as depicted in Table 5.1. The values of the corresponding effort mul-
tipliers, which have been specified by human experts, are as follows: 1.60 (Very Low),
1.30 (Low), 1 (Nominal), 0.90 (High) and 0.80 (Very High) [PBM05a]. The suitable
value should be selected during the cost estimation procedure and used as a multiplier in
equation 5.2.

Very Low Low Nominal High Very High
LEXP 2 months 6 months 1 year 3 years 6 years
Effort Multipliers 1.60 1.30 1.0 0.90 0.80

Table 5.1: Cost Driver LEXP (Language Experience)

In several cases the decision criteria associated with a cost driver are more complex
than in the previous example and might be sub-divided into further sub-categories, whose
impact is aggregated to the final value of the corresponding cost driver by means of
weights.

5.2.1 Cost Drivers for Ontology Building

For the ontology building area we defined a list of cost drivers, which are, similar to
[B. 97], divided into three groups:

• Product-related cost drivers account for the influence of ontology characteristics
on the overall costs: i) Instance (DATA) to capture the effects that the instance data
requirements have on the overall process, ii) Ontology Complexity (OCPLX) to
express those ontology features which increase the complexity of the engineering
outcomes, iii) Required Reusability (REUSE) to capture the additional effort asso-
ciated with the development of a reusable ontology, and iv) Documentation match
to life-cycle needs (DOCU) to state for the additional costs caused by very detailed
documentation requirements.

• Project-related cost drivers relate the dimensions of the engineering process and
its characteristics to the overall costs: i) Support tools for Ontology Engineering
(TOOL) to measure the effects of using ontology management tools in the engi-
neering process, and ii) Multisite Development (SITE) to mirror the usage of the
communication support tools in a location-distributed team.

• Personnel-related cost drivers emphasize the role of team experience, ability and
continuity w.r.t. the effort invested in the process: i) Ontologist/Domain Expert
Capability (OCAP/DECAP) to account the perceived ability and efficiency of the
single actors involved in the process (ontologist and domain expert) as well as their
teamwork capabilities, ii) Ontologist/Domain Expert Experience (OEXP/DEEXP)

110 CHAPTER 5. ONTOCOM COST ESTIMATION MODEL

to measure the level of experience of the engineering team w.r.t. performing ontol-
ogy engineering activities, iii) Language/Tool Experience (LEXP/TEXP) to mea-
sure the level experience of the project team w.r.t. the representation language and
the ontology management tools, and iv) Personnel Continuity (PCON) to mirror the
frequency of the changes in the project team.

5.2.2 Cost Drivers for Ontology Reuse and Maintenance

Additionally to project and personnel cost drivers (as described in Section 5.2.1) we de-
fined a set of further 4 cost drivers to deal with the characteristics of ontology reuse
and maintenance, as reported by recent case studies in these areas [PBMT05, UHW+98,
RVMS99, UCH+98]:

• Ontology Understanding(OU) accounts for the efforts required to get familiar
with the ontologies to be used, a task which is a pre-condition to ontology eval-
uation and maintenance. It depends on ontology properties such as representation
language or size and on the level of experience of the ontology engineer w.r.t. this
ontology[PBM05a].

• Ontology Evaluation(OE) accounts for the additional efforts related to the evalu-
ation phase given a satisfactory ontology understanding level (e.g. for testing the
source ontologies against a specific set of requirements).

• Ontology Modification/Translation(OM/OT) are factors reflecting the costs in-
volved by adapting the source ontologies to the new setting (e.g. inserting, deleting
ontology concepts) and by translating to a target representation language, respec-
tively.

5.2.3 Evaluation of ONTOCOM

The parametric approach to estimate costs for OE processes described in this report is cur-
rently being validated towards a reliable method for estimating the costs of ontology engi-
neering. The most important evaluation criterium is of course the reliability of its predic-
tions, which however depends on the amount of accurate project data used to calibrate the
model (i.e. adjust the values of the modifiers and identify eventual correlated cost drivers).
On the other hand, a comprehensive evaluation of the model should go beyond the eval-
uation of its functionality (i.e. the accuracy of its estimations) and also address issues
related to its usability in typical ontology engineering scenarios, as suggested in common
quality frameworks for information systems (such as [PS04, MSBS03, HLW99, KLS95];
see [Epp01] for a comprehensive survey on this topic).

For a comprehensive evaluation of the model we rely on the quality framework for cost
models by Boehm, which was adapted to the particularities of ONTOCOM and Ontology

5.2. THE ONTOCOM COST MODEL 111

Engineering. Parts of this framework are used in to assess the quality of the a-priori and
the a-posteriori cost models, respectively (see below). According to this differentiation,
the evaluation of the cost model is performed in two steps: in the first one we evaluate
the relevance of the mentioned cost drivers for the purpose of predicting costs arisen
in ontology engineering projects; the remaining aspects of the framework relate to its
capability of reliably fulfilling its goal (i.e. that of estimating engineering efforts) and
will be applied in a second step on the a-posteriori model resulting from the calibration
of the preliminary one.

The original quality framework by Boehm [Boe81] consisted of the 10 features, which
we divided into two categories, depending on their relevance to the a-priori and the a-
posteriori model, respectively. The meaning of the quality criteria has been adapted to the
scope of ONTOCOM.

A-priori evaluation :

definition : has the model clearly defined the costs it is estimating and the costs it
is excluding? Does the estimate include the cost of management, training,
domain analysis, conceptualization, implementation, testing, maintenance?
Does the model clearly define the decision criteria used to specify the ratings
of the cost drivers? Does the model use intuitive and non-ambiguous terms to
denominate the cost drivers it involves?

objectivity : does the model avoid allocating most of the cost variance to poorly
calibrated subjective factors? Are the cost drivers defined using objective de-
cision criteria, which allow an accurate assignment of the corresponding cost
driver ratings?

constructiveness can a user tell why the model gives the estimates it does?

detail : does the model easily accommodate the estimation of new process mod-
els or is it conceived for a particular ontology engineering process? Does it
give accurate phase and activity breakdowns? Does the model take into con-
sideration factors related to the main tasks of the engineering process? Do
these sub-tasks correspond to the process model applied in your engineering
process? Which phases should be further covered by the model in order to
increase its usability?

stability : do small differences in inputs produce small differences in output cost
estimates?

scope : does the model cover the class of projects whose costs you want to esti-
mate? Is it representative for a wide class of ontology engineering projects?

ease of use : are the model inputs and options easy to understand and specify? Is it
easy for you to assess a rating to a cost driver based on the associated decision
criteria?

112 CHAPTER 5. ONTOCOM COST ESTIMATION MODEL

prospectiveness : does the model avoid the user of information which will not be
well known until the project is complete? Can the model be applied in early
phases of the project as well?

parsimony : does the model avoid the use of highly redundant factors or factors
which make no appreciable contribution to the results?

A-posteriori evaluation :

all items of the former category, plus

fidelity , since this requirement will definitely not be fulfilled after collecting reli-
able data from previous projects used to refine the values of the cost drivers
and to discover eventual correlations between them.

The features assigned to the first category will be used as criteria for the refinements
resulting from the application of the cost model to DILIGENT, as described in Section
5.3.

5.2.4 Current Limitations

As mentioned above the approach to estimate costs for OE processes we described in this
section is intended as a first draft towards a reliable cost estimation method for ontology
engineering projects. The relevance of the cost drivers and their quality in terms of scope
and granularity will be assessed during the first step of the model evaluation procedure.
In particular the factors describing the development of new ontologies should be further
refined in order to realistically reflect the efforts invested in ontology building, which is
well-recognized as a tedious and challenging process. Mapping these cost drivers to a
fine-grained process model such as that proposed by the DILIGENT methodology is an
excellent opportunity to prove their expedience in the described context. Finally the us-
ability of the model is directly related to the collection of real-world project data, which
are of course indispensable for the calibration of the values required for the parametric
prediction equation. The case studies currently being carried out according to the DILI-
GENT methodology will provide valuable information w.r.t. this second issue.

5.3 Bridging ONTOCOM and DILIGENT

The main objective of this section is to integrate the mentioned cost model ONTOCOM
to ontology engineering processes performed according to the DILIGENT engineering
methodologies. Mapping the two models is mainly aimed at validating and refining the
existing cost estimation strategy on the basis of real-world ontology development case
studies. In order to increase the usability of the cost model and to collect high qual-
ity data necessary for its calibration we examined the relevance of the pre-defined cost

5.3. BRIDGING ONTOCOM AND DILIGENT 113

drivers w.r.t. the process sub-tasks and actions and precisely define the ways the data is to
be collected. This task resulted in an adaptation of the estimation model and the process
model since missing parts could be identified. Further on we adapted the high-level para-
metric effort estimation equation from ONTOCOM to the DILIGENT scenario in order
to be able to apply the model to the case studies currently being performed in the basis
of this engineering methodology. The necessary data is to be collected from the case
study partners in the near future and will provide first estimations of the envisioned total
development costs and revise the cost model. The calibrated cost estimation model will
allow its users to estimate in each process stage the future effort necessary to build and
maintain the ontology. Cost-related information might be a significant decision factor for
obtaining a feasible trade-off between start-up/maintenance efforts and ontology utility.
The last part of this section reports on our experiences in trying to determine optimal rela-
tion between the initial effort, the utility and the maintenance effort implied by a concrete
DILIGENT-based ontology development project.

To summarize, bridging the two models was performed according to the following
steps, which will be further elaborated in the remaining of this section:

1. Alignment of the cost drivers with the DILIGENT process stages

2. Definition of the cost function and of data collection procedure in terms of the
process model

3. Examination of the potential process decision support in terms of costs

The data collection and the subsequent calibration of the cost model according to the out-
comes of this task will be performed in the near future in terms of the procedure described
below.

5.3.1 Mapping the Activities in DILIGENT to the Cost Drivers in
ONTOCOM

In order to realistically estimate the costs induced by particular DILIGENT processes the
general cost model introduced in 5.2 has to be customized to the activities and the stages
of the engineering methodology. As introduced in section 4.4 the DILIGENT process is
divided into five main stages, where each stage contains a number of sequential or paral-
lel activities. The ONTOCOM to DILIGENT mapping assigns product, personnel and
project cost drivers to the corresponding engineering activities. As mentioned earlier we
use the general description of DILIGENT for this mapping. Tables 5.2 to 5.5 summarize
the results of this mapping (for simplification purposes the costs associated to the analy-
sis and revision phases were joined to a single overview table). Note that the changes
occurred at the cost model level as a result of its alignment to the engineering methodol-
ogy have been printed in the tables below in italics.

114 CHAPTER 5. ONTOCOM COST ESTIMATION MODEL

5.3.1.1 Cost Drivers Relevant for the Centralized Building Stage

DILIGENT process Cost factor
DILIGENT

phase
DILIGENT

activity
Product Factors Personal Project

Centralized
Building

Domain analysis Complexity
of the domain
analysis

OCAP, DECAP
OEXP, DEEXP
TEXP, PCON

TOOL

Conceptualization
and implemen-
tation of shared
ontology

Complexity of the
conceptualiza-
tion (DOCPLX),
REUSE, OU, OE,
OT, OM, Ontol-
ogy Integration
(OI)

OCAP, DECAP
OEXP, DEEXP,
LEXP, TEXP
PCON

TOOL

Evaluation of
shared ontology

Ontology evalua-
tion (OE)

OCAP, DECAP
OEXP, DEEXP,
LEXP, TEXP,
PCON

TOOL

Documentation DOCU OCAP, DECAP
OEXP, DEEXP,
TEXP, PCON

TOOL

Table 5.2: Mapping DILIGENT to ONTOCOM: Centralized Building

The calculation of the expected costs for the centralized building stage (cf. table 5.2)
depends on all cost drivers except the ones for Ontology Maintenance and Required De-
velopment Schedule (SCED). We can leave out the cost driver for maintenance as it is
part of subsequent stages to keep the ontology updated. The cost driver SCED is left out
since we are currently only interested in the estimation of person month rather than the
complete project duration. This applies also for the subsequent process stages.

The cost drivers for ontology reuse should be considered only if the board decides to
utilize existing ontologies to build the initial shared ontology.

We found out that the initial proposal in the DILIGENT process model to reduce
the centralized building to only one activity was too coarse. Hence, we introduced four
activities to capture this phase more accurately. Splitting up the building process into
those activities led us to the conclusion that the cost driver for ontology complexity was
too broadly defined. As a consequence, this cost driver was divided into three separate
new ones, namely one for the complexity of the domain analysis, one for the complexity
of the conceptualization and finally one for the implementation complexity.

Similarly, the cost model so far did not define any cost driver for the integration of
different ontologies. From a process point of view integrating ontologies with each other

5.3. BRIDGING ONTOCOM AND DILIGENT 115

is a rather time consuming task. Furthermore the cost driver for tool support covered only
the tools available to formalize the ontology. Experience suggests, that for each activity
different supporting tools are available. The cost driver for tool support should therefore
be interpreted as an average of the quality of the available tools for each activity. Finally,
the evaluation process for the resulting ontology was not covered by any cost driver.

Even though the process defines a separate activity for the provision of arguments, we
concluded that no extra costs driver is needed to calculated the respective effort, because
it is already covered by the documentation cost driver.

5.3.1.2 Cost Drivers Relevant for the Local Adaptation Stage

The cost drivers relevant to estimate the costs of the local adaptation stage (cf. table 5.3)
are to a large extent the same as those associated to the previous stage. While the per-
sonnel factors relate to the capabilities of the domain experts, the main difference of this
stages compared to the Centralized Building one is the application of the cost drivers to
a multitude of sites and ontologies, while different users belonging to different sites are
involved in different activities performed on the shared, the locally adapted and the exter-
nally adapted ontologies respectively. The sizes of these ontologies are put into relation
with different groups of cost drivers when considering the calculation of the resulting
costs. All users follow the process defined in the Local Adaptation stage, therefore each
of them incurs some effort to understand, adapt and use the ontology. As the usage and
customization of the shared ontology is theoretically inconceivable without it being pre-
viously understood by its users, one major cost category of the Local Adaptation phase
is of course related to the Ontology Understanding effort multiplier in conjunction with
the size of the currently shared ontology. Further on the modification of the shared ontol-
ogy depends on the number of changes performed together with the corresponding effort
multipliers for ontology maintenance in ONTOCOM. Additionally to the original cost
model DILIGENT foresees an activity in which new requirements are specified, which
is mapped to a cost driver in the ontology building category. If the users decide to adopt
externally developed ontologies to conceptualize their local changes (i.e. instead of newly
implementing them in their local ontology) the corresponding activities imply additional
costs, as described in the ontology reuse category in ONTOCOM. Note that there are no
costs for the translation of the ontologies to be reused since it is assumed that all ontolo-
gies in the application scenario are formalized in the same representation language. When
calculating the cost estimation for the adaptation phase we recommend to use average val-
ues for the aforementioned effort multipliers instead of indicating separate values for each
site.

5.3.1.3 Cost Drivers Relevant for the Centralized Analysis and Revision Stage

From an cost estimation point of view the centralized analysis and revision stage (cf. table
5.4) resembles the building stage, while the former involves both the currently shared

116 CHAPTER 5. ONTOCOM COST ESTIMATION MODEL

and the locally used ontologies. Each of these ontologies is associated with different
categories of cost drivers. As the original shared ontology is already known to the board,
there are no additional costs to understand it. The board examines in turn the changes
submitted by the users. The number of SITEs, as well as the average number of changes

DILIGENT process Cost factor
DILIGENT

phase
DILIGENT

activity
Product Factors Personal Project

Local
adaptation

Local analysis of
shared ontology

OU, OE DECAP, DEEXP,
LEXP, TEXP,
PCON

TOOL

Specification of
new requirements

Complexity of the
domain analysis
(DOCPLX)

DECAP, DEEXP,
LEXP, TEXP,
PCON

TOOL

Ontology utiliza-
tion

DECAP, DEEXP,
LEXP, TEXP

TOOL

Ontology instan-
tiation

DATA OEXP, DEEXP,
OCAP, DECAP,
TEXP, LEXP,
PCON

TOOL

Local analysis of
additional (local)
ontologies

OU, OE, number
of sites

DEEXP, DECAP,
TEXP, LEXP,
PCON

TOOL

Customization of
relevant local on-
tologies

OM, number of
sites

DEEXP, DECAP,
TEXP, LEXP,
PCON

TOOL

Integration of
reused local
ontologies to the
shared ontology

Ontology integra-
tion (OI)

DEEXP, DECAP,
TEXP, LEXP,
PCON

TOOL

Modification of
shared ontology

OM DEEXP, DECAP,
TEXP, LEXP,
PCON

TOOL

Argument provi-
sion
Evaluation of
new local ontol-
ogy

Ontology evalua-
tion (OE)

DEEXP, DECAP,
TEXP, LEXP,
PCON

TOOL

Documentation DOCU DEEXP, DECAP,
TEXP, LEXP,
PCON

TOOL

Table 5.3: Mapping DILIGENT to ONTOCOM: Local Adaptation

5.3. BRIDGING ONTOCOM AND DILIGENT 117

introduced by the users will thus influence the costs. In the analysis and revision stage all
requirements derive from user requests, thus we do not incur costs for domain analysis.
The local ontologies from the users are available and no search effort is needed to obtain
them. The costs for ontology modification depend on the actual changes introduced by
the board.

W.r.t. the personnel cost drivers we need to distinguish between the average experi-
ence of the users and the experience of the board, while the latter is rated higher than the
former when it comes to ontology engineering.

5.3.1.4 Cost Drivers Relevant for the Local Update Stage

For the last stage in the DILIGENT process, the Local Update (cf. table 5.5) we need less
cost drivers than for the previous stages. The relevant sizes are the number of changes
introduced by the board and the number of sites. As in previous stages the personnel
and management cost drivers remain unchanged. We have identified the three product
cost drivers Ontology Understanding, Ontology Evaluation and Ontology integration as
relevant for this stage.

5.3.2 Changes in the Cost Model

Applying the pre-defined ONTOCOM cost drivers to the DILIGENT engineering process
model revealed several shortcomings of the former w.r.t. two dimensions: the insufficient
coverage of some of the available cost drivers and the lack of support for tasks such as
ontology merging and integration. Additionally to the adjustment of the model according
to these findings, the expert values used by the a-priori cost estimation formula were
adapted on the basis of the expertise provided by the DILIGENT engineering team.

We now turn to a detailed description of the model refinements arisen during the inte-
gration of the two models.

5.3.2.1 The Cost Driver OCPLX (Ontology Complexity)

The mapping between the DILIGENT process stages and the available product-based cost
drivers made clear that the original cost driver coping with the complexity of the product
to be developed (i.e. the ontology) was not covering all aspects of the ontology build-
ing process to a satisfactory extent. As already assumed by the authors, from a product
perspective, distinguishing between three high-level phases (building, reuse and main-
tenance) has proved to be insufficient for the needs of real-world settings. Though the
OCLPX cost driver, which was initially intended to cover the costs arisen from this ac-
tivity, already mentioned some of the most important factors in this field, the DILIGENT
ontology engineers evaluated its impact in the current form as too limited compared to

118 CHAPTER 5. ONTOCOM COST ESTIMATION MODEL

the impact of other, less relevant and less complex cost drivers such as REUSE or DOCU
(see [PBM05a] for a detailed description of the cost drivers). Consequently we divided
the original OCPLX cost driver into three new parameters partially covering the overall
complexity of the target ontology. The division in three complexity areas was performed

DILIGENT process Cost factor
DILIGENT

phase
DILIGENT

activity
Product Factors Personal Project

Centralized
Analysis
and
Revision

Information col-
lection from users

SITE

Analysis of
obtained infor-
mation

OU, OE, number
of sites

OEXP, OCAP,
LEXP, TEXP,
PCON

TOOL

Control of previ-
ously shared on-
tology

OEXP, OCAP,
TEXP, PCON

TOOL

Specification of
new requirements

OCAP, OEXP,
LEXP, TEXP,
PCON

TOOL

Customization of
relevant local on-
tologies

OM, number of
sites

DEEXP, DECAP,
TEXP, LEXP,
PCON

TOOL

Integration of
reused local
ontologies to the
shared ontology

Ontology integra-
tion (OI)

DEEXP, DECAP,
TEXP, LEXP,
PCON

TOOL

Modification of
shared ontology

, OM, REUSE OCAP, OEXP,
LEXP, TEXP,
PCON

TOOL

Argument provi-
sion
Argumentation
aggregation
Evaluation of
new shared
ontology

Ontology evalua-
tion (OE)

OCAP, OEXP,
LEXP, TEXP,
PCON

TOOL

Documentation DOCU OCAP, OEXP,
TEXP, PCON

TOOL

Distribution
of new shared
ontology

SITE

Table 5.4: Mapping DILIGENT to ONTOCOM: Centralized Analysis and Revision

5.3. BRIDGING ONTOCOM AND DILIGENT 119

at the process level. This design decision is justified through the assumption that the com-
plexity of the final ontology is implicitly related the complexity of the underlying building
process, in particular the phases domain analysis, conceptualization and implementation,
given a certain competence level of the personnel and sufficient project experience. The
decision criteria for assigning a specific rating level to the new cost drivers were mainly
derived from the ones originally proposed for the OCLPX driver. Additionally new cri-
teria related to the availability of useful knowledge sources during the domain analysis
phase and to the ontology implementation were introduced (see below). We now turn to
a description of the new complexity parameters:

• Domain complexity (DCLPX)

• Conceptual complexity (CCPLX)

• Implementation complexity (ICPLX)

The domain complexity driver states for the efforts additionally arisen in the engineer-
ing project by the particularities of the ontology domain and its analysis during ontology
building. The decision which concepts will be included and in which form they will be
represented in an ontology depends not only on the intrinsic domain to be modeled (e.g.,
tourism), but rather on the application domain. The latter also involves the technical set-
ting and the characteristics of the application in which the ontology is designed to be
integrated to. As a third decision field we introduced the sources which could be eventu-
ally used as additional domain descriptions and thus as an aid for the domain analysis and
the subsequent conceptualization. The global value for the DCLPX driver is a weighted
sum of the aforementioned areas, which are depicted in Table 5.6.

In order to realistically classify the complexity of the domain analysis phase in terms
of the pre-defined ratings we identified characteristics of the three areas which usually

DILIGENT process Cost factor
DILIGENT

phase
DILIGENT

activity
Product Factors Personal Project

Local
update

Control of new
shared ontology

DECAP, DEEXP,
TEXP

TOOL

Local analysis
of changes in
the new shared
ontology

OU, OE DECAP, DEEXP,
LEXP, TEXP,
PCON

TOOL

Integration of
new and old
version

Ontology integra-
tion (OI)

DECAP, DEEXP,
LEXP, TEXP,
PCON

TOOL

Table 5.5: Mapping DILIGENT to ONTOCOM: Local Update

120 CHAPTER 5. ONTOCOM COST ESTIMATION MODEL

Rating Scale DOMAIN
Very Low narrow scope, common-sense knowledge, low connectivity
Low narrow to moderate scope, common-sense or expert knowledge, low connectivity
Nominal moderate to wide scope, common-sense or expert knowledge, moderate connectivity
High moderate to wide scope, common-sense or expert knowledge, high connectivity
Very High wide scope, expert knowledge, high connectivity

REQUIREMENTS
Very Low few, simple req.
Low small number of non-conflicting req.
Nominal moderate number of req., with few conflicts, few usability req.
High high number of usability req., few conflicting req.
Very High very high number of req. with a high conflicting degree, high number of usability req.

INFORMATION SOURCES
Very Low high number of sources in various forms
Low competency questions and text documents available
Nominal some text documents available
High some unstructured information sources available
Very High none

Table 5.6: The Domain Complexity Cost Driver DCLPX

influence this measure. For the domain category, we considered the scope (narrow, mod-
erate, wide), the commonality of the knowledge (be that common-sense knowledge or
expert knowledge) and the connectivity of the domain. The latter is expressed in the num-
ber of interdependencies between domain concepts with ranges again among three levels
(low, moderate and high), while the scope is a feature which is related to the generality,
but also to the perceived amount of knowledge comprised per default in a certain domain.
For example a domain such as some department of an organization is considered nar-
rower than a domain describing a university, while the scope of the economics domain is
of course classified as wide. The three criteria are prioritized according to common prac-
tices in the ontology engineering area, so that the connectivity of the domain is considered
decisive for establishing the rating of this cost factor.

The complexity of the requirements which are to be taken into consideration when
building an ontology is characterized here by the total number of requirements available
in conjunction with the rate of conflicting ones and the rate of usability requirements,
since the latter are seen as a fundamental source of complexity for the building process.5

Finally the availability of information sources guiding the engineering team during
the building process or offering valuable insights in the domain to be modeled can be

5Usability requirements express the constraints imposed by a particular characteristics of the ontology
user community w.r.t. its content or content representation.

5.3. BRIDGING ONTOCOM AND DILIGENT 121

Rating Scale Conceptualization
Very Low concept list
Low taxonomy, high number of patterns, no constraints
Nominal properties, general pattern available, some constraints
High axioms, few modeling pattern, considerable number of constraints
Very High instances, no patterns, considerable number of constraints

Table 5.7: The Conceptualization Complexity Cost Driver CCPLX

Rating Scale Implementation
Low The semantics of the conceptualization compatible to the one of the impl. lang.
Nominal Minor differences between the two
High Major differences between the two

Table 5.8: The implementation complexity cost driver ICPLX

a major success factor in ontology engineering. When deciding upon the impact of the
information sources on the effort required to perform the domain analysis activity we
suggest considering the number, the type and the form of the sources.

The conceptualization complexity accounts for the impact of the structure of the con-
ceptual ontology (taxonomy, conceptual graph etc.) and of help techniques such as mod-
eling patterns on the overall engineering costs. On the other side, the existence of certain
naming and modeling constraints might cause cost increases (see Table 5.7).

As mentioned in [PBM05a] one of the basic assumptions in ONTOCOM is that the
most significant factor for estimating the costs of ontology engineering projects is the
size of the conceptual model, while the implementation issue is regarded to be a matter
of tools, since a manual encoding of a conceptualization in a particular formal represen-
tation language is not common practice. However the original ONTOCOM model did
not pay any attention to the semantical differences between the conceptual and the im-
plementation level, differences which might appear in situations in which the usage of
a specific representation language is mandatory. In this case the implementation of the
ontology requires a non-trivial mapping between the knowledge level of the conceptu-
alization and the paradigms beyond the used representation language. The costs arisen
during this mapping are stated in the driver ICPX (implementation complexity), whose
ratings are illustrated in Table 5.8. For simplification reasons we restricted the range of
the ratings to 3 (from low to high).

To summarize the complexity of the target ontology in ONTOCOM is taken into ac-
count by means of three cost drivers, associated with the efforts arisen in the domain
analysis, conceptualization and implementation phase. We analyzed features which are
responsible for cost increases in these fields – independently of the size of the final on-

122 CHAPTER 5. ONTOCOM COST ESTIMATION MODEL

tology, the competence of the team involved or the setting of the current project – and
aligned them to ratings from very low to very high for quantification purposes.

5.3.2.2 The Cost Driver DOCU (Documentation Needs)

The DOCU measure is intended to state the additional costs caused by detailed documen-
tation requirements. Likewise COCOMOII we differentiate among 5 values from very
low (many lifecycle needs uncovered) to very high (very excessive for lifecycle needs) as
illustrated in Table 5.9. In the original cost model DOCU was defined as a building cost

Very Low Low Nominal High Very High
many LC some LC right-sized to excessive for very excessive

DOCU needs needs LC needs LC needs for LC needs
uncovered uncovered

Table 5.9: Ratings for Documentation Costs

driver. During the model evaluation during its integration to the DILIGENT framework
this driver was found to be relevant to top-level phases distinguished by the model i.e.
also for reuse and maintenance.

5.3.2.3 The Cost Driver OE (Ontology Evaluation)

In the current cost model ontology evaluation is only regarded as part of the reuse phase.
Our mapping to the DILIGENT methodology revealed that ontology evaluation is in fact
performed before reusing external ontologies, but also after building a new ontology.
Hence we broadened the the scope of the evaluation factor to building and reuse while
keeping most of the original meaning (Table 5.10). While in a reuse situation the effort
required for the evaluation of an ontology was monitored separately as the one implied
for its comprehension, in the building case the level of the cost driver is determined au-
tonomously of other cost factors by considering the level of activity required to test a
preliminary ontology against its requirements specification document and for documen-
tation purposes.

Rating Scale Ontology Evaluation
Very Low small number of tests, easily generated and reviewed
Low moderate number of tests
Nominal high number of tests
High considerable tests, easy to moderate to generate and review
Very High extensive testing, difficult to generate and review

Table 5.10: The Ontology Evaluation Cost Driver OE

5.3. BRIDGING ONTOCOM AND DILIGENT 123

5.3.2.4 The Cost Driver OI (Ontology Integration)

The most important ONTOCOM revision arisen as a result of the mapping to DILIGENT
was the definition of cost driver for ontology reuse processes, which measures the costs
produced by integrating different ontologies to a common framework. The integration
step is assumed to be performed on ontologies sharing the same representation language
– the efforts required for this activity are covered by the OT (Ontology Translation) cost
driver [PBM05a]. As criteria influencing its complexity we identified the following:

• overlapping degree among ontologies to be integrated: it is assumed that this issue
is proportional to the effort required by the integration, since it is directly related to
the number of mappings between ontological entities.

• type of mappings between ontological primitives: 1 to 1 mappings are more easily
discovered than multiple one (1 to n or n to m)

• integration quality, in terms of precision (rate of correct mappings) and recall
(rate of mappings discovered): higher quality requirements imply automatically
increased efforts to perform the integration task.

• number of ontologies: it is clear that the integration effort is directly proportional
to the number of sources to be integrated

According to these considerations the ratings for the OI cost drivers were defined as de-
picted in Table 5.11 below.

Rating Scale Ontology Integration
Very Low 1-1 mappings, approx. 50% precision and recall required,

barely overlapping, 2 ontologies
Low 1-1 mappings, approx. 60% precision and recall required,

barely overlapping, 2 ontologies
Nominal 1-n mappings, approx. 70% precision and recall required,

some overlapping, 2 ontologies
High 1-n mappings, approx. 80% precision and recall required,

high overlapping, more than 2 ontologies
Very High n-m mappings, approx. 95% precision and recall required,

high overlapping, more than 2 ontologies

Table 5.11: The Ontology Integration Cost Driver OI

5.3.2.5 The Cost Driver TOOL (Tool Support)

In the current cost model tool support is limited to the support of the reasoning, building
and maintenance activities in the process. However, product factors like domain analysis,

124 CHAPTER 5. ONTOCOM COST ESTIMATION MODEL

Rating Scale TOOL
Very Low High quality tool support, no manual intervention needed
Low Few manual processing required
Nominal Basic manual intervention needed
High Some tool support
Very High Minimal tool support, mostly manual processing

Table 5.12: The Tool Support Cost Driver TOOL

integration and others can and should also be supported by tools. Instead of pre-defining
the types of tools which are usually involved in an engineering project independently
of the process phases in which these tools come into operation, we take account of the
different levels of tool support for the different phases by one general-purpose cost driver
and calculate the final value as the average tool support across the entire process.

Therefore the ratings for tool support are re-defined on a more general level, as shown
in Table 5.12 below.

The rating of the cost driver should be specified for each of the most prominent
process phases, while the importance of the corresponding phase is expressed in terms
of weights. The global TOOL value for a specific project is calculated as a normalized
sum of the weighted local values. For the DILIGENT methodology one should specify
the tool support level for the following sub-tasks: domain analysis, conceptualization,
implementation, ontology understanding and evaluation, ontology instantiation, ontology
modification, ontology translation, ontology integration and documentation.

5.4 A Cost Function for DILIGENT Processes

In Section 5.3 we described the mapping between the ONTOCOM cost model and the
DILIGENT methodology, which aimed at defining the role the cost drivers listed in the
former play w.r.t. the efforts invested in individual phases and activities of the latter.
On the basis of this mapping and the changes triggered by this task in both models we
customized the general person month equation in ONTOCOM to the particularities of
DILIGENT processes. The resulting function was further simplified in order to allow
the elaboration of optimization criteria in DILIGENT, which we assumed to be useful as
decision support for state transitions in the incremental engineering cycle.

5.4.1 The Complete Cost Function

The general-purpose ONTOCOM equations 5.3 and 5.4

5.4. A COST FUNCTION FOR DILIGENT PROCESSES 125

PM = PMB + PMM + PMR (5.3)

PMx = Sizex ∗
∏

CDxi (5.4)

which assume a linear engineering process, in which an ontology is built from scratch,
by reuse or both and is further maintained by its users, were adapted to the cyclic model
of DILIGENT as in equation 5.5 below:

PM = PMCB +
n∑

i=1

(PMLAi
∗ mi + PMCARi

+ PMLUi
∗ mi) ∗ pi, (5.5)

where PMCB, PMLAi
, PMCARi

and PMLUi
are the person months necessary for the

initial building phase and for the local adaptations, centralized analysis and revision and
local updates in cycle i, respectively. Note that i iterates over the number of cycles n and
that in every cycle the number of sites participating at the process is considered through
the variable mi. Finally, we introduced the parameter p (p > 0) as a learning rate between
consecutive cycles in the process model. Usually we can assume that p ≤ 1, which means
that the team involved in the project improves its experience level and is able to solve
the same tasks more efficiently (i.e. with less costs) from one building cycle to another.
However, while the positive learning rate is intended to reflect the changes occurring on
the effort multiplier level between consecutive cycles, the size of the resulting ontologies
(i.e. the size of the locally modified ontologies in the local adaptation phase, the size of
the shared ontology obtained after a new board meeting and the size of the final locally
updated one) vary from development cycle to development cycle. This observation jus-
tifies the usage of the index i in the second part of equation 5.5 for the person months
variables PMLAi

, PMCARi
and PMLUi

, since their values are vary with the size of the
ontologies involved.

We elaborated the detailed cost functions for each of the 4 enumerated process stages:
centralized building, local adaptation, centralized analysis and revision and local updates.

5.4.1.1 The Costs of the Centralized Building Phase

PMCB = SizeCBB ∗
∏

PRODCBB ∗
∏

PERS ∗ TOOL +

SizeCBR ∗
∏

PRODCBR ∗
∏

PERS ∗ TOOL (5.6)

126 CHAPTER 5. ONTOCOM COST ESTIMATION MODEL

The efforts required by the centralized building phase are divided into the ones in-
vested in building a new ontology and the ones invested in reusing external ones. The
product effort multipliers are as follows:

∏
PRODCBB = DCPLX ∗ CCPLX ∗ ICPLX ∗ REUSE ∗

DOCU ∗ OE ∗ OI (5.7)

∏
PRODCBR = OU ∗ OE ∗ OI ∗ OT ∗ OM ∗ DOCU (5.8)

In case of the personnel factors the multiplier values is computed as in 5.9.

∏
PERS = OCAP ∗ DECAP ∗ OEXP ∗ DEEXP ∗

PCON ∗ LEXP ∗ TEXP (5.9)

Note that the reused size SizeCBR should be calculated as the sum over all single
ontologies reused, while the reuse equation contained in 5.6 was simplified in comparison
to the original one in ONTOCOM [PBM05a].

5.4.1.2 The Costs of the Local Adaptation Phase

PMLA = SizeLAS ∗
∏

PRODLAS ∗
∏

PERSLAS ∗ TOOL +

SizeLAM ∗
∏

PRODLAM ∗
∏

PERSLAM ∗ TOOL +

SizeLAR ∗
∏

PRODLAR ∗
∏

PERSLAR ∗ TOOL (5.10)

The first part of the equation calculates the effort required to evaluate and use the
shared ontology (SizeLAS is the size of the shared ontology). The rest accounts for the
additional efforts arisen if external ontologies (i.e. developed locally at different sites)
are analyzed for being reused in the local context or if the shared ontology needs to be
modified (SizeLAM is the modified size).

∏
PRODLAS = DATA ∗ OU ∗ OE ∗ OI ∗ DOCU

∏
PERSLAS = DEXP ∗ DECAP ∗ LEXP ∗ TEXP ∗ PCON (5.11)

5.4. A COST FUNCTION FOR DILIGENT PROCESSES 127

Note that in the product equation we include the DATA driver to measure the costs
of the instantiation of the ontology, while the personnel equation incorporates exclusively
factors related to domain experts.

If the shared ontologies need to be refined in order to fulfill local needs, the ontology
users may decide between reusing existing ontologies, which have been developed by
other users in the network, or by performing the desired modifications themselves. For
the first case the effort multipliers are listed in equation 5.12. The second one is addressed
by 5.13.

∏
PRODLAR = OU ∗ OE ∗ OM ∗ OI ∗ DOCU

∏
PERSLAR = DEXP ∗ DECAP ∗ LEXP ∗ TEXP ∗ PCON (5.12)

Again the parameter SizeLAR is understood as the total size of the reused ontolo-
gies. Integration costs arise, of course only in case external ontologies are reused (instead
of separately modifying the shared ontology, the local adaptation may resort to existing
modifications fulfilling the same requirements).

∏
PRODLAM = OM ∗ OI ∗ DOCU

∏
PERSLAM = DEXP ∗ DECAP ∗ LEXP ∗ TEXP ∗ PCON (5.13)

5.4.1.3 The Costs of the Centralized Analysis and Revision Phase

PMCAR = SizeCARR ∗
∏

PRODCARR ∗
∏

PERSCARR ∗ TOOL ∗ SITE +

SizeCARM ∗
∏

PRODCARM ∗
∏

PERSCARM ∗ TOOL ∗ SITE(5.14)

In this equation the first part computes the efforts needed to evaluate the changes
performed locally, while the second part of the formula states for the efforts invested in
executing these modifications. Note that SizeCARR is the total size of the local ontologies.
The parameter SITE accounts for eventual additional costs produced by the distributed
setting. Again we elaborate the product and personnel multipliers (Eq. 5.15 and 5.16).

∏
PRODCARR = OU ∗ OE ∗ OI ∗ DOCU ∗ OE

∏
PERSCARR = OEXP ∗ OCAP ∗ LEXP ∗ TEXP ∗ PCON (5.15)

∏
PRODCARM = OM ∗ OI ∗ DOCU ∗ OE ∗ REUSE

∏
PERSCARM = OEXP ∗ OCAP ∗ LEXP ∗ TEXP ∗ PCON (5.16)

128 CHAPTER 5. ONTOCOM COST ESTIMATION MODEL

In the equations above the Ontology Evaluation (OE) multiplier appears repeatedly,
since the board necessitates an evaluation of the submitted ontologies and a final evalua-
tion of the new shared ontology.

5.4.1.4 The Costs of the Local Update Phase

PMLU = SizeLUR ∗
∏

PRODLUR ∗
∏

PERSLUR ∗ TOOL +

SizeLUI ∗ OI ∗ DOCU ∗
∏

PERSLUI (5.17)

The parameter SizeLUR designates the size of the “incoming” shared ontology, which
is merged with the previous local one. For this reason, SizeLUI is the sum of the two sizes
involved in the merging process, the size of the new shared ontology plus the one of the
existing local ontology.

∏
PRODLUR = OU ∗ OI ∗ OE ∗ DOCU

∏
PERSLUR = = DEXP ∗ DECAP ∗ LEXP ∗ TEXP ∗ PCON (5.18)

∏
PERSLUI = = DEXP ∗ DECAP ∗ LEXP ∗ TEXP ∗ PCON (5.19)

Equations 5.5 to 5.18 offer the parametric setting necessary for estimating the person
month effort invested in arbitrary DILIGENT processes. However, as aforementioned,
the costs’ dimension might be additionally used as a decision support factor on achieving
an optimal distribution between centralized and local building phases during the ontology
life cycle. In order to achieve this goal we need a reduced cost function – on the basis
of the one elaborated in this section – which allows us to identify the most important
dependencies between the major parameters of the process, as these dependencies are
likely to be responsible for the realization of an optimal configuration of central and local
building phases. This configuration is to be discovered in terms of the free parameters of
the reduced formula.

5.4.2 The Reduced Cost Function

For the derivation of the reduced formula we start with the general DILIGENT cost equa-
tion 5.5 and consider the first level formulae for the corresponding person months calcu-
lations.

5.4. A COST FUNCTION FOR DILIGENT PROCESSES 129

PM = xnew ∗ Enew + xreused ∗ Ereused +

+
n∑

i=1

(mi ∗ xlasi
∗ Elas + mi ∗ xlami

∗ Elam + mi ∗ xlari
∗ Elar +

+ xcarri
∗ Ecarr + xcarmi

∗ Ecarm +

+ mi ∗ xluri
∗ Elur + mi ∗ xluii ∗ Elui) ∗ pi (5.20)

where the xks represent the sizes of the corresponding and the Eks the multipliers.
Note that the variation of the ontologies’ size in each cycle is captured by the i indexation,
while the variation of the cost driver values is modeled through the exponentially growing
learning rate.

Let a be the average number of local changes submitted in every cycle i = 1 . . . n, b be
the average number of changes initiated by the board pro cycle and c the number of locally
accepted changes. Further on let xlai

be the size of a local ontology, which is submitted
to the board after cycle i, xsi

the size of the shared ontology obtained in the same cycle,
and xlui

the size of the local ontology at the end of the cycle. The dependencies between
the three sizes are as follows:

xlai
= xsi−1

+ a, ∀i = 1 . . . n, xs0
= x

xsi
= xsi−1

+ b, ∀i = 1 . . . n, xs0
= x

xlui
= xsi

+ c, ∀i = 1 . . . n (5.21)

If x is the size of the shared ontology in the first cycle (x = xnew + xreused), then

xlai
= x + (i − 1) ∗ b + a, ∀i = 1 . . . n, xs0

= x

xsi
= x + i ∗ b, ∀i = 1 . . . n

xlui
= x + i ∗ b + c, ∀i = 1 . . . n (5.22)

A simplification of the DILIGENTcost function is achieved if we reduce the effort
multipliers related to the central board and to the user communities to single parameter
with average values. That is, we abandon the difference between the effort multipliers
involved in single activities of each process stage (e.g. the local analysis activity in the
local adaptation phase), we obtain the formula below, in which E is again responsible for
the centralized setting, while F represents average the local settings:

PM = x ∗ E + M ∗ F ∗

n∑

i=1

(x + (i − 1) ∗ b + M ∗ a) ∗ pi +

130 CHAPTER 5. ONTOCOM COST ESTIMATION MODEL

+ M ∗ F ∗

n∑

i=1

(x + i ∗ b + c) ∗ pi +

+ E ∗

n∑

i=1

(M ∗ (x + (i − 1) ∗ b + a) + b) ∗ pi (5.23)

In formula 5.23 we also assume a constant number of sites mi = M and an initial size
of the ontology x.

If n → ∞ then the formula 5.23 is further transformed to

PM ≈ x ∗ E + M ∗ F ∗ (2x + M ∗ a + c) ∗
1

1 − p
+

+ M ∗ F ∗ b ∗
p2 + p

(1 − p)2
+

+ E ∗ (M ∗ (x + a) + b) ∗
1

1 − p
+

+ E ∗ M ∗ b ∗
p2

(1 − p)2
(5.24)

5.4.3 Applications of the Reduced Cost Function

In order to come up with an approximation of the cost function corresponding to DILI-
GENT engineering processes we start with equation 5.24 and isolate the terms depending
on the involved cost drivers E and F :

PM ≈ E ∗ (x +
1

1 − p
∗ (M ∗ (x + a) + b) + M ∗

p2

(1 − p)2
∗ b) +

+ F ∗ M ∗ ((2x + M ∗ a + c) ∗
1

1 − p
+ b ∗

p2 + p

(1 − p)2
) (5.25)

The formula above is used to analytically describe alternative engineering scenarios in
DILIGENT. We illustrate the usage of the cost function as an objective means for decision
support for the following tasks:

• the identification of a specific engineering strategy: The DILIGENT methodology
foresees a two-step engineering approach in which a first part of the shared on-
tology is jointly developed by domain experts and engineers, while the rest of the
ontology evolves according to the needs of its users. Cost information might be
useful to identify the sweet spot between the effort invested in centralized building
and the remaining phases. A second engineering decision relates to the possibility

5.4. A COST FUNCTION FOR DILIGENT PROCESSES 131

of taking into consideration external parties’ ontologies (i.e. local versions of the
shared ontology available at external sites) while performing modifications. A first
possibility is to modify the shared ontology according to the local requirements and
submit potentially locally relevant change requests independently of the require-
ments of other user communities across the network. In the second, reuse-oriented
scenario the users first try to map their own requirements to local ontologies emerg-
ing across the network and to reuse these local ontologies instead of introducing
new change requests. The decision on one of the alternatives could be documented
by means of cost information.

• the identification of the optimal meeting frequency: For an optimal process execu-
tion one needs decision criteria to estimate the frequency of the board meetings and
implicitly a rate for the amount of submitted and approved changes to the shared
ontology. Since every new board meeting is related to (basic) costs for the central-
ized analysis and the local updates too frequent meetings are expected to produce
an overload both on the side of the ontology engineers and of the users.

In order to analytically describe the aforementioned scenarios, we consider a sim-
plified version of the DILIGENT process, in which the costs of the local updates are
negligible. In this case, equation 5.25 is transformed to

PM ≈ E ∗ (x +
1

1 − p
∗ (M ∗ (x + a) + b) + M ∗

p2

(1 − p)2
∗ b) +

+ F ∗ M ∗ ((x + M ∗ a) ∗
1

1 − p
+ b ∗

p2

(1 − p)2
) (5.26)

5.4.3.1 1. Scenario: The Size of the Initial Ontology

In order to analyze the impact of the initial size of the ontology on the overall costs re-
quired to create an ontology of a given final size we compare the costs defined in equation
5.26 with the ones implied by an initial ontology of size x + α. In this situation, we as-
sume that the number of changes required by the users decrease with the size of the initial
ontology with a parameter β. A large initial ontology is profitable if

E ∗ M ∗ (α − β) + F ∗ M ∗ (α − M ∗ β) − α ∗ F ∗ M > 0 (5.27)

Inequality 5.27 is equivalent to E ∗ (α−β) > F ∗M ∗β, which means that increasing
the size of the ontology is profitable as long as the costs arisen by this activity for analysis
and evaluation do not overcome the costs required to originally build the additional con-
cepts. The last inequality will be not fulfilled for a sufficiently high number of sites M ,
which implies that we need to start with a small shared ontology in case we need to handle

132 CHAPTER 5. ONTOCOM COST ESTIMATION MODEL

a high number of sites. In case the number of sites is sufficiently low, the satisfiability of
the inequality is influenced by the ratio between the productivity of the board and of the
ontology users.

5.4.3.2 2. Scenario: Reuse-oriented vs Isolated Building

In order to detect the impact of local ontology reuse on the overall costs, we proceed in
a similar manner as in the first scenario by comparing the difference arising from modi-
fying a number of α concepts instead of trying to reuse them from external sources. By
replacing the number of changes a in 5.26 with a + α we obtain that reusing existing
conceptualizations is profitable only if E ∗M ∗α+F ∗M ∗α > F ∗M 2 ∗α. Again, reuse
is more feasible for scenarios with a relatively low number of sites. If M is sufficiently
high, the inequality above is not satisfied anymore.

5.4.3.3 3. Scenario: Frequency of Board Meetings

In order to analyze the optimal frequency of board meetings, which influence the number
of submitted and accepted changes (the frequenter the meetings are, the less changes are
submitted pro cycle). If α is the difference between the number of submitted changes
for a higher number of development cycles, β is the difference at the level of approved
changes – the costs for local updates are ignored – then the difference implied by these
three parameters w.r.t. the person months efforts in two consecutive cycles is determined
from equation 5.23 as:

PMi ∗ P − PMi+1 = M ∗ F ∗ ((i − 1) ∗ β + M ∗ α − bi+1 +

+ E ∗ (M ∗ (i − 1) ∗ β − M ∗ bi+1 + M ∗ α + β) (5.28)

In this case PMi ∗P −PMi+1 > 0 if (i−1)∗β +α > bi+1 and M ∗α+(i−1)∗β >

bi+1. The latter is satisfied for a sufficiently high number of sites M , while the former
depends on the parameter i. If β +α > bi+1 increasing the number of meetings is feasible
independent on the number of sites or on the learning rate.

5.5 Data Collection and Model Calibration

In this report we demonstrated the ways the generic cost estimation model ONTOCOM
was applied to the ontology engineering methodology DILIGENT. The alignment of the
model to this particular methodology also revealed the limitations of the model w.r.t. a
complete coverage of ontology engineering aspects. As a consequence the estimation
model was refined with cost drivers such as ”Ontology Integration”. In the same time,

5.5. DATA COLLECTION AND MODEL CALIBRATION 133

the alignment can be seen as a significant step towards the final validation of ONTO-
COM, which is performed according to the quality framework described in Section 5.2.
However, the usability of the model in real-world settings is primarily dependent on the
accuracy of its results, achieved after calibrating the a-priori parameter values on the basis
of historical project data. For this purpose, we analyzed the technical means which can
be used for the calibration and produced an online questionnaire for the collection of the
data. These two issues are described in the remaining sections.

5.5.1 Technical Realization of the Data Collection

For the realization of an online tool for data collection we made use of the Open Source
survey software PhpESP (available at http://sourceforge.net/projects/
phpesp/), which offers basic functionality for the generation of public surveys. The
data collection procedures is foreseen as a set of questions by which the user is required
to provide introductory information about a specific project (i.e. an ontology) and to spec-
ify the values of the parameters included in the cost model. As a result of the survey, the
data is stored in a relational database and is exported to a statistical component in order
to be used for the calibration of the model.

Figure 5.1 depicts the introductory section of the data collection survey, while Figure
5.2 shows an excerpt related to the cost drivers ”DATA” and ”DCPLX”. For each cost
driver[PBM05a] we provide a short explanation of the scope and associated decision cri-
teria, which are intended to be used to aid the data provider in specifying the rating value
of the driver. Finally we can export the collected data as shown in figure 5.3 and calibrate
the model.

A current version of the survey is available online at http://kompass.mi.
fu-berlin.de/phpESP/public/survey.php?name=ontocom2final_
260905.

5.5.2 Calibration Method

The data collected in the survey is used to calibrate the ONTOCOM cost estimation
model. Before we explain the methods used to calibrate the model, we need to empha-
size the restrictions of any calibration. (1) Due to the number of cost drivers we need a
high number of observations to calibrate the model in a statistically significant way. Any
calibration with less than approximately 300 data points will not be significant from a
statistical point of view. Thus any calibration can only be seen as an indication of the
direction. (2) Experience in other fields with cost estimation models suggests, that a cal-
ibration for a particular company or project team yields more accurate estimations than a
general purpose calibration. Our calibration can therefore only serve as an example for
the calibration process, rather than an accurate model calibration. Nevertheless, the cali-
bration is useful, as project teams can compare their estimations against a general average

134 CHAPTER 5. ONTOCOM COST ESTIMATION MODEL

as provided by us. (3) A calibration uses historical data to estimate future outcomes. Al-
though the average and the variation observed in the historical data may also be observed

Figure 5.1: ONTOCOM data collection: introductory questions

Figure 5.2: ONTOCOM data collection: cost drivers

5.5. DATA COLLECTION AND MODEL CALIBRATION 135

Parameter Description
A adjustment parameter
Size The size of the ontology
DCPLX(CDX1) Effort multiplier for domain complexity
OE(CDX2) Effort multiplier for final ontology evalu-

ation complexity
REUSESize Size of the reused ontology
OU Reused ontology understandability

Table 5.13: Simplified cost model factors

in future projects, any specific project can still require significantly more or less effort to
build the ontology than the predicted one.

The number of cost drivers defined in ONTOCOM is too high, to work through a
conclusive example. In order to explain the calibration method to refine the ONTOCOM
cost model we introduce a very simple cost model. For the simplified cost model we
provide a complete example.

Our simplified cost model consist of six factors as listed in table 5.13.

AdSizeX = SizeX − (1 − %reuse) ∗ REUSESize ∗ OU (5.29)

Figure 5.3: Data export from phpESP

136 CHAPTER 5. ONTOCOM COST ESTIMATION MODEL

Rating DCPLX OE OU
E1 E2 Av. E1 E2 Av. E1 E2 Av.

very low 0,6 0,8 0,7 0,6 0,8 0,7 0,6 0,8 0,7
low 0,7 0,9 0,8 0,7 0,9 0,8 0,7 0,9 0,8

nominal 1 1 1 1 1 1 1 1 1
high 1,1 1,3 1,2 1,1 1,3 1,2 1,1 1,3 1,2

very high 1,8 2,0 1,9 1,8 2,0 1,9 1,8 2,0 1,9

Table 5.14: Delphi result

PMX = A ∗ AdSizeX ∗

2∏

i=1

CDXi (5.30)

For our simplified cost model the Delphi method resulted in the following expert esti-
mations for our effort multipliers (in table 5.14, the estimation of the experts are abbrevi-
ated with E1 and E2, respectively. Average values are termed by AV.).

We collected data from six ontology building projects. The results are summarized
in table 5.15 (RSIZE is the size of the reused ontologies, while the DCPLX columns
correspond to the three decision components defined for the cost driver Domain Analysis
Complexity, as introduced in Section 5.3).

DCPLX
Ontology SIZE PM % newly build req. con. info. RSIZE OU OE
swpatho1 1300 5 20 5 1 4 1040 2 5

opjk 700 2,6 100 5 4 5 5
ArguOnto 200 2 100 4 2 4 2

COS 75 2,5 100 5 3 3 5
OMV 300 2,5 100 3 2 4 3
VDO 1400 0,5 100 4 4 4 1

Number Rating
1 very low (VL)
2 low (L)
3 nominal (N)
4 high (H)
5 very high (VH)

Table 5.15: Data collection

The collected data is then adjusted in order to apply the calibration. In this step the
ratings for the domain complexity are averaged and the size of the reused ontology and
the final size are combined 5.16.

5.5. DATA COLLECTION AND MODEL CALIBRATION 137

The data collected from real projects can now be used to calibrate our model. Lin-
ear regression is the adequate method to find the adjusted parameters. We reformulate
equation 5.30 in order to apply later on linear regression and introduce a parameter βi as
an exponent for the cost drivers. βi is a scaling factor, by which the existing parameters
should be scaled in order to fit the model. We recall that α is factor to represent a learning
rate, in other case also used to model economies of scale.

PMX = A ∗ AdSizeα
X ∗

2∏

i=1

CD
βi

Xi (5.31)

We apply the logarithm to equation 5.31 and can now apply a classical linear re-
gression to our data to estimate βi. This step is only possible if our data is distributed
exponentially, thus we have significantly more data points with a low number of entities
than with a high number of entities. We omit this test for our example, but will do so for
the final calibration.

ln(PMX) = ln(A) + α ∗ ln(AdSizeX) +
2∑

i=1

βi ∗ ln(CDXi) (5.32)

The resulting matrix of data points can be used to calculate the covariance matrix
and the correlation matrix. In particular the correlation matrix is helpful, to identify cost
drivers which are highly correlated and can thus be integrated into one. For the sack
of completeness we have listed the results of the correlation analysis in table 5.17. The
analysis of the correlation matrix reveals that for our limited data set the total effort for
building the ontology is highly correlated with the extend of the ontology evaluation activ-
ity. Furthermore domain complexity and ontology evaluation are correlated. Surprisingly,
the size of the ontology and the required effort to build it are inversely correlated, which
implies the larger the ontology becomes the less effort one has to spend building it. This
result shows, that an estimation model, calibrated only based on historical data could in
fact be misleading. We survey several methods to overcome this problem later.

Ontology AdSize PM DCPLX OE
swpatho1 635 5 3 5

opjk 700 2,6 5 5
ArguOnto 200 2 3 2

COS 75 2,5 4 5
OMV 300 2,5 3 3
VDO 1400 0,5 4 1

Table 5.16: Adjusted collected data

138 CHAPTER 5. ONTOCOM COST ESTIMATION MODEL

AdSize DCPLX OE PM
AdSize 1,00
DCPLX 0,27 1,00

OE -0,25 0,41 1,00
PM -0,40 -0,09 0,74 1,00

Table 5.17: Correlation matrix for our example

A DCPLX OE α

mi 0,84 -1,37 1,48 -0,03
s(mi) 1,79 1,34 0,70 0,30

Table 5.18: Results of the linear regression

In table 5.18 we have summarized the results of the linear regression. Applying the
results to the parameters we get new parameters according to table 5.19 (Av. means “Av-
erage”).

We can now compare the predicted effort according to our model before and after its
calibration. As recognized before some of the results of the linear regression are counter
intuitive. Different options exist to overcome this problem.

5.5.2.1 Linear Combination

The expert ratings found in the Delphi experiment are a-priori estimations for our parame-
ters and incorporate knowledge about the underlying activities. Using only historical data
to calibrate the model would thus waste this knowledge. A natural solution is to combine
the values estimated by the experts with the parameters found from the historical data.
In the literature a combination which weights the expert values with 90% and the values
from the linear regression with 10% is proposed.

Rating DCPLX OE A α

Delphi Data Av. Delphi Data Av. Delphi Data Av. Delphi Data Av.
VL 0,7 1,63 0 0,7 0,59 0 1 2,31 0,98 -0,03
L 0,8 1,36 0 0,8 0,72 0 1 2,31 0,98 -0,03
N 1 1 1 1 1 1 1 2,31 0,98 -0,03
H 1,2 0,78 0 1,2 1,31 0 1 2,31 0,98 -0,03

VH 1,9 0,41 0 1,9 2,59 0 1 2,31 0,98 -0,03

Table 5.19: Parameter estimation from experts and based on the data

5.5. DATA COLLECTION AND MODEL CALIBRATION 139

5.5.2.2 Bayesian Linear Models

The linear combination of expert estimations and historical data is not optimal. The
combination should take into account the number of data points used for the linear re-
gression and the variance observed in the expert rating as well as in the data points. A
factor which all experts have given the same rating, while the linear regression results
in a high variance should be influenced less by the data than by the experts. Bayesian
analysis is a way to achieve the desired outcome. [DC99] provides an exhaustive expla-
nation of the application of Bayesian analysis for cost estimation models. As Bayesian
analysis requires methods which go beyond the standard statistical functions offered by
eg. Microsoft Excel software packages such as produced in the Bayesian inference Us-
ing Gibbs Sampling (BUGS) project http://www.mrc-bsu.cam.ac.uk/bugs/
welcome.shtml must be used. An Excel package http://www.jstatsoft.
org/v14/i05/v14i05.pdf for the BUGS software exists6.

Later on we consider to offer an online service which calibrates the model automat-
ically when new information is available. In this case a PHP based service might be
useful7.

For our purposes we can weight the parameters based on the variance of the linear
regression parameters mi. In this case the weight of parameter is calculated as in equation
5.33.

CDnew
Xi = CD

expert
Xi ∗ (1 −

1

s(mi)2 + 1
) + CDdata

Xi ∗
1

s(mi)2 + 1
(5.33)

As the Bayesian analysis is a very sophisticated method, our data however is still very
limited we opt for the linear combination of expert and estimated parameters. In table
5.20 we compare the accuracy of our estimations w.r.t. different parameter settings. As
accuracy we define the percentage of estimations, which lie within a certain range of the
actuals.

Alternative calculation

As we have already observed from the correlation matrix, size and effort are invers
correlated. This has unintended effects on the estimated learning rate. In order to over-
come this problem from the beginning, we can assume a learning rate of 1, thus we do not
assume any learning. This changes eq. 5.31 slightly and thus 5.32 as shown in eq. 5.34

6Further examples can be found at http://www.biostat.umn.edu/˜sudiptob/pubh5485/
BayesianLinearModelText.pdf

7An explanation of the PHP based implementation of Baysian networks is found here http://www.
devshed.com/c/a/PHP/Implement-Bayesian-inference-using-PHP-Part-1/

140 CHAPTER 5. ONTOCOM COST ESTIMATION MODEL

Name of
the
Ontology

PM
actual

Expert Linear
90%
expert

Linear
20%
expert

Linear
0%
expert

Simple
Bayesian

Accuracy
30% 50% 30% 50% 30% 50% 30% 50% 30% 50%
0,17 0,17 0,0 0,67 0,33 1,0 0,17 1,0 0,33 0,83

Estimations
swpatho1 5 1,2 3,6 4,5 4,8 4,0
opjk 2,6 2,5 6,4 3,2 2 3,7
ArguOnto 2 0,2 1,5 1,4 1,4 1,5
COS 2,5 0,2 4,5 4,2 4 4,0
OMV 2,5 0,3 1,9 1,9 1,9 1,9
VDO 0,5 1,2 1,4 1,0 0,8 1,1

Table 5.20: Effort estimation based on expert estimation and historical data

A DCPLX OE
mi -5,20 -3,29 2,48

s(mi) 0,68 2,60 1,37

Table 5.21: Results of the linear regression - alternative

ln(
PMX

AdSizeX

) = ln(A) +
2∑

i=1

βi ∗ ln(CDXi) (5.34)

In this case the results of the linear regression are as shown in table 5.21

Future path

We have demonstrated with a simplified example the process of calibration for the
ONTOCOM model. As we are now gathering more data of real world ontology building
efforts we will soon be in a position to calibrate the complete model. The calibration
will probably result in an adaption of the cost drivers. Some cost drivers might be highly
correlated and can thus be joined. Others might have such a big impact on the final
estimation that they can be divided into more than one cost driver. As soon as more
accurate date is available we will continue and report the results of the calibration.

5.6 Conclusions

In the last couple of years we witness a change of focus in the area of ontologies and
ontology-based information systems: while the application of ontologies was restricted

5.6. CONCLUSIONS 141

for a long time to academia projects, in the last ten years ontologies have become increas-
ingly relevant for commercial applications as well. A first prerequisite for the success-
ful introduction of ontologies in the latter setting is the availability of proved and tested
Ontology Engineering methodologies, which break down the complexity of typical engi-
neering processes and offer guidelines to monitor it. Existing methodologies have proven
to fulfill these requirements. A further prerequisite is, however, the availability of cost
information for the ontology building effort so that the project initiator can compare the
estimated costs against the prospected utility of the ontology. Research in this field is not
very advanced yet, but ONTOCOM is an initial attempt in this direction.

In this chapter we have described the ONTOCOM cost estimation model. ONTOCOM
is a parametric cost estimation model, which assumes a linear relation between the size
of an ontology and a serie of cost drivers which are determined according to the project
setting. The model can be applied in the early project phases (such as the feasibility
study) in order to compute an estimation of the effort (expressed in person months) arisen
by building, reusing or maintaining ontologies.

We have shown that the cost model ONTOCOM can be aligned to a specific ontology
engineering process such as DILIGENT, which covers all major phases of ontology engi-
neering, such as building, reuse and maintenance. As a result ONTOCOM incorporates
now 25 cost drivers which cover efforts for ontology building, reuse and maintenance,
divided into three categories: product, personnel and project cost drivers.

The cost function specific for DILIGENT process was defined according to the ON-
TOCOM model and the alignment of the cost drivers to the activities they have an impact
on. The cost function was then simplified in order to enable the usage of cost informa-
tion as decision support for three engineering scenarios, which were specified during this
work: 1.) finding the optimal size of the initial ontology, 2). the extension of reuse at the
local sites, and 3). the optimal frequency of board meetings. In summary, our analyti-
cal investigations on the basis of the simplified cost function revealed that the decisions
should depend on the number of sites the ontology is used at, and the capabilities of the
ontology engineers and its users respectively.

In order to calibrate the ONTOCOM model, thus to find the right parameters for the
different cost factors, we set-up an online survey to collect data from existing ontology
engineering projects. So far the survey was utilized to capture data from 28 projects.
To minimize misinterpretations of the cost drivers and their ratings, the authors of this
report interviewed members of the corresponding engineering teams and entered the data
themselves. Up-to-now the data collection covers historical projects at our institutes (Free
University of Berlin, University of Karlsruhe) and the EU project SEKT. Data collection
from the Knowledge Web project and other organizations will follow.

Although the number of collected data points is still insignificant, we can already
draw some preliminary conclusions and point to future research issues. The interviewed
persons could describe their experiences in the ontology building effort with the proposed
cost drivers, which demonstrates the usability of the cost model for the intended class of

142 CHAPTER 5. ONTOCOM COST ESTIMATION MODEL

engineering projects. The alignment to the elaborated DILIGENT methodology definitely
contributed to a large extent to this satisfactory coverage. Nevertheless future alignments
with other ontology engineering methodologies are expected to help us complete and
refine ONTOCOM’s list of cost drivers.
Further on our experiences in applying ONTOCOM so far suggest that the complexity of
ontology evaluation has a significant impact on the overall project costs. Consequently,
this indicates that better support for ontology evaluation could yield important benefits.
Another potential cost-relevant parameter appears to be the number of domain experts
from different domains, building a single shared ontology. The extension of the model
with this coordinate, which is not supported by the current version, is subject of future
investigations.

Beyond cost estimation, the list of cost drivers was found helpful for ontology engi-
neers to breakdown activities related to a specific ontology building process during the
feasibility study.

Chapter 6

DILIGENT ontology learning process

Note: Work in progress The descriptions, though, are not yet elaborated, as we have to
gather the results of our case studies first. Nevertheless, did the presentation and tutorial
given to the Legal case study partners, already facilitate their effort to learn ontologies
from legal documents.

6.1 Motivation

In section 4.2 we mentioned that the automatic learning of ontologies is an integral part
of the DILIGENT methodology. The integration, however, was so far coarse and the ap-
plication in the case study required a more fine grained process description. Therefore we
have conceived an ontology learning process model, which extends the existing process
description. The process model is currently applied and evaluated in the legal case study.
So far we can only report on the initiale set-up of the process model and the roles, activi-
ties, decisions and stages defined.

6.2 Process

We propose methods to (semi-)automatically generate ontologies from other existing in-
formation sources. The process can be applied in a standalone manner or in conjunction
with manual ontology building. The result (the learned ontology) should be evaluated by
domain experts. The process defining roles, stages, activities, decisions, input- and output
values and tools is depicted in fig. 6.1.

We define the following eight process stages:

1. Feasibility study

143

144 CHAPTER 6. DILIGENT ONTOLOGY LEARNING PROCESS

2. Requirements specification

3. Selection of information sources

4. Selection of ontology learning tools

5. Learning preparation

6. Learning execution

7. Ontology evaluation

8. Ontology integration

The user can go fourth and backward between the process stages depending on the
outcomes of a respective process stage. Although the different activities roles and deci-
sions are not yet elaborated, we decided to present our initial results here. In upcoming
deliverables we will provide more detailed descriptions. Besides we introduce a small
example, as a work through for the proposed process. In the example we assume that the
ontology engineers should build an ontology for the travel domain.

6.2.1 Feasibility Study

Roles Domain experts, ontology engineers

Input factors Ontology requirements specification document (ORSD)

Example In our ontology learning example from the travel domain the ORSD is defined
as in table 6.1.

Output factors Risk analysis document analyzing Potential risk factors and proposing
a Risk management Example

• Texts contain very detailed information

• Partially telegraphic writing style

• Unsure about overlap of activities

• Texts written by different authors

6.2.
PR

O
C

E
SS

145

Corpus

Satisfactory
corpus?

•Search
additional IS

•Evaluate IS
•Select
and customize IS

Selection of

information

sources (IS)

•Search OLT

•Evaluate OLT

•Select OLT

Tools

Satisfactory
tools?

Selection of

ontology

learning

tools (OLT)

•Assign tools to
sub-domains
•Assign
documents to
tools
•Specify outputs
and user
interaction points
•Specify methods
for each tool
•Configure tools
•Customize
remaining IS
•Specify order of
tool execution

Learning
Environment

Adequate
learning

environment?

Learning

preparation

•Execute tools
•Provide required
user input during
tool execution
•Evaluate and
modify
intermediary
results
•Re-configure
tools

Preliminary
ontology(ies)

Reiterate
learning?

Learning

execution

OLRSD

Requirements

specification

•Refine ORSD
to learning
needs

•Analyze
information
sources

•Specify req. for
actors

•Specify tool
requirements

Sufficient
req.?

�

OE, DE

•Specify types
of ontologies
•Identify
information
sources
•Identify
required
competencies

•Identify critical
points

•Identify
stakeholders

Risk Analysis

Document

Go/
No go

OE, DE

Feasibility

study

� � � � �

OLE,
DE

OLE

OLE,
DE

OLE,
DE

•Evaluate
ontology(ies)
according to the
OLRSD

Reviewed
ontology(ies)

Further
learning/
manual
building?

Ontology

evaluation

�

OE, DE

Ontology

integration

Feasible
ontology?

Ontology

•Translate to
different
representation
format
•Integrate/merge
ontologies
•Evaluate results

�

OE, DE
•Conventional
search engines
• Language
translators
•Text recognition
systems
•Text processing
tools

�

•Ontology
learning tools
(TextToOnto,
Text2Onto,
OntoLT,
OntoLearn etc.)

�

•Translators

•Merging tools
(PROMPT,
AnchorPROMP
T, GLUE,
FCAMerge
etc.)

�

•Ontology
learning tools
(TextToOnto,
Text2Onto,
OntoLT,
OntoLearn etc.)

�

Figure
6.1:Stages,R

oles
and

A
ctivities

in
ontology

engineering
w

ith
ontology

learning

A
ctivities

146 CHAPTER 6. DILIGENT ONTOLOGY LEARNING PROCESS

• Specify types of ontologies to be learned. This should be done considering the
sub-domains from the ORSD.

– Domain ontology

– Application ontology

– Top-level ontology

Example European tourist information (Domain ontology)

• Identify information sources useful for the learning process Example Lonely
planet documents on my hard disk

• Identify required competencies

– Linguistic expertise

– Domain expertise

– Tool know-how

– Language know-how

Example TexttoOnto (Tool know-how) and English (Language know-how)

• Identify critical points in the learning process
Example Too detailed information in the text documents, free text, large set of
documents used in learning might imply evaluation overload

• Identify stakeholders of the learning process
Example Web portal owner

Property Value
Goal, Domain, Scope Tourist information about activities, attractions,

environment etc. in European cities
Design Guidelines e.g. Number of
concepts, level of granularity, ter-
minology

200 concepts, only major activities etc. with at
least one occurrence, concept labels in English
and Spanish

Knowledge Sources e.g. Domain
experts, data bases, text etc.

Lonely planet Web site

Potential Users, Usage Szenarios Tourists, Selection of travel destination
Supported Applications Web portal
Usage of competency questions What can one do in Barcelona? Where can I sky

and bike? Which city with good weather has a
museum exhibiting the art of Picasso?

Table 6.1: ORSD for the travel domain

6.2. PROCESS 147

Decisions It should be decided if to proceed ontology building by learning or not.

Example Yes

Tools None

6.2.2 Requirements Specification

Roles Domain experts, ontology engineers

Input factors Ontology requirements specification document (ORSD), risk analysis
document

Output factors Ontology learning requirements specification document (OLRSD)

• Requirements regarding ontologies (ORSD)

• Requirements regarding ontology learning tools

• Requirements regarding actors

Activities

• Refine ORSD and match it to the requirements of ontology learning
Example Activities (Domain ontology), Environment (Domain ontology), Facts
(Domain ontology), Attractions (Domain ontology), Other (Domain ontology)

• Analyze information sources
Example Lonely planet is one information source. Texts for different sub-domains
should be separated

• Specify tool requirements, w.r.t. Inputs, outputs, language, type of learning method
etc.
Example Files in text format, concepts, relations, hierarchy, English, analysis of
texts

• Specify requirements regarding actors

– Level of expertise for domain experts and ontology engineers etc.

– Need for additional experts

Example Ontology learning expert required, KAON expert required

148 CHAPTER 6. DILIGENT ONTOLOGY LEARNING PROCESS

Decisions Sufficient requirements (to perform learning)

Tools None

6.2.3 Selection of Information Sources

Roles Domain experts, ontology learning experts

Input factors OLRSD, information sources

Output factors Selected information sources (corpus)

Activities

• Search additional information sources
Example Tourism corpus for the same domain in Spanish

• Evaluate information sources (according to the OLRSD), w.r.t. Language, domain,
representation, structure etc.
Example Heterogeneous Spanish corpus

• Select and customize information sources. This includes their translation, digital-
ization or other form of processing
Example Copy text according to domain into different directories. Spanish must
be transformed to a uniform representation format

Decisions Information sources feasibility (w.r.t. OLRSD)

Example English corpus is feasible for learning. Spanish corpus requires considerable
customization.

Tools Conventional search engines, language translators, text recognition systems, text
processing tools

6.2.4 Selection of Ontology Learning Tools

Roles Ontology learning experts

Input factors OLRSD, information sources

6.2. PROCESS 149

Output factors Selected ontology learning tools

Activities

• Search Ontology Learning Tools (OLT)
Example In our case TextToOnto, Text2Onto

• Evaluate OLT (according to the OLRSD)

– User friendliness (interface, transparency, interaction points etc.)

– Applied linguistic methods
Example POS tagger, TFIDF, see D3.3.1

– Input and output characteristics
Example English and Spanish ASCI texts, KAON ontologies

– Additional required knowledge sources etc.
Example GATE

• Select OLT

Decisions Tool feasibility (w.r.t. OLRSD)
Example Most of the requirements can be met by TextToOnto cf. 6.2.

Requirement TextToOnto
Files in text format OK
Concepts OK
Relations OK
Hierarchy OK
English, Spanish OK
Analysis of texts OK
Instances No

Table 6.2: Evaluation of tool feasibility

Tools Ontology learning tools, such as TextToOnto, Text2Onto, OntoLT, OntoLearn

6.2.5 Learning Preparation

Roles Domain experts, ontology learning experts

Input factors OLRSD, information sources, ontology learning tools

150 CHAPTER 6. DILIGENT ONTOLOGY LEARNING PROCESS

Output factors Configured learning environment

Activities

• Assign tools to sub-domains
Example For all five domains use TextToOnto

• Assign documents to tools
Example English documents corresponding to the five categories with TextToOnto
English; Spanish documents with TextToOnto Spanish

• Specify outputs
Example OWL ontology

• Specify user interaction points
Example (1) Learn concepts, customize concepts; (2) Learn hierarchy, customize
hierarchy; (3) Learn relations, customize relations

• Specify methods for each tool

• Configure tools
Example Select appropriate filters according to text corpus

• Customize remaining information sources

• Specify order of tool execution
Example Parallel execution

Decisions Feasible learning environment

Tools None

6.2.6 Learning Execution

Roles Domain experts, ontology learning experts

Input factors OLRSD, information sources, ontology learning tools

Output factors Preliminary ontology(ies)

6.2. PROCESS 151

Activities

• Execute tools

• Provide required user input during tool execution

• Evaluate and modify intermediary results

• Re-configure tools

Decisions Either the learning process is Completed, or a reiteration of the learning
process with revised parameters must be performed.
Example English ontologies learned; Spanish ontology requires new parameter configu-
ration

Tools Ontology learning tools, such as TextToOnto, Text2Onto, OntoLT, OntoLearn

6.2.7 Ontology Evaluation

Roles Domain experts, ontology engineers

Input factors OLRSD, preliminary ontology(ies)
Example English ontologies, Spanish ontology

Output factors Reviewed ontology(ies)
Example English ontologies

Activities Evaluate ontology(ies) according to the OLRSD
Example English ontologies satisfy the requirements, class instance distinctions should
be corrected manually
Spanish ontology unfeasible, translate English terminology to Spanish

Decisions

• Feasible learning results

• Reiteration points
Example No

• Proceed with other forms of ontology building
Example Manual modifications

152 CHAPTER 6. DILIGENT ONTOLOGY LEARNING PROCESS

Tools Currently none, but as described we are currently developing tools to facilitate
ontology evaluation.

6.2.8 Ontology Integration

Roles Domain experts, ontology engineers

Input factors ORSD, learned ontologies
Example Five ontologies in English

Output factors (Preliminary) ontology
Example Tourism ontology

Activities

• Translate to different representation format
Example Translate KAON to OWL

• Integrate/merge ontologies
Example In our case necessary

• Evaluate results
Example Insert upper level concepts

Decisions Feasible ontology
Example Yes

Tools Translators, merging tools such as PROMPT, AnchorPROMPT, GLUE,
FCAMerge etc.
Example Manual integration process

6.2.9 Future Work

The ontology learning process model will be evaluate and refined in the course of the
project. We will elaborate on the structure of risk analysis document and OLRSD. The
decision decision criteria for the enumerated process steps will be specified. For existing
ontology learning tools we will provide a detailed classification. From the case studies
we will compile best practices for learning execution.

Chapter 7

Evaluation of the DILIGENT
methodology

Evaluation is a process to compare different approaches to solve a certain problem
[Hou80].

An evaluation is often associated with a decision to be made but this is not a ne-
cessity. Different approaches exist to evaluate procedures. The indented audience and
their requirements entail the aspects which distinguish them. The intended audience of an
evaluation ranges from economist and managers requiring numbers and facts to choose
the most efficient procedure to practitioners being more interested in experiences in the
application of the procedure.

In order to obtain the required output information the evaluation approaches follow
different methodologies. From an epistemological point of view there are objectivist and
subjectivist approaches to evaluation. Evaluation approaches following a objectivist epis-
temology concentrate on observable facts, quantitative techniques, strict procedures and
reproducible results. Examples of these approaches to evaluation are the “Systems analy-
sis” and the “Goal free” model. The approaches following a subjectivist epistemology
observe subjective impressions. Informal interviews, personal judgement and experiences
in the case study are the means to collect multiple perspectives on the evaluated proce-
dures. Examples of these approaches to evaluation are the “Professional review” and
“Case study” model. In any case for the evaluation to be of value the audience must trust
the procedures of the evaluator. The evaluation should thus be ”true, credible, and right”
[Hou80, p. 250].

The way the evaluator claim credibility differs depending on the approach. The eval-
uator should be unbiased, and he should be interested in the findings but not favor any
of the approaches. In case of the objectivists approach to evaluation the audience should
agree with the facts, while in the subjectivist case the audience should agree with the
experiences made in the case studies.

153

154 CHAPTER 7. EVALUATION OF THE DILIGENT METHODOLOGY

An evaluation should always start with the definition of a testable hypothesis. As
the primary method of data collection is the observation of the applied procedure under
evaluation, a key criterion for an evaluation to be credible is the possibility to replicate it.
All evaluation procedures should thus be externalized and explicit.

For example the evaluation of an procedure by means of a ”Case study should report
on the important experiences in it, the credentials of the participants, e.g. of the profes-
sional reviewers or the participants in the case study and communicate important insights,
which are not standardized upfront. However, insights might vary considerably between
two case studies since people change.

It is not possible to select “the” best evaluation method, since they all have differ-
ent objectives, focus on varying aspects and draw diverse conclusions. Each approach to
evaluation has strength and weaknesses. Following only one evaluation approach might
thus be misleading and capture all aspects of the evaluated approach. Regarding the
evaluation of ontology engineering methodologies1 no clear “winner” could yet be es-
tablished. Therefore we have decided to evaluate the methodology according more than
one model. We have opt for the “Goal free”, “Professional review” and finally the “Case
study” model, because the disadvantages of one model are covered by the advantages of
the other models so that they complement each other. Other methodologies have been
evaluated according to at most two of these models2. In the next section we describe the
three models, explaining the assumptions underlying each model and the process of eval-
uation, defining the inputs and outputs and illustrate the advantages and disadvantages of
the evaluation approaches. In section 7.2 we compare the DILIGENT methodology to
major ontology engineering methodologies available in the literature. The results of the
“Professional review” are mentioned throughout the deliverable and have already lead to
adaptations of the methodology. In section 7.4 we report the results of a first application
of the DILIGENT process in a case study. For further experiences in and evaluations of
the methodology in case studies we refer the interested reader to deliverable 7.2.1.

7.1 Selected Methods for Evaluation

In this section we describe with more detail the selected evaluation models, namely the
“Goal free”, “Professional review” and finally the “Case study” model. We provide a short
description of the model and of the process to conduct the evaluation. Each model takes
different inputs and can deliver respective outputs. The models have certain advantages
and disadvantages.

1Note that at this point we do not aim at evaluating the resulting ontologies but the process itself.
2e.g. The OTK methodology and Methontology have been evaluated according to the case study and

goal free model.

7.1. SELECTED METHODS FOR EVALUATION 155

7.1.1 Goal Free

Description The “Goal free” approach to evaluation takes its name from its purpose.
The evaluation is performed for no particular reason, but to compare different proce-
dures according to a common set of criteria. It is then up to the reader of the evaluation
to assign personal preferences to the single criteria and select the procedure which fits
the reader best. The criteria can be qualitative as well as quantitative. In computer sci-
ence the evaluation of algorithmic methods according quantitative measures prevails. For
methodologies, as in our case, it is difficult to define quantitative criteria. The quality and
efficiency of the ontology engineering effort could be measured taking into account the
quality, size and total effort spend to build the ontology. It is, however, difficult to com-
pare these results for one methodology with the results for another methodology as the
effort spend depends not only on the used methodology but on many other factors, such
as ability of the team, experience of the team, project environment which are not easily
eliminated. Therefore, our evaluation takes into account only qualitative measures which
can be unbiasedly evaluated.

Process The goal free evaluation starts with the selection of relevant evaluation criteria.
The evaluator should take into account all aspects which a later reader of the evaluation
might find interesting. The evaluation criteria should be clearly defined, they should
not be overlapping, and general enough to cover all evaluated methods. Furthermore
the criteria should be relevant for the intended application of the procedures. For each
evaluation criteria the evaluator assigns a value to the evaluated procedures.

Input The basis for a goal free evaluation is a objective set of evaluation criteria for the
methods under evaluation.

Output The goal free evaluation provides the reader with an objective analysis of a set
of criteria for a number of methods.

Advantages The evaluation method is objective, as all models must adhere to the same
evaluation criteria. The evaluation can be used for different purposes, as the criteria are
not weighted. The identification of evaluation criteria, provides the reader of the evalua-
tion with a quick overview of the relevant issues for the particular procedures.

Disadvantages The identification of evaluation criteria is crucial for this evaluation
model. The evaluation criteria should be selected in a way, that particular advantages
of the evaluated models are comparable. If the evaluator is not completely familiar with
the evaluated models, wrong judgement for a criteria might be the result.

156 CHAPTER 7. EVALUATION OF THE DILIGENT METHODOLOGY

7.1.2 Professional Review

Description The professional review model relies for evaluation purposes on the expe-
riences of knowledge people in the area of interest. A number of professionals review a
procedure w.r.t. its plausibility and base their judgement and recommendations on their
own experiences and their own knowledge. They can use predefined evaluation criteria to
structure the assessment.

Process The professionals carefully examine the process description. If evaluation cri-
teria are available, they judge the evaluated process according to those criteria. They make
recommendations for changes in the process if necessary.

Input Evaluation criteria can be an input to this model.

Output This evaluation model produces expert opinions regarding the plausibility and
understandability of the evaluated method.

Advantages The professional review model reduces bias, since all aspects of a proce-
dure are evaluated. Hidden consequences of the evaluated procedure can be detected,
because the evaluator brings all his knowledge and experience in the evaluation. The pro-
fessional review model is typically applied after the first creation of the model in order to
eliminate obvious errors and to get a different perspective on the evaluated procedure.

Disadvantages The outcome of this evaluation depends on the capabilities and opin-
ion of the evaluator. The evaluation depends on the availability of experts and can not
regularly be repeated.

7.1.3 Case Study

Description The main objective of the case study model to evaluation is to understand
the process under evaluation. The target audience follows the process and the evaluator
tries to capture as many information as possible from the execution of the process.

Process We assume that the target audience knows the process to evaluate. The target
audience accomplishes their tasks according to the new process model, or – if the process
is an addition to the participants regular tasks – adds new tasks to their daily work. A case
study can have a predefined duration. The evaluators start the case study analysis with
a predefined research question (cf. [YC03]). They should consult additional information
sources and perform a literature review in order to formulate a precise research question.

7.1. SELECTED METHODS FOR EVALUATION 157

They determine the data gathering and analysis techniques for the case study; interviews,
surveys and observation are valid data gathering techniques, which all require a specific
process so that the validity of the observations is ensured. In the course of the case study
the evaluator collects the data from the different participants in the process. Many par-
ticipants should provide data, in order to get varying views on the process. The analysis
of the data should expose the important issues and relevant findings. In the aftermath of
the case study the evaluator describes the result, taking into account the organizational
setting, the participants situation, the participants reports and his own observations; the
reader needs enough background information to understand the case study and follow the
results.

Input The new process is introduced to the participants. The group of participants
should be large enough to draw meaningful conclusions.

Output A case study produces experience reports for a process model. Best practices
with a process can be detected. The reports enhance understanding rather they offer ex-
planations.

Advantages The main advantages of the case study model is its emphasize on prac-
titioner’s experiences. It exemplifies for future user which potential experiences in ap-
plying a procedure they will make. Since case studies incorporate many different views
and interests the diversity of the process can be understood. The amount and richness of
available information cannot be obtained with other evaluation approaches. The view on
the process is thus very broad.

Disadvantages The value of the case study description depends on the capabilities of
the evaluator. As the evaluator is confronted with many influencing variables it is difficult
to extract the meaningful ones. The evaluator or participant must recognize the important
issues. This depends on the evaluator asking the right questions, or the participant making
the right observations. In case of contradicting interests the evaluator must balance the
different viewpoints. This can be best resolved in just portraying the experiences in the
case study without judging them.

It is difficult to compare different case studies as they depend on the organizational
setting, the involved participants and the evaluators experience.

7.1.4 Other Approaches

Additional to the evaluation approaches elaborated on in the previous section there are
many others, e.g. the “Behavioral objectives”, the “Decision making”, the “Art criticism”
and the “Quasi-legal” model. Our aim in the SEKT project is to provide guidelines for

158 CHAPTER 7. EVALUATION OF THE DILIGENT METHODOLOGY

Feature METHON-
TOLOGY

On-To-
Knowledge
(OTK)

HCOME DILIGENT

Ontology
management
activities

Scheduling Proposed Described NP from OTK
Control Proposed Described NP from OTK
Quality assurance NP Described NP from OTK

Ontology
development
oriented activities

Pre development
processes

Environment
study

NP Proposed NP from OTK

Feasibility study NP Described NP from OTK

Development
processes

Specification Descr. in de-
tail

Descr. in de-
tail

Proposed Described

Conceptualization Descr. in de-
tail

Proposed Proposed Descr. in detail

Formalization Described Described Proposed Descr. in detail
Implementation Descr. in de-

tail
Described Proposed Described

Post
development
processes

Maintenance Proposed Proposed Described Descr. in detail
Use NP Proposed Described Described
Evolution NP NP Proposed Descr. in detail

Ontology support
activities

Knowledge acquisition Descr. in de-
tail

Described NP Proposed

Distributed know. acquisition NP NP Proposed Described
Onto. Learning integration NP NP NP Described
Partial autonomy NP NP NP Described

Evaluation Descr. in de-
tail

Proposed NP Proposed

Integration Proposed Proposed NP Proposed
Configuration management Described Described NP from OTK
Documentation Descr. in de-

tail
Proposed Described Proposed

Results Descr. in de-
tail

Proposed Described Proposed

Decision process NP NP Proposed Descr. in detail
Merging and Alignment NP NP Proposed Not detailed

Table 7.1: Summary of ontology engineering methodologies adapted from [GPFLC03]

future users of the three core technologies. By means of the “Goal free” evaluation these
future practitioners can select the features of a methodology most important to them and
thus select the methodology suiting him best. The “case study” evaluations provide first
insights what he will encounter applying the methodology, while the “Professional re-
view” ensures that the methodology also holds to professional standards.

7.2 Goal Free Evaluation of DILIGENT

In table 7.1 we compare DILIGENT to other well known methodologies. We have adapted
the categorization of [GPFLC03] separating Ontology management activities, Ontology
development oriented activities and Ontology support activities. To the original classifi-
cation we have added the aspects of Evolution, different Knowledge acquisition modes
and stages during Documentation.

The comparison reveals that DILIGENT is well suited for ontology engineering tasks
where distributiveness and change/evolution are of major concern. Further it is the first
methodology which formalizes the argumentation taking place in an ontology engineering

7.3. PROFESSIONAL REVIEW 159

discussion. Hence, DILIGENT should be used in cases were tracing the engineering
decisions is important. This allows future users to understand different reasons which
lead to the conceptualization. We think that this aspects are very important in the context
of the semantic web.

DILIGENT is less adequate for use cases were consistency of the ontology is vital.
Further methodological support for merging and alignment of ontologies is still not elab-
orated although they are support activities. DILIGENT does not itself support Ontology
management and Pre development activities, since these are already well supported by
other mature methodologies.

7.3 Professional review

In order to arrive at the methodology as it was presented in section 4.4 we have proceeded
in several development steps. Main drivers of the development were the results of the case
studies and the feedback from external reviews. In following we present the development
of the DILIGENT methodology as influenced by external reviews, while we distinguish
between the evolvement of the process and the development of the argumentation frame-
work.

7.3.1 DILIGENT process evaluation

The DILIGENT process model was evaluated at varying development stages by eight ex-
perts as part of the conference reviewing process and three ontology engineering experts
in affiliated institutes. The evaluation criteria were originality, impact and technical qual-
ity. Originality judges the novelty and new aspects of the proposed model. Impact refers
to the influence the model will have on the community. Technical quality refers to the
methods applied to validate the hypotheses.

The first version of the DILIGENT process comprised a description of the five main
stages and presented initiale tool support but neither provided a detailed description of
the stages nor was argumentation supported. At this point the IBIT case study lasted for
6 weeks. The reviewers appreciated the process model and the application scenario while
they pointed us in the directions which we than further elaborated. They asked for an
elaboration on the arbitration process to reach consensus when conflicting changes were
submitted to board. The reviewers criticized the generality of the process description and
the brevity of the case study. They question the ability of non-expert users to change the
ontology.

The second version of the DILIGENT process comprised a detailed description of
the process model on the task level and the argumentation framework. The IBIT case
study lasted for 3 month. The reviewers underlined the novelty of the process model
and its value for ontology development in the semantic web context in particular, since

160 CHAPTER 7. EVALUATION OF THE DILIGENT METHODOLOGY

it addresses decentralized ontology development and ontology evolution. The reviewers
recommended the development of sophisticated tools and the specification of decision
metrics for each process stage. As the description of the tasks did not show the parallelism
of their execution order, the reviewers had the impression that the process model was very
strikt and only applicable to particular application settings. Moreover, they suggested that
different parts of the ontology depending on their importance for the community might
have varying life cycles. The scalability of the process model was of further concern,
since it is not clear how much it costs to update the local ontology and to incorporate user
changes to the shared ontology if the number of users grows.

We responded to the reviewers concerns in a third and final version of the methodol-
ogy. In the last version of the methodology we abstract from the defined task and define
general activities, while the tasks further refine those activities for a particular application
scenario. We introduce activity diagrams clarifying the execution order of the different
activities. We added controlling activities and specific metrics to facilitate the decision
procedure.

Open issues The supervised application of the DILIGENT methodology in a larger case
study is still an open issue. The presentation of the biology case study, however, illustrates
that people already build taxonomies according to a very similar process, though they did
not generalized it. With our prototypes we could support the user, though there is room
for improvement in future versions in particular to support the development and evolution
of large ontologies with many users.

7.3.2 Argumentation framework evaluation

The DILIGENT argumentation framework was evaluated by six experts as part of the
conference reviewing process an expert on argumentation structures and two ontology
engineering experts in affiliated institutes. The evaluation criteria were the same as above.

We started the development of the argumentation framework with the hypothesis that a
restricted set of argument types could facilitate ontology engineering discussions in DILI-
GENT processes. In the initial framework we defined the argumentation process and had
selected the efficient argument types. The reviewers highly estimated the approach and
recognized the importance for ontology engineering. They pointed us to the IBIS argu-
mentation model established in requirements engineering and suggested the application
of the argumentation framework for ontology merging.

We subsequently extended the argumentation framework with the argumentation on-
tology taking into account the IBIS argumentation model. The reviewers emphasized
the validity argument framework’s extension. They highlighted the significance of tool
support.

7.4. CASE STUDY EVALUATION: FIRST APPLICATION OF DILIGENT 161

Open issues Although we have not developed specialized tool support for the argumen-
tation framework, it has already proven its applicability as described in the case study
section. The integration of the framework in an Ontology Engineering Environment is
ongoing work.

7.4 Case Study Evaluation: First Application of DILI-
GENT

We applied the DILIGENT process in a peer-to-peer (P2P) case study of the SWAP
project3. In the case study up to 7 organization with up to 28 peers took part. The case
study lasted for two weeks (cf. [TPSS04]). Ontologies were used to represent the local
(folder) structures of each peer, whereby each peer represented a single user. On top of
these local views a shared ontology was created and evolved according to the DILIGENT
methodology to facilitate searching and querying over the P2P network.

Building. In the case study two knowledge engineers were involved in building the first
version of the shared ontology with the help of two ontology engineers. In this case,
the knowledge engineers were at the same time also knowledge providers. In addition
they received additional training such that when the P2P network was up and running on
a bigger scale, they were able to act as ontology engineers on the board – which they
already are doing in later stages of this case study not reported here.

The ontology engineering process started by identifying the main concepts of the on-
tology through the analysis of competency questions and their answers. The most frequent
queries and answers exchanged by peers were analysed. The identified concepts were di-
vided into three main modules: “Sustainable Development Indicators”, “New Tech-
nologies” and “Quality&Hospitality Management”. From the competency questions
we quickly derived a first ontology with 22 concepts and 7 relations for the “Sustainable
Development Indicator” ontology. This was the domain of the then participating orga-
nizations. Recently the other modules have been further elaborated.

Based on previous experience of IBIT with the participants we could expect that users
would mainly specialize the modules of the shared ontology corresponding to their do-
main of expertise and work. Thus, it was decided by the ontology engineers and knowl-
edge providers involved in building the initial version that the shared ontology should
only evolve by addition of new concepts, and not from other more sophisticated opera-
tions, such as restructuring or deletion of concepts.

Local Adaptation. The developed core ontology for “Sustainable Development In-
dicator” was distributed among the users and they were asked to extend it with their
local structures. With assistance of the developers they extracted on average 14 folders.
The users mainly created sub concepts of concepts in the core ontology from the folder

3see http://swap.semanticweb.org/

162 CHAPTER 7. EVALUATION OF THE DILIGENT METHODOLOGY

names. In other cases they created their own concept hierarchy from their folder structure
and aligned it with the core ontology. They did not create new relations. Instance assign-
ment took place, but was not significant. We omitted the use of the automatic functions
to get a better grasp of the actions the users did manually.

Analysing. The members of the board gathered the evolving structures and analysed
them. The following observations were made:

• Concepts matched: A third of the extracted folder names was directly aligned with
the core ontology. A further tenth of them was used to extend existing concepts.

• Folder names indicate relations: In the core ontology a relation inYear between
the concept Indicator and Temporal was defined. This kind of relation is often
encoded in one folder name. e.g. the folder name “SustInd2002” matches the
concepts Sustainable Indicator and Year4. It also points to a modelling problem,
since Sustainable Indicator is a concept while “2002” is an instance of concept
Year.

• Missing top level concepts: The concept project was introduced by more than half
of the participants, but was not part of the initial shared ontology.

• Refinement of concepts: The top level concept Indicator was extended by more
than half of the participants, while other concepts were not extended.

• Concepts were not used: Some of the originally defined concepts were never used.
We identified concepts as used, when the users created instances, or aligned docu-
ments with them. A further indicator of usage was the creation of sub concepts.

• Folder names represent instances: The users who defined the concept
project used some of their folder names to create instances of that concept
e.g. “Sustainable indicators project”.

• Different labels: The originally introduced concept Natural spaces was often
aligned with a newly created concept Natural environments and never used itself.

• Ontology did not fit: One user did create his own hierarchy and could use only
one of the predefined concepts. Indeed his working area was forgotten in the first
ontology building workshop.

From the discussions with the domain experts we have the impression that the local
extensions are a good indicator for the evolution direction of the core ontology. How-
ever, since the users made use of the possibility to extend the core ontology with their
folder names, as we expected, the resulting local ontologies represent the subjects of the
organized documents. Therefore, a knowledge engineer is still needed to extend the core

4Year is sub class of class Temporal

7.4. CASE STUDY EVALUATION: FIRST APPLICATION OF DILIGENT 163

ontology, but the basis of his work is being improved significantly. From our point of
view there is only a limited potential to automate this process.

Revision. The board extended the core ontology where it was necessary and performed
some renaming. More specifically the board introduced one top level concept (Project)
and four sub concepts of the top level concept Indicator and one for the concept Docu-
ment. The users were further pointed to the possibility to create instances of the intro-
duced concepts. E.g. some folder names specified project names, thus could be enriched
by such an annotation.

Local update. The extensions to the core ontology were distributed to the users. The
general feedback of the users was generally positive. However, a prolonged evaluation
of the user behaviour and second cycle in the ontology engineering process is still being
performed.

LESSONS LEARNED: The case study helped us to generally better comprehend the
use of ontologies in a peer-to-peer environment. First of all our users did understand the
ontology mainly as a classification hierarchy for their documents. Hence, they did not
create instances of the defined concepts. However, our expectation that folder structures
can serve as a good input for an ontology engineer to build an ontology was met.

Currently we doubt that our manual approach to analyzing local structures will scale
to cases with many more users. Therefore, we are currently evaluating approaches to
automatically recognizing similarities in user behaviour. Furthermore, the local update
will be a problem when changes happen more often. We have so far only addressed the
ontology creation task itself – we are currently measuring if users get better and faster
responses with the help of DILIGENT-engineered ontologies. All this is current work.

In spite of the technical challenges, user feedback was very positive since the tool
was integrated into their daily work environment and could be easily used and the tool
provided very beneficial support to perform their tasks. However, it will require the intro-
duction of some new features in order to ease ontology editing tasks by users without a
knowledge engineering background.

164 CHAPTER 7. EVALUATION OF THE DILIGENT METHODOLOGY

Chapter 8

Conclusions

Given the increasing importance of knowledge in contemporary business processes, the
introduction of Knowledge Management in enterprizes requires an holistic approach to
it, which considers organizational, technical and human aspects in equal measure. The
SEKT project focuses on technical aspects of KM, in particular on the combination of
ontologies, human language technology and machine learning to automate knowledge
management processes.

We develop in this deliverable the ontology engineering methodology DILI-
GENTȮntologies build the conceptual backbone of the considered KM applications,
therefore DILIGENT concentrates on the evolution, extraction and refinement of ontolo-
gies. DILIGENT comprises the steps Build, Local Adaptation, Analysis, Revision and
Local Update and introduces a board to supervise changes to a shared core ontology.

DILIGENT incorporates detailed guidelines for all the stages defined in the method-
ology. The guidelines are defined on a very generic level as well as on a level tailored for
a specific use case. Besides the detailed definition of activities and actions occurring in
the process, DILIGENT is aligned with a parametric cost estimation model, which helps
to calculate the total cost of ownership of the developed ontologies.

The DILIGENT methodology includes a fine-grained argumentation framework for
developing consensual ontologies in distributed settings. The argumentation framework
comprises an argumentation process and guidelines for argument provision. We describe
the arguments most relevant in ontology engineering discussions and define a formal ar-
gumentation model which can be applied to trace, check and document the development
of an ontology.

A process model, offering fine-grained guidance for ontology learning process, is
currently under development. We present our initial ideas and expect the results of the
case studies in order to detail our descriptions.

The non technical aspects are taken into consideration as well; in that we describe
the HIKNOW methodology, which offers a holistic view on knowledge management, and

165

166 CHAPTER 8. CONCLUSIONS

shows the interdependencies between different aspects of KM. As SEKT technologies
provide solutions for challenging knowledge management problems, we first have to de-
termine the current state of affairs in an enterprise in order to introduce the technologies
appropriately. The HIKNOW maturity level analysis provides the means to determine the
maturity of a company w.r.t. knowledge management. For the SEKT case studies we will
first determine their knowledge management maturity level, and examine how they could
apply SEKT technologies from their specific starting point.

The DILIGENT methodology is already applied in the SEKT case studies and initial
best practices are summarized in the companion deliverable 7.2.1. The methodology
will thus be extended by capturing lessons learned and best practices. In the end, the
methodology will be an illustrated guidebook for implementing and applying the SEKT
technology in different settings to facilitate the take-up and transfer of the technology.

Bibliography

[ACC+98] Giuliano Antoniol, F. Calzolari, L. Cristoforetti, Roberto Fiutem, and Gi-
anluigi Caldiera. Adapting function points to object-oriented information
systems. In CAiSE ’98: Proceedings of the 10th International Conference
on Advanced Information Systems Engineering, pages 59–76, London, UK,
1998. Springer-Verlag.

[ACFLGP01] J. C. Arpı́rez, O. Corcho, M. Fernández-López, and A. Gómez-Pérez. We-
bODE: a scalable workbench for ontological engineering. In Proceedings
of the First International Conference on Knowledge Capture (K-CAP) Oct.
21-23, 2001, Victoria, B.C., Canada, 2001.

[Alb93] F. Albrecht. Strategisches Wissensmanagement der Unternehmensres-
source Wissen. Verlag Peter Lang, Frankfurt am Main, 1993.

[ASvE04] F. Aschoff, F. Schmalhofer, and L. van Elst. Knowledge mediation:
A procedure for the cooperative construction of domain ontologies. In
A. Abecker, L. van Elst, and V. Dignum, editors, Proceedings of Workshop
on Agent-Mediated Knowledge Management at the 16th European Confer-
ence on Artificial Intelligence (ECAI’2004), pages 20–28, Valencia, Spain,
August, 22-27 2004.

[AvE04] A. Abecker and L. van Elst. Ontologies for knowledge management. In
Staab and Studer [SS04], chapter 22, pages 435–454.

[B. 97] B. W. Boehm and C. Abts and B. Clark and S. Devnani-Chulani. CO-
COMO II Model Definition Manual, 1997.

[BEH+02] E. Bozsak, M. Ehrig, S. Handschuh, A. Hotho, A. Maedche, B. Motik,
D. Oberle, C. Schmitz, S. Staab, L. Stojanovic, N. Stojanovic, R. Studer,
G. Stumme, Y. Sure, J. Tane, R. Volz, and V. Zacharias. KAON – towards a
large scale semantic web. In K. Bauknecht, A. M. Tjoa, and G. Quirchmayr,
editors, Proceedings of the Third International Conference on E-Commerce
and Web Technologies (EC-Web 2002), volume 2455 of LNCS, pages 304–
313, Aix-en-Provence, France, 2002. Springer.

167

168 BIBLIOGRAPHY

[Ber02] A.T. Berztiss. Capability maturity for knowledge management. In 13th
International Workshop on Data-base and Expert Systems Applications
(DEXA’02), Aix-en-Provence, France, 2002.

[BG04] J. Blythe and Y. Gil. Incremental formalization of document annotations
through ontology-based paraphrasing. In Proceedings of the 13th interna-
tional conference on World Wide Web, pages 455–461. ACM Press, 2004.

[BGDM03] S. Buckingham Shum, V. U. Gangmin Li, J. Domingue, and E. Motta.
Visualizing internetworked argumentation. In Kirschner et al. [KSE03],
pages 185–204.

[BHGS01] S. Bechhofer, I. Horrocks, C. Goble, and R. Stevens. OilEd: A reason-able
ontology editor for the semantic web. In KI-2001: Advances in Artificial
Intelligence, LNAI 2174, pages 396–408. Springer, 2001.

[BLC96] A. Bernaras, I. Laresgoiti, and J. Corera. Building and reusing ontologies
for electrical network applications. In Proceedings of the European Con-
ference on Artificial Intelligence (ECAI’96), 1996.

[BLHL01] T. Berners-Lee, J. Hendler, and O. Lassila. The seman-
tic web. Scientific American, 2001(5), 2001. available at
http://www.sciam.com/2001/0501issue/0501berners-lee.html.

[BMM+94] P. C. Benjamin, C. Menzel, R. J. Mayer, F. Fillion, M. T. Futrell, P.S. De-
Witte, and M. Lingineni. Ontology capture method (idef5). Technical
report, Knowledge Based Systems, Inc., College Station, TX, 1994.

[Boe81] B. W. Boehm. Software Engineering Economics. Prentice-Hall, 1981.

[CB88] J. Conklin and M. L. Begeman. gibis: a hypertext tool for exploratory pol-
icy discussion. In Proceedings of the 1988 ACM conference on Computer-
supported cooperative work, pages 140–152. ACM Press, 1988.

[CC05] Matteo Cristani and Roberta Cuel. A survey on ontology creation method-
ologies. Int. J. Semantic Web Inf. Syst., 1(2):49–69, 2005.

[CKC+99] P. Chapman, R. Kerber, J. Clinton, T. Khabaza, T. Reinartz, and
R. Wirth. The CRISP-DM process model. Discussion Paper, March 1999.
http://www.crisp-dm.org.

[CSSS01] J. Conklin, A. Selvin, S. Buckingham Shum, and M. Sierhuis. Facilitated
hypertext for collective sensemaking: 15 years on from gibis. In Proceed-
ings of the twelfth ACM conference on Hypertext and Hypermedia, pages
123–124. ACM Press, 2001.

BIBLIOGRAPHY 169

[DC99] Sunita Devnani-Chulani. BAYESIAN ANALYSIS OF SOFTWARE
COST AND QUALITY MODELS. PhD thesis, FACULTY OF
THE GRADUATE SCHOOL UNIVERSITY OF SOUTHERN CAL-
IFORNIA, 1999. http://sunset.usc.edu/publications/
dissertations/SChulani.pdf.

[Den02] M. Denny. Ontology editor survey results (table), 2002. available at
http://xml.com/2002/11/06/Ontology Editor Survey.html.

[Den04] M. Denny. Updated ontology editor survey results (table), 2004. available
at http://www.xml.com/pub/a/2004/07/14/onto.html.

[DFv02] J. Davies, D. Fensel, and F. van Harmelen, editors. On-To-Knowledge:
Semantic Web enabled Knowledge Management. J. Wiley and Sons, 2002.

[DJM02] J. Demey, M. Jarrar, and R. Meersman. A conceptual markup language
that supports interoperability between business rules modeling systems. In
Meersman et al. [MT+02], pages 19–35.

[dMA03] A. de Moor and M. Aakhus. Argumentation support: From technologies
to tools. In Proc. of the 8th International Working Conference on the
Language-Action Perspective on Communication Modelling (LAP 2003),
Tilburg, The Netherlands, June 1-2 2003.

[dMSF05] Adriana Pereira de Medeiros, Daniel Schwabe, and Bruno Feijó. De-
sign rationale for model-based designs in software engineering. Mono-
grafias em Ciência da Computação 02/05, PONTIFÍCIA UNIVERSI-
DADE CATÓLICA DO RIO DE JANEIRO, 2005.

[Dom98] J. Domingue. Tadzebao and WebOnto: Discussing, browsing, and editing
ontologies on the web. In Proceedings of the 11th Knowledge Acquisition
for Knowledge-Based Systems Workshop, April 18th-23rd. Banff, Canada,
1998.

[DP98] T. H. Davenport and L. Prusak. Working Knowledge – How organisations
manage what they know. Havard Business School Press, Boston, Massa-
chusetts, 1998.

[Dru93] P. A. Drucker. A Post Capitalist Society. HarperCollins, New York, 1993.

[DSW+00] A. J. Duineveld, R. Stoter, M. R. Weiden, B. Kenepa, and V. R. Benjamins.
Wondertools? a comparative study of ontological engineering tools. Inter-
national Journal of Human-Computer Studies, 6(52):1111–1133, 2000.

[Eas91] S. Easterbrook. Handling conflict between domain descriptions with
computer-supported negotiation. Knowlege Acquistion, 3(3):255–289,
1991.

170 BIBLIOGRAPHY

[EM97] L. Edvinson and M. Malone. Intellectual capital. Realizing your com-
pany’s true value by finding its hidden brainpower. Harper, New York,
1997.

[Epp01] M. J. Eppler. The Concept of Information Quality: An Interdisciplinary
Evaluation of Recent Information Quality Frameworks. Studies in Com-
munication Sciences, 1:167–182, 2001.

[ES04] Marc Ehrig and Steffen Staab. QOM - quick ontology mapping. In Frank
van Harmelen, Sheila McIlraith, and Dimitris Plexousakis, editors, Pro-
ceedings of the Third International Semantic Web Conference (ISWC2004),
LNCS, pages 683–696, Hiroshima, Japan, 2004. Springer.

[Euz95] J. Euzenat. Building consensual knowledge bases: Context and architec-
ture. In Proceedings of the 2nd International Conference on Building and
Sharing Very Large-Scale Knowledge Bases (KBKS), pages 143–155, En-
schede the Netherlands, 1995.

[Euz97] J. Euzenat. A protocol for building consensual and consistent repositories.
Rapport de recherche 3260, INRIA Rhône-Alpes, Grenoble (FR), 1997.

[eV05] Bodo emann and Gottfried Vossen. Ontology engineering from a database
perspective. In ASIAN 2005. Springer, 2005.

[Fel04] Alexander Felfernig. Effort estimation for knowledge-based configuration
systems. In Frank Maurer and Günther Ruhe, editors, Proceedings of the
Sixteenth International Conference on Software Engineering & Knowledge
Engineering (SEKE’2004), Banff, Alberta, Canada, June 20-24, 2004,
pages 148–154, 2004.

[Fen01] D. Fensel. Ontologies: Silver bullet for knowledge management and elec-
tronic commerce. Springer-Verlag, Berlin, 2001.

[FFR96] A. Farquhar, R. Fickas, and J. Rice. The Ontolingua Server: A tool for col-
laborative ontology construction. In Proceedings of the 10th Banff Knowl-
edge Acquisition for KnowledgeBased System Workshop (KAW’95), Banff,
Canada, November 1996.

[FL99] M. Fernández-López. Overview of methodologies for building ontologies.
In Proceedings of the IJCAI-99 Workshop on Ontologies and Problem-
Solving Methods: Lessons Learned and Future Trends. CEUR Publica-
tions, 1999.

[FLGPE+02] M. Fernandéz-López, A. Gómez-Pérez, J. Euzenat, A. Gangemi,
Y. Kalfoglou, D. M. Pisanelli, M. Schorlemmer, G. Steve, L. Stojanovic,

BIBLIOGRAPHY 171

G. Stumme, and Y. Sure. A survey on methodologies for developing, main-
taining, integrating, evaluating and reengineering ontologies. OntoWeb de-
liverable 1.4, Universidad Politecnia de Madrid, 2002.

[FLGPSS99] M. Fernández-López, A. Gómez-Pérez, J. P. Sierra, and A. P. Sierra. Build-
ing a chemical ontology using Methontology and the Ontology Design En-
vironment. Intelligent Systems, 14(1), January/February 1999.

[GF94] O. Gotel and A. Finkelstein. An analysis of the requirements traceabil-
ity problem. In Proceedings of International Conference on Requirements
Engineering 1994, pages 94–101. IEEE CS Press, 1994.

[GF95a] M. Grueninger and M. Fox. Methodology for the design and evaluation of
ontologies, 1995.

[GF95b] M. Grüninger and M.S. Fox. TOVE: Manual of the Toronto
Virtual Enterprise. Technical report, Department of Indus-
trial Engineering, University of Toronto, 1995. available at
http://www.ie.utoronto.ca/EIL/tove/ontoTOC.html.

[GF97] O. Gotel and A. Finkelstein. Extended requirements traceability: Results
of an industrial case study. In Proceedings of the 3rd IEEE International
Symposium on Requirements Engineering (RE’97), page 169. IEEE Com-
puter Society, 1997.

[GK97] T. F. Gordon and N. Karacapilidis. The zeno argumentation framework. In
Proceedings of the sixth international conference on Artificial intelligence
and law, pages 10–18. ACM Press, 1997.

[GP96] A. Gómez-Pérez. A framework to verify knowledge sharing technology.
Expert Systems with Application, 11(4):519–529, 1996.

[GP04] A. Gómez-Pérez. Ontology evaluation. In Staab and Studer [SS04], chap-
ter 13, pages 251–274.

[GPAFL+02] A. Gómez-Pérez, J. Angele, M. Fernandéz-López, V. Christophides,
A. Stutt, Y. Sure, et al. A survey on ontology tools. OntoWeb deliver-
able 1.3, Universidad Politecnia de Madrid, 2002.

[GPFLC+02] A. Gómez-Pérez, M. Fernandéz-López, O. Corcho, T. T. Ahn,
N. Aussenac-Gilles, S. Bernardos, V. Christophides, O. Corby, P. Crowther,
Y. Ding, R. Engels, M. Esteban, F. Gandon, Y. Kalfoglou, G. Kar-
vounarakis, M. Lama, A. López, A. Lozano, A. Magkanaraki, D. Manzano,
E. Motta, N. Noy, D. Plexousakis, J. A. Ramos, and Y. Sure. Technical
roadmap. OntoWeb deliverable 1.1.2, Universidad Politecnia de Madrid,
2002.

172 BIBLIOGRAPHY

[GPFLC03] A. Gómez-Pérez, M. Fernández-López, and O. Corcho. Ontological Engi-
neering. Advanced Information and Knowlege Processing. Springer, 2003.

[GPS98] A. Gangemi, D.M. Pisanelli, and G. Steve. Ontology integration: Expe-
riences with medical terminologies. In Nicola Guarino, editor, Formal
Ontology in Information Systems, pages 163–178, Amsterdam, 1998. IOS
Press.

[GR02] Y. Gil and V. Ratnakar. Trellis: An interactive tool for capturing informa-
tion analysis and decision making. In Proceedings of the 13th International
Conference on Knowledge Engineering and Knowledge Management. On-
tologies and the Semantic Web, pages 37–42. Springer-Verlag, 2002.

[Gru93] T. R. Gruber. A translation approach to portable ontology specifications.
Knowledge Acquisition, 5(2):199–220, 1993.

[Gru95] T. R. Gruber. Towards principles for the design of ontologies used for
knowledge sharing. International Journal of Human-Computer Studies,
43(5/6):907–928, 1995.

[GW02] N. Guarino and C. Welty. Evaluating ontological decisions with Onto-
Clean. Communications of the ACM, 45(2):61–65, February 2002.

[Hal01] T. Halpin. Information Modelling and Relational Databases: From Con-
ceptual Analysis to Logical Design. Morgan-Kaufmann, 2001.

[Han05] Siegfried Handschuh. Creating Ontology-based Metadata by Annotation
for the Semantic Web. PhD thesis, Institut AIFB, Universtiy of Karlsruhe
(TH), 2005. Prof. Dr. Rudi Studer and Prof. Dr. Christof Weinhardt.

[HH02] I. Horrocks and J. A. Hendler, editors. Proceedings of the First Interna-
tional Semantic Web Conference: The Semantic Web (ISWC 2002), volume
2342 of Lecture Notes in Computer Science (LNCS), Sardinia, Italy, 2002.
Springer.

[HJ02] C. W. Holsapple and K. D. Joshi. A collaborative approach to ontology
design. Communications of the ACM, 45(2):42–47, 2002.

[HK05] Mark Hefke and Frank Kleiner. An ontology-based software infrastructure
for retaining theoretical knowledge management maturity models. In 1st
workshop Formal Ontologies Meet Industry (FOMI 2005), 2005. http:
//www.fzi.de/ipe/publikationen.php?id=1418.

[HLW99] K. T. Huang, Y. W. Lee, and R. Y. Wang. uality Information and Knowl-
edge. Prentice Hall, 1999.

BIBLIOGRAPHY 173

[HNM02] C. J. Hou, N. F. Noy, and M. Musen. A template-based approach toward
acquisition of logical sentences. In Musen et al. [MNS02], pages 77–89.

[Hol03a] C. W. Holsapple, editor. Handbook on Knowledge Management 1 – Knowl-
edge Matters. International Handbooks on Information Systems. Springer,
Berlin, Heidelberg, New York, 2003.

[Hol03b] C. W. Holsapple, editor. Handbook on Knowledge Management 2 –
Knowledge Directions. International Handbooks on Information Systems.
Springer, Berlin, Heidelberg, New York, 2003.

[Hor98] I. Horrocks. Using an expressive description logic: FaCT or fiction? In
Proceedings of the International Conference on Knowledge Representation
(KR 1998), pages 636–649. Morgan Kaufmann, 1998.

[Hou80] E.R. House. Evaluating with validity. Sage Publications, Beverly Hills,
1980.

[HSC02] Siegfried Handschuh, Steffen Staab, and Fabio Ciravegna. S-cream – semi-
automatic creation of metadata. Expert Update, Special Issue - Intelligent
Services for The Knowledge Lifecycle, pages 20–31, 2002.

[Hun04] A. Hunter. Towards higher impact argumentation. In D. L. McGuinness
and G. Ferguson, editors, AAAI2004, pages 275–280. AAAI Press / The
MIT Press, 2004.

[HvHH+05] Peter Haase, Frank van Harmelen, Zhisheng Huang, Heiner Stucken-
schmidt, and York Sure. A framework for handling inconsistency in chang-
ing ontologies. In Y. Gil, E. Motta, V. R. Benjamins, and M. A. Musen,
editors, Proceedings of the Fourth International Semantic Web Conference
(ISWC2005), volume 3729 of LNCS, pages 353–367. Springer, NOV 2005.

[IEE84] IEEE. Ieee guide to software requirements specifications. Technical report,
IEEE, 1984. ANSI/IEEE Standard 830-1984.

[IEE90] IEEE. IEEE standard glossary of software engineering terminology, 1990.
IEEE Standard 610.12-1990, ISBN 1-55937-067-X.

[IEE96] IEEE. IEEE guide for developing of system requirements specifications,
1996. IEEE Standard 1233-1996.

[Jac96] R. Jacques. Manufacturing the employee – Management Knowledge from
the 19th to 21st Centuries. SAGE Publications, London, Thousand Oaks,
New Delhi, 1996.

[JBCV98] Dean Jones, Trevor Bench-Capon, and Pepjin Visser. Methodologies for
ontology development. In Proceedings of the IT&KNOWS Conference of
the 15th IFIP World Computer Congress. Chapman-Hall, 1998.

174 BIBLIOGRAPHY

[JM02] M. Jarrar and R. Meersman. Formal ontology engineering in the DOGMA
approach. In Meersman et al. [MT+02], pages 1238–1254.

[Kay03] A. S. Kay. The curious success of knowledge management. In Holsapple
[Hol03b], pages 679–687.

[Kem87] C. F. Kemerer. An Empirical Validation of Software Cost Estimation Mod-
els. Communications of the ACM, 30(5), 1987.

[KLS95] J. Krogstie, O. I. Lindland, and G. Sindre. Defining Quality Aspects for
Conceptual Models. In Proceedings of the IFIP8.1 working conference on
Information Systems Concepts ISCO03: Towards a Consolidation of Views,
1995.

[Koc00] V.P. Kochikar. The knowledge management maturity model: A staged
framework for leveraging knowledge. In KMWorld 2000, Santa Clara, CA,
2000.

[Kor05] Maksym Korotkiy. On the effect of ontologies on web application devel-
opment effort. In Proceedings of the Knowledge Engineering and Software
Engineering workshop, Koblenz, Germany, 2005.

[KR70] W. Kunz and H. W. J. Rittel. Issues as elements of information systems.
Working Paper 131, Institute of Urban and Regional Development, Univer-
sity of California, Berkeley, California, 1970.

[KSE03] Paul A. Kirschner, Simon J. Buckingham Shum, and Chad S. Carr (Eds.),
editors. Visualizing Argumentation: Software Tools for Collaborative and
Educational Sense-Making. Springer, London, 2003.

[KV03] K. Kotis and G. Vouros. Human centered ontology management with
HCONE. In ODS’03: Proceedings of the IJCAI-03 Workshop on Ontolo-
gies and Distributed Systems, volume 71. CEUR-WS.org, 2003.

[KVA04] K. Kotis, G. A. Vouros, and Jerónimo Padilla Alonso. HCOME: tool-
supported methodology for collaboratively devising living ontologies. In
SWDB’04: Second International Workshop on Semantic Web and Data-
bases 29-30 August 2004 Co-located with VLDB. Springer-Verlag, 2004.

[LAB+02] A. Léger, H. Akkermans, M. Brown, J.-M. Bouladoux, R. Dieng, Y. Ding,
A. Gómez-Pérez, S. Handschuh, A. Hegarty, A. Persidis, R. Studer,
Y. Sure, V. Tamma, and B. Trousse. Successful scenarios for ontology-
based applications. OntoWeb deliverable 2.1, France Télécom R&D, 2002.

[LBB+02] A. Léger, Y. Bouillon, M. Bryan, R. Dieng, Y. Ding, M. Fernandéz-López,
A. Gómez-Pérez, P. Ecoublet, A. Persidis, and Y. Sure. Best practices and
guidelines. OntoWeb deliverable 2.2, France Télécom R&D, 2002.

BIBLIOGRAPHY 175

[LE04] M. Langen and K. Ehms. Kmmm - knowledge management maturity
model. Technical report, Siemens AG, 2004. http://www.kmmm.org.

[LET04] Steffen Lamparter, Marc Ehrig, and Christoph Tempich. Knowledge ex-
traction from classification schemata. In Robert Meersman and Zahir Tari,
editors, ODBASE, Lecture Notes in Computer Science, Larnaca, Cyprus,
25 - 29 October 2004. Springer.

[LG90] D. B. Lenat and R. V. Guha. Building large knowledge-based systems. Rep-
resentation and inference in the CYC project. Addison-Wesley, Reading,
Massachusetts, 1990.

[LTGP04] A. Lozano-Tello and A. Gomez-Perez. ONTOMETRIC: A Method to
Choose the Appropriate Ontology. Journal of Database Management,
15(2), 2004.

[LUM+02] G. Li, V. Uren, E. Motta, S. Buckingham Shum, and J. Domingue.
Claimaker: Weaving a semantic web of research papers. In Proceedings
of the First International Semantic Web Conference on The Semantic Web,
pages 436–441. Springer-Verlag, 2002.

[MAAY03] G. Mentzas, D. Apostolou, A. Abecker, and P. Young. Knowledge Asset
Management: Beyond the Process-centred and Product-centred Approach.
Springer, 2003.

[Mae02] A. Maedche. Ontology Learning for the Semantic Web. Kluwer Academics,
February 2002.

[Mar97] D. Marcu. The rhetorical parsing of natural language texts. In The Pro-
ceedings of the 35th Annual Meeting of the Association for Computational
Linguistics, (ACL’97/EACL’97), pages 96–103, Madrid, Spain, July 7-10
1997.

[Men99] Tim Menzies. Cost benefits of ontologies. Intelligence, 10(3):26–32, 1999.

[MFRW00] D. L. McGuinness, R. Fikes, J. Rice, and S. Wilder. An environment
for merging and testing large ontologies. In Proceedings of the Interna-
tional Conference on Knowledge Representation (KR 2000), pages 483–
493. Morgan Kaufmann, 2000.

[MMS03] A. Maedche, B. Motik, and L. Stojanovic. Managing multiple and distrib-
uted ontologies on the semantic web. The VLDB Journal, 12(4):286–302,
Nov 2003.

[MMV02] B. Motik, A. Maedche, and R. Volz. A conceptual modeling approach for
semantics–driven enterprise applications. In Meersman et al. [MT+02],
pages 1082–1099.

176 BIBLIOGRAPHY

[MNS02] M. Musen, B. Neumann, and R. Studer, editors. Intelligent Information
Processing. Kluwer Academic Publishers, Boston, Dordrecht, London,
2002.

[MS01] A. Maedche and S. Staab. Ontology learning for the semantic web. IEEE
Intelligent Systems, 16(2), 2001.

[MSBS03] D. L. Moody, G. Sindre, T. Brasethvik, and A. Solvberg. Evaluating the
quality of information models: empirical testing of a conceptual model
quality framework. In Proceedings of the 25th International Conference
on Software Engineering ICSE03, 2003.

[MT87] W. C. Mann and S. A. Thompson. Rhetorical structure theory: A theory of
text organization. In L. Polanyi, editor, The Structure of Discourse. Ablex
Publishing Corporation, Norwood, N.J., 1987.

[MT+02] R. Meersman, Z. Tari, et al., editors. Proceedings of the Confederated
International Conferences: On the Move to Meaningful Internet Systems
(CoopIS, DOA, and ODBASE 2002), volume 2519 of Lecture Notes in
Computer Science (LNCS), University of California, Irvine, USA, 2002.
Springer.

[NFM00] N. Noy, R. Fergerson, and M. Musen. The knowledge model of Protégé-
2000: Combining interoperability and flexibility. In R. Dieng and
O. Corby, editors, Proceedings of the 12th International Conference on
Knowledge Engineering and Knowledge Management: Methods, Models,
and Tools (EKAW 2000), volume 1937 of Lecture Notes in Artificial Intel-
ligence (LNAI), pages 17–32, Juan-les-Pins, France, 2000. Springer.

[NM01] N. Noy and D. L. McGuinness. Ontology development 101: A guide to
creating your first ontology. Technical Report KSL-01-05 and SMI-2001-
0880, Stanford Knowledge Systems Laboratory and Stanford Medical In-
formatics, March 2001.

[NNM05] A. De Nicola, R. Navigli, and M. Missikoff. Building an eprocurement on-
tology with upon methodology. In Proc. of 15th e-Challenges Conference,
Ljubljana, Slovenia, October 19-21st 2005.

[PB88] C. Potts and G. Bruns. Recording the reasons for design decisions. In
Proceedings of the 10th international conference on Software engineering,
pages 418–427. IEEE Computer Society Press, 1988.

[PBM05a] E. Paslaru Bontas and M. Mochol. A cost model for ontology engineering.
Technical Report TR-B-05-03, Free University of Berlin, April 2005.

BIBLIOGRAPHY 177

[PBM05b] E. Paslaru Bontas and M. Mochol. Towards a Cost Estimation Model for
Ontology Engineering. In Proceedings of the Berliner XML Days Confer-
ence, 2005.

[PBMT05] E. Paslaru Bontas, M. Mochol, and R. Tolksdorf. Case Studies in Ontology
Reuse. In Proceedings of the 5th International Conference on Knowledge
Management IKNOW05, 2005.

[PM00] H. S. Pinto and J. Martins. Reusing ontologies. In AAAI 2000 Spring
Symposium on Bringing Knowledge to Business Processes, pages 77–84,
2000.

[PM01] H. S. Pinto and J. P. Martins. A methodology for ontology integration. In
Proceedings of the First International Conference on Knowledge Capture
(K-CAP2001), pages 131–138, New York, 2001. ACM Press.

[PP02] O. Paulzen and P. Perc. A maturity model for quality improvement in
knowledge management. In A. Wenn, M. McGrath, and F. Burstein, ed-
itors, Enabling Organisations and Society through Information Systems,
Proceedings of the 13th Australasian Conference on Information Systems
(ACIS 2002), pages 243–253, Melbourne, 2002.

[PRR99] G. Probst, K. Romhardt, and S. Raub. Managing Knowledge. J. Wiley and
Sons, 1999.

[PS04] R. Price and G. Shanks. A Semiotic Information Quality Framework. In
Proceedings of the International Conference on Decision Support Systems
DSS04, 2004.

[PSST04] H. S. Pinto, S. Staab, Y. Sure, and C. Tempich. OntoEdit empower-
ing SWAP: a case study in supporting DIstributed, Loosely-controlled
and evolvInG Engineering of oNTologies (DILIGENT). In C. Bussler,
J. Davies, D. Fensel, and R. Studer, editors, First European Semantic Web
Symposium, ESWS 2004, volume 3053 of LNCS, pages 16–30, Heraklion,
Crete, Greece, May 2004. Springer.

[PSTS04] H. S. Pinto, S. Staab, C. Tempich, and Y. Sure. DILIGENT: Towards a
fine-grained methodology for DIstributed, Loosely-controlled and evolv-
InG Engineering of oNTologies. In Ramon López de Mántaras and Lorenza
Saitta, editors, Proceedings of the 16th European Conference on Artificial
Intelligence (ECAI 2004), pages 393–397, Valencia, Spain, August 2004.
IOS Press.

[PWCC95] M.C. Paulk, C.V. Weber, B. Curtis, and M.B. Chrissis. The Capability
Maturity Model: Guidelines for Improving the Software Process. Addison-
Wesley Publishing Company, Reading, MA, carnegie mellon university,
software engineering institute edition, 1995.

178 BIBLIOGRAPHY

[Qui92] J. Quinn. Intelligent Enterprise. A knowledge and service based paradigm
for industry. Free Press, New York, 1992.

[RA+03] U. Reimer, A. Abecker, , S. Staab, and G. Stumme, editors. Proceedings of
the 2nd National Conference “Professionelles Wissensmanagement – Er-
fahrungen und Visionen (WM2003)”, volume P–28 of GI-Edition Lecture
Notes in Informatics (LNI), Luzern, Switzerland, 2003. Gesellschaft fuer
Informatik (GI).

[RD92] Balasubramaniam Ramesh and Vasant Dhar. Supporting systems develop-
ment by capturing deliberations during requirements engineering. IEEE
Trans. Softw. Eng., 18(6):498–510, 1992.

[RVMS99] T. Russ, A. Valente, R. MacGregor, and W. Swartout. Practical Experiences
in Trading Off Ontology Usability and Reusability. In Proceedings of the
Knowledge Acquisition Workshop KAW99, 1999.

[SA02] Y. Sure and J. Angele, editors. Proceedings of the First International Work-
shop on Evaluation of Ontology based Tools (EON 2002), volume 62 of
CEUR Workshop Proceedings, Siguenza, Spain, 2002. CEUR-WS Publi-
cation, available at http://CEUR-WS.org/Vol-62/.

[SAA+99] G. Schreiber, H. Akkermans, A. Anjewierden, R. de Hoog, N. Shadbolt,
W. van de Velde, and B. Wielinga. Knowledge Engineering and Manage-
ment — The CommonKADS Methodology. The MIT Press, Cambridge,
Massachusetts; London, England, 1999.

[SAB+03] Y. Sure, H. Akkermans, J. Broekstra, J. Davies, Y. Ding, A. Duke, R. En-
gels, D. Fensel, I. Horrocks, V. Iosif, A. Kampman, A. Kiryakov, M. Klein,
T. Lau, D. Ognyanov, U. Reimer, K. Simov, R. Studer, J. van der Meer, and
F. van Harmelen. On-To-Knowledge: Semantic web–enabled knowledge
management. In N. Zhong, J. Liu, and Y. Yao, editors, Web Intelligence,
chapter 13, pages 278–301. Springer-Verlag”, 2003.

[SAS03] Y. Sure, J. Angele, and S. Staab. OntoEdit: Multifaceted inferencing for
ontology engineering. Journal on Data Semantics, LNCS(2800):128–152,
2003.

[Sch96a] U. Schneider. Management in der wissensbasierten unternehmung. In Wis-
sensmanagement [Sch96b], pages 13–48.

[Sch96b] U. Schneider, editor. Wissensmanagement. Frankfurter Allgemeneine
Zeitung, Frankfurt am Main, 1996.

[SEA+02a] Y. Sure, M. Erdmann, J. Angele, S. Staab, R. Studer, and D. Wenke. On-
toEdit: Collaborative ontology development for the semantic web. In Hor-
rocks and Hendler [HH02], pages 221–235.

BIBLIOGRAPHY 179

[SEA+02b] Y. Sure, M. Erdmann, J. Angele, S. Staab, R. Studer, and D. Wenke. On-
toEdit: Collaborative ontology development for the semantic web. In Hor-
rocks and Hendler [HH02], pages 221–235.

[SG89] M.L.G. Shaw and B.R. Gaines. Comparing conceptual structures: Con-
sensus, conflict, correspondence and contrast. Knowledge Acquisition,
1(4):341–363, 1989.

[SK93] Y. Sakamoto and E. Kuwana. Toward integrated support of synchronous
and asynchronous communication in cooperative work: an empirical study
of real group communication. In Proceedings of the conference on Orga-
nizational computing systems, pages 90–97. ACM Press, 1993.

[SMD02] S. Buckingham Shum, E. Motta, and J. Domingue. Augmenting design
deliberation with compendium: The case of collaborative ontology de-
sign. In HypACoM 2002: Facilitating Hypertext-Augmented Collabora-
tive Modeling. ACM Hypertext’02 Workshop, University Maryland, MD,
2002. Retrieved November 24, 2004 from http://kmi.open.ac.
uk/projects/compendium/SBS-HT02-Compendium.html.

[SMJ02] P. Spyns, R. Meersman, and M. Jarrar. Data modelling versus ontology
engineering. SIGMOD Record – Web Edition, 31(4), December ’02 2002.
Special Section on Semantic Web and Data Management; R. Meersman
and A. Sheth (eds.); Available at http://www.acm.org/sigmod/record/.

[SMMS02] Ljlijana Stojanovic, Alexander Maedche, Boris Motik, and Nenad Sto-
janovic. User-driven ontology evolution management. In Proceedings of
the 13th European Conference on Knowledge Engineering and Knowledge
Management EKAW, Madrid, Spain, October 2002.

[SPKR96] B. Swartout, R. Patil, K. Knight, and T. Russ. Toward distributed use of
large-scale ontologies. In Proceedings of the 10th Knowledge Acquisition
Workshop (KAW’96), Banff, Canada, November 1996.

[SRKR97] B. Swartout, P. Ramesh, K. Knight, and T. Russ. Toward distributed use of
largescale ontologies. In Symposium on Ontological Engineering of AAAI,
Stanford, CA., 1997.

[SS02] Y. Sure and R. Studer. On-To-Knowledge methodology. In Davies et al.
[DFv02], chapter 3, pages 33–46.

[SS03] Y. Sure and H.-P. Schnurr, editors. Proceedings of the 1st National “Work-
shop Ontologie-basiertes Wissensmanagement (WOW2003)”, 2003. April
2003, Luzern, Switzerland; held in conjunction with [RA+03].

[SS04] S. Staab and R. Studer, editors. Handbook on Ontologies, volume 10 of
International Handbooks on Information Systems. Springer, 2004.

180 BIBLIOGRAPHY

[SSS+01] A. Selvin, S. Buckingham Shum, M. Sierhuis, J. Conklin, B. Zimmermann,
C. Palus, W. Drath, D. Horth, J. Domingue, E. Motta, and G. Li. Com-
pendium: Making meetings into knowledge events. In Knowledge Tech-
nologies, Austin, TX, March 4-7 2001.

[SSSS01] S. Staab, H.-P. Schnurr, R. Studer, and Y. Sure. Knowledge processes and
ontologies. IEEE Intelligent Systems, Special Issue on Knowledge Man-
agement, 16(1):26–34, January/Febrary 2001.

[Ste95] Stewart, R. D. and Wyskida, R. M. and Johannes, J. D. Cost Estimator’s
Reference Manual. Wiley, 1995.

[Ste97] T. A. Stewart. Intellectual Capital – The New Wealth of Organizations.
Doubleday/Currency, a division of Bantam Doubleday Dell Publishing
Group, Inc., 1997.

[Sur03] Y. Sure. Methodology, Tools and Case Studies for Ontology based Knowl-
edge Management. PhD thesis, University of Karlsruhe, 2003.

[TPSS04] C. Tempich, H. S. Pinto, S. Staab, and Y. Sure. A case study in support-
ing DIstributed, Loosely-controlled and evolvInG Engineering of oNTolo-
gies (DILIGENT). In K. Tochtermann and H. Maurer, editors, Proceed-
ings of the 4th International Conference on Knowledge Management (I-
KNOW’04), pages 225–232, Graz, Austria, June 30 – July 02 2004. Journal
of Universal Computer Science (J.UCS).

[TPSS05] C. Tempich, H. S. Pinto, Y. Sure, and S. Staab. An argumentation ontology
for DIstributed, Loosely-controlled and evolvInG Engineering processes
of oNTologies (DILIGENT). In C. Bussler, J. Davies, D. Fensel, and
R. Studer, editors, Second European Semantic Web Conference, ESWC
2005, LNCS, Heraklion, Crete, Greece, May 2005. Springer.

[TRJ84] S. Toulmin, R. Rieke, and A. Janik. An introduction to reasoning. Macmil-
lan Publishing, 1984.

[TS98] J. Tennison and N. Shadbolt. APECKS: A tool to support living ontologies.
In Proceedings of the 11th Knowledge Acquisition Workshop (KAW’98),
Banff, Canada, April 1998.

[TV03] C. Tempich and R. Volz. Towards a benchmark for semantic web reasoners
- an analysis of the DAML ontology library. In York Sure, editor, Evalua-
tion of Ontology-based Tools (EON2003) at Second International Semantic
Web Conference (ISWC 2003), October 2003.

[UCH+98] M. Uschold, P. Clark, M. Healy, K. Williamson, and S. Woods. An Exper-
iment in Ontology Reuse. In Proceedings of the 11th Knowledge Acquisi-
tion Workshop KAW98, 1998.

BIBLIOGRAPHY 181

[UG96] M. Uschold and M. Grueninger. Ontologies: Principles, methods and ap-
plications. Knowledge Sharing and Review, 11(2), June 1996.

[UHW+98] M. Uschold, M. Healy, K. Williamson, P. Clark, and S. Woods. Ontology
Reuse and Application. In Proceedings of the International Conference on
Formal Ontology and Information Systems FOIS98, pages 179–192, 1998.

[UK95] M. Uschold and M. King. Towards a methodology for building ontologies.
In Workshop on Basic Ontological Issues in Knowledge Sharing, held in
conjunction with IJCAI-95, Montreal, Canada, 1995.

[UKMZ98] M. Uschold, M. King, S. Moralee, and Y. Zorgios. The enterprise ontology.
Knowledge Engineering Review, 13(1):31–89, 1998.

[VSTE05] Denny Vrandecic, York Sure, Christoph Tempich, and Michael Engler.
Sekt methodology: Initial best practices and lessons learned in case studies.
SEKT formal deliverable 7.2.1, Institute AIFB, University of Karlsruhe,
DEC 2005.

[Wie92] G. Wiederhold. Mediators in the architecture of future information sys-
tems. IEEE Computer, 25(3):38–49, 1992.

[WPH02] R. Weerdmeester, C. Pocaterra, and M. Hefke. Knowledge management
maturity model, vision deliverable d5.2. Technical report, FZI, 2002.

[YC03] Robert K. Yin and Donald T. Campbell. Case Study Research: Design
and Methods, volume 5 of Applied Social Research Methods Series. Sage
Publications Inc., Thousand Oaks, CA, 2003.

